feat!: merged the parameters padding_front and padding_back of Corr into

one parameter padding
This commit is contained in:
Fabian Joswig 2022-01-18 14:50:18 +00:00
parent 56fe126593
commit d778a3b238
6 changed files with 16 additions and 16 deletions

File diff suppressed because one or more lines are too long

View file

@ -206,7 +206,7 @@ print(my_corr)
```
In case the correlation functions are not defined on the outermost timeslices, for example because of fixed boundary conditions, a padding can be introduced.
```python
my_corr = pe.Corr([obs_0, obs_1, obs_2, obs_3], padding_front=1, padding_back=1)
my_corr = pe.Corr([obs_0, obs_1, obs_2, obs_3], padding=[1, 1])
print(my_corr)
> x0/a Corr(x0/a)
> ------------------

View file

@ -23,7 +23,7 @@ class Corr:
"""
def __init__(self, data_input, padding_front=0, padding_back=0, prange=None):
def __init__(self, data_input, padding=[0, 0], prange=None):
# All data_input should be a list of things at different timeslices. This needs to be verified
if not isinstance(data_input, list):
@ -53,7 +53,7 @@ class Corr:
# We now apply some padding to our list. In case that our list represents a correlator of length T but is not defined at every value.
# An undefined timeslice is represented by the None object
self.content = [None] * padding_front + self.content + [None] * padding_back
self.content = [None] * padding[0] + self.content + [None] * padding[1]
self.T = len(self.content) # for convenience: will be used a lot
# The attribute "range" [start,end] marks a range of two timeslices.
@ -331,7 +331,7 @@ class Corr:
newcontent.append(self.content[t + 1] - self.content[t])
if(all([x is None for x in newcontent])):
raise Exception("Derivative is undefined at all timeslices")
return Corr(newcontent, padding_back=1)
return Corr(newcontent, padding=[0, 1])
if symmetric:
newcontent = []
for t in range(1, self.T - 1):
@ -341,7 +341,7 @@ class Corr:
newcontent.append(0.5 * (self.content[t + 1] - self.content[t - 1]))
if(all([x is None for x in newcontent])):
raise Exception('Derivative is undefined at all timeslices')
return Corr(newcontent, padding_back=1, padding_front=1)
return Corr(newcontent, padding=[1, 1])
def second_deriv(self):
"""Return the second derivative of the correlator with respect to x0."""
@ -353,7 +353,7 @@ class Corr:
newcontent.append((self.content[t + 1] - 2 * self.content[t] + self.content[t - 1]))
if(all([x is None for x in newcontent])):
raise Exception("Derivative is undefined at all timeslices")
return Corr(newcontent, padding_back=1, padding_front=1)
return Corr(newcontent, padding=[1, 1])
def m_eff(self, variant='log', guess=1.0):
"""Returns the effective mass of the correlator as correlator object
@ -381,7 +381,7 @@ class Corr:
if(all([x is None for x in newcontent])):
raise Exception('m_eff is undefined at all timeslices')
return np.log(Corr(newcontent, padding_back=1))
return np.log(Corr(newcontent, padding=[0, 1]))
elif variant in ['periodic', 'cosh', 'sinh']:
if variant in ['periodic', 'cosh']:
@ -404,7 +404,7 @@ class Corr:
if(all([x is None for x in newcontent])):
raise Exception('m_eff is undefined at all timeslices')
return Corr(newcontent, padding_back=1)
return Corr(newcontent, padding=[0, 1])
elif variant == 'arccosh':
newcontent = []
@ -415,7 +415,7 @@ class Corr:
newcontent.append((self.content[t + 1] + self.content[t - 1]) / (2 * self.content[t]))
if(all([x is None for x in newcontent])):
raise Exception("m_eff is undefined at all timeslices")
return np.arccosh(Corr(newcontent, padding_back=1, padding_front=1))
return np.arccosh(Corr(newcontent, padding=[1, 1]))
else:
raise Exception('Unknown variant.')

View file

@ -402,7 +402,7 @@ def import_json_string(json_string, verbose=True, full_output=False):
if len(tmp_o['tag']) == 0:
del tmp_o['tag']
dat = get_Array_from_dict(tmp_o)
my_corr = Corr(list(dat), padding_front=padding_front, padding_back=padding_back)
my_corr = Corr(list(dat), padding=[padding_front, padding_back])
if corr_tag != 'None':
my_corr.tag = corr_tag
return my_corr

View file

@ -115,7 +115,7 @@ def test_plateau():
def test_padded_correlator():
my_list = [pe.Obs([np.random.normal(1.0, 0.1, 100)], ['ens1']) for o in range(8)]
my_corr = pe.Corr(my_list, padding_front=7, padding_back=3)
my_corr = pe.Corr(my_list, padding=[7, 3])
my_corr.reweighted
[o for o in my_corr]

View file

@ -101,7 +101,7 @@ def test_json_corr_io():
for fp in [0, 2]:
for bp in [0, 7]:
for corr_tag in [None, 'my_Corr_tag']:
my_corr = pe.Corr(obs_list, padding_front=fp, padding_back=bp)
my_corr = pe.Corr(obs_list, padding=[fp, bp])
my_corr.tag = corr_tag
pe.input.json.dump_to_json(my_corr, 'corr')
recover = pe.input.json.load_json('corr')
@ -116,7 +116,7 @@ def test_json_corr_2d_io():
for tag in [None, "test"]:
obs_list[3][0, 1].tag = tag
for padding in [0, 1]:
my_corr = pe.Corr(obs_list, padding_front=padding, padding_back=padding)
my_corr = pe.Corr(obs_list, padding=[padding, padding])
my_corr.tag = tag
pe.input.json.dump_to_json(my_corr, 'corr')
recover = pe.input.json.load_json('corr')