pyerrors/tests/io_test.py

125 lines
4.4 KiB
Python
Raw Normal View History

2021-12-10 10:43:52 +00:00
import os
import gzip
import numpy as np
import pyerrors as pe
2021-11-29 15:27:28 +01:00
import pyerrors.input.json as jsonio
def test_jsonio():
o = pe.pseudo_Obs(1.0, .2, 'one')
o2 = pe.pseudo_Obs(0.5, .1, 'two|r1')
o3 = pe.pseudo_Obs(0.5, .1, 'two|r2')
o4 = pe.merge_obs([o2, o3])
otag = 'This has been merged!'
o4.tag = otag
2021-11-29 15:27:28 +01:00
do = o - .2 * o4
2021-12-14 15:47:14 +01:00
co1 = pe.cov_Obs(1., .123, 'cov1')
2021-12-14 16:31:33 +01:00
co3 = pe.cov_Obs(4., .1 ** 2, 'cov3')
do *= co1 / co3
do.tag = {'A': 2}
2021-11-29 15:27:28 +01:00
o5 = pe.pseudo_Obs(0.8, .1, 'two|r2')
2021-12-14 15:47:14 +01:00
co2 = pe.cov_Obs([1, 2], [[.12, .004], [.004, .02]], 'cov2')
o5 /= co2[0]
o3 /= co2[1]
o5.tag = 2 * otag
2021-11-29 15:27:28 +01:00
testl = [o3, o5]
arr = np.array([o3, o5])
2021-11-29 15:27:28 +01:00
mat = np.array([[pe.pseudo_Obs(1.0, .1, 'mat'), pe.pseudo_Obs(0.3, .1, 'mat')], [pe.pseudo_Obs(0.2, .1, 'mat'), pe.pseudo_Obs(2.0, .4, 'mat')]])
mat[0][1].tag = ['This', 'is', 2, None]
mat[1][0].tag = '{testt}'
mat[1][1].tag = '[tag]'
2021-11-29 15:27:28 +01:00
tt1 = pe.Obs([np.random.rand(100)], ['t|r1'], idl=[range(2, 202, 2)])
tt2 = pe.Obs([np.random.rand(100)], ['t|r2'], idl=[range(2, 202, 2)])
tt3 = pe.Obs([np.random.rand(102)], ['qe'])
tt = tt1 + tt2 + tt3
tt.tag = 'Test Obs: Ä'
2021-12-14 16:31:33 +01:00
ol = [o4, do, testl, mat, arr, np.array([o]), np.array([tt, tt]), [tt, tt], co1, co2, np.array(co2), co1 / co2[0]]
2021-11-29 15:27:28 +01:00
fname = 'test_rw'
jsonio.dump_to_json(ol, fname, indent=1, description='[I am a tricky description]')
2021-11-29 15:27:28 +01:00
rl = jsonio.load_json(fname)
os.remove(fname + '.json.gz')
2021-12-09 15:59:53 +00:00
for o, r in zip(ol, rl):
assert np.all(o == r)
for i in range(len(ol)):
2021-11-29 15:27:28 +01:00
if isinstance(ol[i], pe.Obs):
o = ol[i] - rl[i]
assert(o.is_zero())
assert(ol[i].tag == rl[i].tag)
2021-11-29 15:27:28 +01:00
or1 = np.ravel(ol[i])
or2 = np.ravel(rl[i])
for j in range(len(or1)):
o = or1[j] - or2[j]
2021-11-29 15:27:28 +01:00
assert(o.is_zero())
description = {'I': {'Am': {'a': 'nested dictionary!'}}}
jsonio.dump_to_json(ol, fname, indent=0, gz=False, description=description)
rl = jsonio.load_json(fname, gz=False, full_output=True)
os.remove(fname + '.json')
2021-12-09 15:59:53 +00:00
for o, r in zip(ol, rl['obsdata']):
assert np.all(o == r)
assert(description == rl['description'])
def test_json_string_reconstruction():
my_obs = pe.Obs([np.random.rand(100)], ['name'])
2021-12-10 10:43:52 +00:00
json_string = pe.input.json.create_json_string(my_obs)
2021-12-10 10:43:52 +00:00
reconstructed_obs1 = pe.input.json.import_json_string(json_string)
assert my_obs == reconstructed_obs1
compressed_string = gzip.compress(json_string.encode('utf-8'))
reconstructed_string = gzip.decompress(compressed_string).decode('utf-8')
reconstructed_obs2 = pe.input.json.import_json_string(reconstructed_string)
assert reconstructed_string == json_string
assert my_obs == reconstructed_obs2
def test_json_corr_io():
my_list = [pe.Obs([np.random.normal(1.0, 0.1, 100)], ['ens1']) for o in range(8)]
rw_list = pe.reweight(pe.Obs([np.random.normal(1.0, 0.1, 100)], ['ens1']), my_list)
for obs_list in [my_list, rw_list]:
for tag in [None, "test"]:
obs_list[3].tag = tag
for fp in [0, 2]:
for bp in [0, 7]:
for corr_tag in [None, 'my_Corr_tag']:
my_corr = pe.Corr(obs_list, padding=[fp, bp])
my_corr.tag = corr_tag
pe.input.json.dump_to_json(my_corr, 'corr')
recover = pe.input.json.load_json('corr')
assert np.all([o.is_zero() for o in [x for x in (my_corr - recover) if x is not None]])
assert my_corr.tag == recover.tag
assert my_corr.reweighted == recover.reweighted
def test_json_corr_2d_io():
obs_list = [np.array([[pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test'), pe.pseudo_Obs(0.0, 0.1 * i, 'test')], [pe.pseudo_Obs(0.0, 0.1 * i, 'test'), pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test')]]) for i in range(8)]
for tag in [None, "test"]:
obs_list[3][0, 1].tag = tag
for padding in [0, 1]:
my_corr = pe.Corr(obs_list, padding=[padding, padding])
my_corr.tag = tag
pe.input.json.dump_to_json(my_corr, 'corr')
recover = pe.input.json.load_json('corr')
assert np.all([np.all([o.is_zero() for o in q]) for q in [x.ravel() for x in (my_corr - recover) if x is not None]])
assert my_corr.tag == recover.tag