mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-03-15 14:50:25 +01:00
Compare commits
40 commits
Author | SHA1 | Date | |
---|---|---|---|
|
3c36ab08c8 | ||
|
b2847a1f80 | ||
|
17792418ed | ||
|
dd4f8525f7 | ||
|
5f5438b563 | ||
|
6ed6ce6113 | ||
|
7eabd68c5f | ||
|
9ff34c27d7 | ||
|
997d360db3 | ||
|
3eac9214b4 | ||
|
d908508120 | ||
|
b1448a2703 | ||
|
30bfb55981 | ||
|
0ce765a99d | ||
|
c057ecffda | ||
|
47fd72b814 | ||
|
b43a2cbd34 | ||
|
4b1bb0872a | ||
|
1d6f7f65c0 | ||
|
3830e3f777 | ||
|
041d53e5ae | ||
|
55cd782909 | ||
|
7ca9d4ee41 | ||
|
d17513f043 | ||
|
0e8d68a1f0 | ||
|
fce6bcd1f8 | ||
|
e23373d5ee | ||
|
db612597d2 | ||
|
43bd99b6c7 | ||
|
9f46bf8966 | ||
|
1fce785597 | ||
|
254a19f321 | ||
|
0df5882d1f | ||
|
b930fab9c2 | ||
|
43383acead | ||
|
1713ea146a | ||
|
df1873b5ac | ||
|
b5bc687625 | ||
|
5122e260ea | ||
|
1360942a7b |
34 changed files with 1355 additions and 377 deletions
39
.github/workflows/codeql.yml
vendored
39
.github/workflows/codeql.yml
vendored
|
@ -1,39 +0,0 @@
|
|||
name: "CodeQL"
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
- develop
|
||||
pull_request:
|
||||
|
||||
jobs:
|
||||
analyze:
|
||||
name: Analyze
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
actions: read
|
||||
contents: read
|
||||
security-events: write
|
||||
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
language: [ 'python' ]
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Initialize CodeQL
|
||||
uses: github/codeql-action/init@v2
|
||||
with:
|
||||
languages: ${{ matrix.language }}
|
||||
|
||||
- name: Autobuild
|
||||
uses: github/codeql-action/autobuild@v2
|
||||
|
||||
- name: Perform CodeQL Analysis
|
||||
uses: github/codeql-action/analyze@v2
|
||||
with:
|
||||
category: "/language:${{matrix.language}}"
|
4
.github/workflows/docs.yml
vendored
4
.github/workflows/docs.yml
vendored
|
@ -11,10 +11,10 @@ jobs:
|
|||
|
||||
steps:
|
||||
- name: Set up Python environment
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.10"
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
- name: Updated documentation
|
||||
run: |
|
||||
git config --global user.email "${{ github.actor }}@users.noreply.github.com"
|
||||
|
|
18
.github/workflows/examples.yml
vendored
18
.github/workflows/examples.yml
vendored
|
@ -17,27 +17,27 @@ jobs:
|
|||
fail-fast: false
|
||||
matrix:
|
||||
os: [ubuntu-latest]
|
||||
python-version: ["3.8", "3.10", "3.12"]
|
||||
python-version: ["3.10", "3.12"]
|
||||
|
||||
steps:
|
||||
- name: Checkout source
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Setup python
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- name: uv
|
||||
uses: astral-sh/setup-uv@v5
|
||||
|
||||
- name: Install
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install dvipng texlive-latex-extra texlive-fonts-recommended cm-super
|
||||
python -m pip install --upgrade pip
|
||||
pip install wheel
|
||||
pip install .
|
||||
pip install pytest
|
||||
pip install nbmake
|
||||
pip install -U matplotlib!=3.7.0 # Exclude version 3.7.0 of matplotlib as this breaks local imports of style files.
|
||||
uv pip install wheel --system
|
||||
uv pip install . --system
|
||||
uv pip install pytest nbmake --system
|
||||
uv pip install -U matplotlib!=3.7.0 --system # Exclude version 3.7.0 of matplotlib as this breaks local imports of style files.
|
||||
|
||||
- name: Run tests
|
||||
run: pytest -vv --nbmake examples/*.ipynb
|
||||
|
|
4
.github/workflows/flake8.yml
vendored
4
.github/workflows/flake8.yml
vendored
|
@ -13,9 +13,9 @@ jobs:
|
|||
name: Lint
|
||||
steps:
|
||||
- name: Check out source repository
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
- name: Set up Python environment
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.10"
|
||||
- name: flake8 Lint
|
||||
|
|
27
.github/workflows/pytest.yml
vendored
27
.github/workflows/pytest.yml
vendored
|
@ -17,31 +17,30 @@ jobs:
|
|||
fail-fast: false
|
||||
matrix:
|
||||
os: [ubuntu-latest]
|
||||
python-version: ["3.8", "3.9", "3.10", "3.11"]
|
||||
python-version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
include:
|
||||
- os: macos-latest
|
||||
python-version: "3.10"
|
||||
python-version: "3.12"
|
||||
- os: ubuntu-24.04-arm
|
||||
python-version: "3.12"
|
||||
|
||||
steps:
|
||||
- name: Checkout source
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Setup python
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- name: uv
|
||||
uses: astral-sh/setup-uv@v5
|
||||
|
||||
- name: Install
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install wheel
|
||||
pip install .
|
||||
pip install pytest
|
||||
pip install pytest-cov
|
||||
pip install pytest-benchmark
|
||||
pip install hypothesis
|
||||
pip install py
|
||||
pip freeze
|
||||
uv pip install wheel --system
|
||||
uv pip install . --system
|
||||
uv pip install pytest pytest-cov pytest-benchmark hypothesis --system
|
||||
uv pip freeze --system
|
||||
|
||||
- name: Run tests
|
||||
run: pytest --cov=pyerrors -vv -Werror
|
||||
run: pytest --cov=pyerrors -vv
|
||||
|
|
58
.github/workflows/release.yml
vendored
Normal file
58
.github/workflows/release.yml
vendored
Normal file
|
@ -0,0 +1,58 @@
|
|||
name: Release
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
release:
|
||||
types: [published]
|
||||
|
||||
jobs:
|
||||
build:
|
||||
name: Build sdist and wheel
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
name: Checkout repository
|
||||
|
||||
- uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.12"
|
||||
|
||||
- name: Install pypa/build
|
||||
run: >-
|
||||
python3 -m
|
||||
pip install
|
||||
build
|
||||
--user
|
||||
|
||||
- name: Build wheel and source tarball
|
||||
run: python3 -m build
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: python-package-distributions
|
||||
path: dist/
|
||||
if-no-files-found: error
|
||||
|
||||
publish:
|
||||
needs: [build]
|
||||
name: Upload to PyPI
|
||||
runs-on: ubuntu-latest
|
||||
environment:
|
||||
name: pypi
|
||||
url: https://pypi.org/p/pyerrors
|
||||
permissions:
|
||||
id-token: write
|
||||
|
||||
steps:
|
||||
- name: Download artifacts
|
||||
uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: python-package-distributions
|
||||
path: dist/
|
||||
|
||||
- name: Sanity check
|
||||
run: ls -la dist/
|
||||
|
||||
- name: Publish to PyPI
|
||||
uses: pypa/gh-action-pypi-publish@release/v1
|
15
.github/workflows/ruff.yml
vendored
Normal file
15
.github/workflows/ruff.yml
vendored
Normal file
|
@ -0,0 +1,15 @@
|
|||
name: ruff
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
- develop
|
||||
pull_request:
|
||||
jobs:
|
||||
ruff:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: astral-sh/ruff-action@v2
|
||||
with:
|
||||
src: "./pyerrors"
|
46
CHANGELOG.md
46
CHANGELOG.md
|
@ -2,6 +2,52 @@
|
|||
|
||||
All notable changes to this project will be documented in this file.
|
||||
|
||||
## [2.14.0] - 2025-03-09
|
||||
|
||||
### Added
|
||||
- Explicit checks of the provided inverse matrix for correlated fits #259
|
||||
|
||||
### Changed
|
||||
- Compute derivative for pow explicitly instead of relying on autograd. This results in a ~4x speedup for pow operations #246
|
||||
- More explicit exception types #248
|
||||
|
||||
### Fixed
|
||||
- Removed the possibility to create an Obs from data on several replica #258
|
||||
- Fix range in `set_prange` #247
|
||||
- Fix ensemble name handling in sfcf input modules #253
|
||||
- Correct error message for fit shape mismatch #257
|
||||
|
||||
## [2.13.0] - 2024-11-03
|
||||
|
||||
### Added
|
||||
- Allow providing lower triangular matrix constructed from a Cholesky decomposition in least squares function for correlated fits.
|
||||
|
||||
### Fixed
|
||||
- Corrected bug that prevented combined fits with multiple x-obs in some cases.
|
||||
|
||||
## [2.12.0] - 2024-08-22
|
||||
|
||||
### Changed
|
||||
- Support for numpy 2 was added via a new autograd release
|
||||
- Support for python<3.9 was dropped and dependencies were updated.
|
||||
|
||||
### Fixed
|
||||
- Minor bug fixes in input.sfcf
|
||||
|
||||
|
||||
## [2.11.1] - 2024-04-25
|
||||
|
||||
### Fixed
|
||||
- Fixed a bug in error computation when combining two Obs from the same ensemble and fluctuations on one replicum are not part of one of the Obs.
|
||||
|
||||
|
||||
## [2.11.0] - 2024-04-01
|
||||
### Added
|
||||
- New special function module.
|
||||
|
||||
### Fixed
|
||||
- Various bug fixes in input module.
|
||||
|
||||
## [2.10.0] - 2023-11-24
|
||||
### Added
|
||||
- More efficient implementation of read_sfcf
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
[](https://github.com/fjosw/pyerrors/actions/workflows/pytest.yml) [](https://www.python.org/downloads/) [](https://opensource.org/licenses/MIT) [](https://arxiv.org/abs/2209.14371) [](https://doi.org/10.1016/j.cpc.2023.108750)
|
||||
[](https://www.python.org/downloads/) [](https://opensource.org/licenses/MIT) [](https://arxiv.org/abs/2209.14371) [](https://doi.org/10.1016/j.cpc.2023.108750)
|
||||
# pyerrors
|
||||
`pyerrors` is a python framework for error computation and propagation of Markov chain Monte Carlo data from lattice field theory and statistical mechanics simulations.
|
||||
|
||||
|
@ -14,11 +14,6 @@ Install the most recent release using pip and [pypi](https://pypi.org/project/py
|
|||
python -m pip install pyerrors # Fresh install
|
||||
python -m pip install -U pyerrors # Update
|
||||
```
|
||||
Install the most recent release using conda and [conda-forge](https://anaconda.org/conda-forge/pyerrors):
|
||||
```bash
|
||||
conda install -c conda-forge pyerrors # Fresh install
|
||||
conda update -c conda-forge pyerrors # Update
|
||||
```
|
||||
|
||||
## Contributing
|
||||
We appreciate all contributions to the code, the documentation and the examples. If you want to get involved please have a look at our [contribution guideline](https://github.com/fjosw/pyerrors/blob/develop/CONTRIBUTING.md).
|
||||
|
|
File diff suppressed because one or more lines are too long
|
@ -481,11 +481,12 @@ from .obs import *
|
|||
from .correlators import *
|
||||
from .fits import *
|
||||
from .misc import *
|
||||
from . import dirac
|
||||
from . import input
|
||||
from . import linalg
|
||||
from . import mpm
|
||||
from . import roots
|
||||
from . import integrate
|
||||
from . import dirac as dirac
|
||||
from . import input as input
|
||||
from . import linalg as linalg
|
||||
from . import mpm as mpm
|
||||
from . import roots as roots
|
||||
from . import integrate as integrate
|
||||
from . import special as special
|
||||
|
||||
from .version import __version__
|
||||
from .version import __version__ as __version__
|
||||
|
|
|
@ -101,7 +101,7 @@ class Corr:
|
|||
self.N = 1
|
||||
elif all([isinstance(item, np.ndarray) or item is None for item in data_input]) and any([isinstance(item, np.ndarray) for item in data_input]):
|
||||
self.content = data_input
|
||||
noNull = [a for a in self.content if not (a is None)] # To check if the matrices are correct for all undefined elements
|
||||
noNull = [a for a in self.content if a is not None] # To check if the matrices are correct for all undefined elements
|
||||
self.N = noNull[0].shape[0]
|
||||
if self.N > 1 and noNull[0].shape[0] != noNull[0].shape[1]:
|
||||
raise ValueError("Smearing matrices are not NxN.")
|
||||
|
@ -141,7 +141,7 @@ class Corr:
|
|||
def gamma_method(self, **kwargs):
|
||||
"""Apply the gamma method to the content of the Corr."""
|
||||
for item in self.content:
|
||||
if not (item is None):
|
||||
if item is not None:
|
||||
if self.N == 1:
|
||||
item[0].gamma_method(**kwargs)
|
||||
else:
|
||||
|
@ -159,7 +159,7 @@ class Corr:
|
|||
By default it will return the lowest source, which usually means unsmeared-unsmeared (0,0), but it does not have to
|
||||
"""
|
||||
if self.N == 1:
|
||||
raise Exception("Trying to project a Corr, that already has N=1.")
|
||||
raise ValueError("Trying to project a Corr, that already has N=1.")
|
||||
|
||||
if vector_l is None:
|
||||
vector_l, vector_r = np.asarray([1.] + (self.N - 1) * [0.]), np.asarray([1.] + (self.N - 1) * [0.])
|
||||
|
@ -167,16 +167,16 @@ class Corr:
|
|||
vector_r = vector_l
|
||||
if isinstance(vector_l, list) and not isinstance(vector_r, list):
|
||||
if len(vector_l) != self.T:
|
||||
raise Exception("Length of vector list must be equal to T")
|
||||
raise ValueError("Length of vector list must be equal to T")
|
||||
vector_r = [vector_r] * self.T
|
||||
if isinstance(vector_r, list) and not isinstance(vector_l, list):
|
||||
if len(vector_r) != self.T:
|
||||
raise Exception("Length of vector list must be equal to T")
|
||||
raise ValueError("Length of vector list must be equal to T")
|
||||
vector_l = [vector_l] * self.T
|
||||
|
||||
if not isinstance(vector_l, list):
|
||||
if not vector_l.shape == vector_r.shape == (self.N,):
|
||||
raise Exception("Vectors are of wrong shape!")
|
||||
raise ValueError("Vectors are of wrong shape!")
|
||||
if normalize:
|
||||
vector_l, vector_r = vector_l / np.sqrt((vector_l @ vector_l)), vector_r / np.sqrt(vector_r @ vector_r)
|
||||
newcontent = [None if _check_for_none(self, item) else np.asarray([vector_l.T @ item @ vector_r]) for item in self.content]
|
||||
|
@ -201,7 +201,7 @@ class Corr:
|
|||
Second index to be picked.
|
||||
"""
|
||||
if self.N == 1:
|
||||
raise Exception("Trying to pick item from projected Corr")
|
||||
raise ValueError("Trying to pick item from projected Corr")
|
||||
newcontent = [None if (item is None) else item[i, j] for item in self.content]
|
||||
return Corr(newcontent)
|
||||
|
||||
|
@ -212,8 +212,8 @@ class Corr:
|
|||
timeslice and the error on each timeslice.
|
||||
"""
|
||||
if self.N != 1:
|
||||
raise Exception("Can only make Corr[N=1] plottable")
|
||||
x_list = [x for x in range(self.T) if not self.content[x] is None]
|
||||
raise ValueError("Can only make Corr[N=1] plottable")
|
||||
x_list = [x for x in range(self.T) if self.content[x] is not None]
|
||||
y_list = [y[0].value for y in self.content if y is not None]
|
||||
y_err_list = [y[0].dvalue for y in self.content if y is not None]
|
||||
|
||||
|
@ -222,9 +222,9 @@ class Corr:
|
|||
def symmetric(self):
|
||||
""" Symmetrize the correlator around x0=0."""
|
||||
if self.N != 1:
|
||||
raise Exception('symmetric cannot be safely applied to multi-dimensional correlators.')
|
||||
raise ValueError('symmetric cannot be safely applied to multi-dimensional correlators.')
|
||||
if self.T % 2 != 0:
|
||||
raise Exception("Can not symmetrize odd T")
|
||||
raise ValueError("Can not symmetrize odd T")
|
||||
|
||||
if self.content[0] is not None:
|
||||
if np.argmax(np.abs([o[0].value if o is not None else 0 for o in self.content])) != 0:
|
||||
|
@ -237,7 +237,7 @@ class Corr:
|
|||
else:
|
||||
newcontent.append(0.5 * (self.content[t] + self.content[self.T - t]))
|
||||
if (all([x is None for x in newcontent])):
|
||||
raise Exception("Corr could not be symmetrized: No redundant values")
|
||||
raise ValueError("Corr could not be symmetrized: No redundant values")
|
||||
return Corr(newcontent, prange=self.prange)
|
||||
|
||||
def anti_symmetric(self):
|
||||
|
@ -245,7 +245,7 @@ class Corr:
|
|||
if self.N != 1:
|
||||
raise TypeError('anti_symmetric cannot be safely applied to multi-dimensional correlators.')
|
||||
if self.T % 2 != 0:
|
||||
raise Exception("Can not symmetrize odd T")
|
||||
raise ValueError("Can not symmetrize odd T")
|
||||
|
||||
test = 1 * self
|
||||
test.gamma_method()
|
||||
|
@ -259,7 +259,7 @@ class Corr:
|
|||
else:
|
||||
newcontent.append(0.5 * (self.content[t] - self.content[self.T - t]))
|
||||
if (all([x is None for x in newcontent])):
|
||||
raise Exception("Corr could not be symmetrized: No redundant values")
|
||||
raise ValueError("Corr could not be symmetrized: No redundant values")
|
||||
return Corr(newcontent, prange=self.prange)
|
||||
|
||||
def is_matrix_symmetric(self):
|
||||
|
@ -292,7 +292,7 @@ class Corr:
|
|||
def matrix_symmetric(self):
|
||||
"""Symmetrizes the correlator matrices on every timeslice."""
|
||||
if self.N == 1:
|
||||
raise Exception("Trying to symmetrize a correlator matrix, that already has N=1.")
|
||||
raise ValueError("Trying to symmetrize a correlator matrix, that already has N=1.")
|
||||
if self.is_matrix_symmetric():
|
||||
return 1.0 * self
|
||||
else:
|
||||
|
@ -336,10 +336,10 @@ class Corr:
|
|||
'''
|
||||
|
||||
if self.N == 1:
|
||||
raise Exception("GEVP methods only works on correlator matrices and not single correlators.")
|
||||
raise ValueError("GEVP methods only works on correlator matrices and not single correlators.")
|
||||
if ts is not None:
|
||||
if (ts <= t0):
|
||||
raise Exception("ts has to be larger than t0.")
|
||||
raise ValueError("ts has to be larger than t0.")
|
||||
|
||||
if "sorted_list" in kwargs:
|
||||
warnings.warn("Argument 'sorted_list' is deprecated, use 'sort' instead.", DeprecationWarning)
|
||||
|
@ -371,9 +371,9 @@ class Corr:
|
|||
|
||||
if sort is None:
|
||||
if (ts is None):
|
||||
raise Exception("ts is required if sort=None.")
|
||||
raise ValueError("ts is required if sort=None.")
|
||||
if (self.content[t0] is None) or (self.content[ts] is None):
|
||||
raise Exception("Corr not defined at t0/ts.")
|
||||
raise ValueError("Corr not defined at t0/ts.")
|
||||
Gt = _get_mat_at_t(ts)
|
||||
reordered_vecs = _GEVP_solver(Gt, G0, method=method, chol_inv=chol_inv)
|
||||
if kwargs.get('auto_gamma', False) and vector_obs:
|
||||
|
@ -391,14 +391,14 @@ class Corr:
|
|||
all_vecs.append(None)
|
||||
if sort == "Eigenvector":
|
||||
if ts is None:
|
||||
raise Exception("ts is required for the Eigenvector sorting method.")
|
||||
raise ValueError("ts is required for the Eigenvector sorting method.")
|
||||
all_vecs = _sort_vectors(all_vecs, ts)
|
||||
|
||||
reordered_vecs = [[v[s] if v is not None else None for v in all_vecs] for s in range(self.N)]
|
||||
if kwargs.get('auto_gamma', False) and vector_obs:
|
||||
[[[o.gm() for o in evn] for evn in ev if evn is not None] for ev in reordered_vecs]
|
||||
else:
|
||||
raise Exception("Unknown value for 'sort'. Choose 'Eigenvalue', 'Eigenvector' or None.")
|
||||
raise ValueError("Unknown value for 'sort'. Choose 'Eigenvalue', 'Eigenvector' or None.")
|
||||
|
||||
if "state" in kwargs:
|
||||
return reordered_vecs[kwargs.get("state")]
|
||||
|
@ -435,7 +435,7 @@ class Corr:
|
|||
"""
|
||||
|
||||
if self.N != 1:
|
||||
raise Exception("Multi-operator Prony not implemented!")
|
||||
raise NotImplementedError("Multi-operator Prony not implemented!")
|
||||
|
||||
array = np.empty([N, N], dtype="object")
|
||||
new_content = []
|
||||
|
@ -502,7 +502,7 @@ class Corr:
|
|||
correlator or a Corr of same length.
|
||||
"""
|
||||
if self.N != 1:
|
||||
raise Exception("Only one-dimensional correlators can be safely correlated.")
|
||||
raise ValueError("Only one-dimensional correlators can be safely correlated.")
|
||||
new_content = []
|
||||
for x0, t_slice in enumerate(self.content):
|
||||
if _check_for_none(self, t_slice):
|
||||
|
@ -516,7 +516,7 @@ class Corr:
|
|||
elif isinstance(partner, Obs): # Should this include CObs?
|
||||
new_content.append(np.array([correlate(o, partner) for o in t_slice]))
|
||||
else:
|
||||
raise Exception("Can only correlate with an Obs or a Corr.")
|
||||
raise TypeError("Can only correlate with an Obs or a Corr.")
|
||||
|
||||
return Corr(new_content)
|
||||
|
||||
|
@ -583,7 +583,7 @@ class Corr:
|
|||
Available choice: symmetric, forward, backward, improved, log, default: symmetric
|
||||
"""
|
||||
if self.N != 1:
|
||||
raise Exception("deriv only implemented for one-dimensional correlators.")
|
||||
raise ValueError("deriv only implemented for one-dimensional correlators.")
|
||||
if variant == "symmetric":
|
||||
newcontent = []
|
||||
for t in range(1, self.T - 1):
|
||||
|
@ -592,7 +592,7 @@ class Corr:
|
|||
else:
|
||||
newcontent.append(0.5 * (self.content[t + 1] - self.content[t - 1]))
|
||||
if (all([x is None for x in newcontent])):
|
||||
raise Exception('Derivative is undefined at all timeslices')
|
||||
raise ValueError('Derivative is undefined at all timeslices')
|
||||
return Corr(newcontent, padding=[1, 1])
|
||||
elif variant == "forward":
|
||||
newcontent = []
|
||||
|
@ -602,7 +602,7 @@ class Corr:
|
|||
else:
|
||||
newcontent.append(self.content[t + 1] - self.content[t])
|
||||
if (all([x is None for x in newcontent])):
|
||||
raise Exception("Derivative is undefined at all timeslices")
|
||||
raise ValueError("Derivative is undefined at all timeslices")
|
||||
return Corr(newcontent, padding=[0, 1])
|
||||
elif variant == "backward":
|
||||
newcontent = []
|
||||
|
@ -612,7 +612,7 @@ class Corr:
|
|||
else:
|
||||
newcontent.append(self.content[t] - self.content[t - 1])
|
||||
if (all([x is None for x in newcontent])):
|
||||
raise Exception("Derivative is undefined at all timeslices")
|
||||
raise ValueError("Derivative is undefined at all timeslices")
|
||||
return Corr(newcontent, padding=[1, 0])
|
||||
elif variant == "improved":
|
||||
newcontent = []
|
||||
|
@ -622,7 +622,7 @@ class Corr:
|
|||
else:
|
||||
newcontent.append((1 / 12) * (self.content[t - 2] - 8 * self.content[t - 1] + 8 * self.content[t + 1] - self.content[t + 2]))
|
||||
if (all([x is None for x in newcontent])):
|
||||
raise Exception('Derivative is undefined at all timeslices')
|
||||
raise ValueError('Derivative is undefined at all timeslices')
|
||||
return Corr(newcontent, padding=[2, 2])
|
||||
elif variant == 'log':
|
||||
newcontent = []
|
||||
|
@ -632,11 +632,11 @@ class Corr:
|
|||
else:
|
||||
newcontent.append(np.log(self.content[t]))
|
||||
if (all([x is None for x in newcontent])):
|
||||
raise Exception("Log is undefined at all timeslices")
|
||||
raise ValueError("Log is undefined at all timeslices")
|
||||
logcorr = Corr(newcontent)
|
||||
return self * logcorr.deriv('symmetric')
|
||||
else:
|
||||
raise Exception("Unknown variant.")
|
||||
raise ValueError("Unknown variant.")
|
||||
|
||||
def second_deriv(self, variant="symmetric"):
|
||||
r"""Return the second derivative of the correlator with respect to x0.
|
||||
|
@ -656,7 +656,7 @@ class Corr:
|
|||
$$f(x) = \tilde{\partial}^2_0 log(f(x_0))+(\tilde{\partial}_0 log(f(x_0)))^2$$
|
||||
"""
|
||||
if self.N != 1:
|
||||
raise Exception("second_deriv only implemented for one-dimensional correlators.")
|
||||
raise ValueError("second_deriv only implemented for one-dimensional correlators.")
|
||||
if variant == "symmetric":
|
||||
newcontent = []
|
||||
for t in range(1, self.T - 1):
|
||||
|
@ -665,7 +665,7 @@ class Corr:
|
|||
else:
|
||||
newcontent.append((self.content[t + 1] - 2 * self.content[t] + self.content[t - 1]))
|
||||
if (all([x is None for x in newcontent])):
|
||||
raise Exception("Derivative is undefined at all timeslices")
|
||||
raise ValueError("Derivative is undefined at all timeslices")
|
||||
return Corr(newcontent, padding=[1, 1])
|
||||
elif variant == "big_symmetric":
|
||||
newcontent = []
|
||||
|
@ -675,7 +675,7 @@ class Corr:
|
|||
else:
|
||||
newcontent.append((self.content[t + 2] - 2 * self.content[t] + self.content[t - 2]) / 4)
|
||||
if (all([x is None for x in newcontent])):
|
||||
raise Exception("Derivative is undefined at all timeslices")
|
||||
raise ValueError("Derivative is undefined at all timeslices")
|
||||
return Corr(newcontent, padding=[2, 2])
|
||||
elif variant == "improved":
|
||||
newcontent = []
|
||||
|
@ -685,7 +685,7 @@ class Corr:
|
|||
else:
|
||||
newcontent.append((1 / 12) * (-self.content[t + 2] + 16 * self.content[t + 1] - 30 * self.content[t] + 16 * self.content[t - 1] - self.content[t - 2]))
|
||||
if (all([x is None for x in newcontent])):
|
||||
raise Exception("Derivative is undefined at all timeslices")
|
||||
raise ValueError("Derivative is undefined at all timeslices")
|
||||
return Corr(newcontent, padding=[2, 2])
|
||||
elif variant == 'log':
|
||||
newcontent = []
|
||||
|
@ -695,11 +695,11 @@ class Corr:
|
|||
else:
|
||||
newcontent.append(np.log(self.content[t]))
|
||||
if (all([x is None for x in newcontent])):
|
||||
raise Exception("Log is undefined at all timeslices")
|
||||
raise ValueError("Log is undefined at all timeslices")
|
||||
logcorr = Corr(newcontent)
|
||||
return self * (logcorr.second_deriv('symmetric') + (logcorr.deriv('symmetric'))**2)
|
||||
else:
|
||||
raise Exception("Unknown variant.")
|
||||
raise ValueError("Unknown variant.")
|
||||
|
||||
def m_eff(self, variant='log', guess=1.0):
|
||||
"""Returns the effective mass of the correlator as correlator object
|
||||
|
@ -728,7 +728,7 @@ class Corr:
|
|||
else:
|
||||
newcontent.append(self.content[t] / self.content[t + 1])
|
||||
if (all([x is None for x in newcontent])):
|
||||
raise Exception('m_eff is undefined at all timeslices')
|
||||
raise ValueError('m_eff is undefined at all timeslices')
|
||||
|
||||
return np.log(Corr(newcontent, padding=[0, 1]))
|
||||
|
||||
|
@ -742,7 +742,7 @@ class Corr:
|
|||
else:
|
||||
newcontent.append(self.content[t - 1] / self.content[t + 1])
|
||||
if (all([x is None for x in newcontent])):
|
||||
raise Exception('m_eff is undefined at all timeslices')
|
||||
raise ValueError('m_eff is undefined at all timeslices')
|
||||
|
||||
return np.log(Corr(newcontent, padding=[1, 1])) / 2
|
||||
|
||||
|
@ -767,7 +767,7 @@ class Corr:
|
|||
else:
|
||||
newcontent.append(np.abs(find_root(self.content[t][0] / self.content[t + 1][0], root_function, guess=guess)))
|
||||
if (all([x is None for x in newcontent])):
|
||||
raise Exception('m_eff is undefined at all timeslices')
|
||||
raise ValueError('m_eff is undefined at all timeslices')
|
||||
|
||||
return Corr(newcontent, padding=[0, 1])
|
||||
|
||||
|
@ -779,11 +779,11 @@ class Corr:
|
|||
else:
|
||||
newcontent.append((self.content[t + 1] + self.content[t - 1]) / (2 * self.content[t]))
|
||||
if (all([x is None for x in newcontent])):
|
||||
raise Exception("m_eff is undefined at all timeslices")
|
||||
raise ValueError("m_eff is undefined at all timeslices")
|
||||
return np.arccosh(Corr(newcontent, padding=[1, 1]))
|
||||
|
||||
else:
|
||||
raise Exception('Unknown variant.')
|
||||
raise ValueError('Unknown variant.')
|
||||
|
||||
def fit(self, function, fitrange=None, silent=False, **kwargs):
|
||||
r'''Fits function to the data
|
||||
|
@ -801,7 +801,7 @@ class Corr:
|
|||
Decides whether output is printed to the standard output.
|
||||
'''
|
||||
if self.N != 1:
|
||||
raise Exception("Correlator must be projected before fitting")
|
||||
raise ValueError("Correlator must be projected before fitting")
|
||||
|
||||
if fitrange is None:
|
||||
if self.prange:
|
||||
|
@ -810,12 +810,12 @@ class Corr:
|
|||
fitrange = [0, self.T - 1]
|
||||
else:
|
||||
if not isinstance(fitrange, list):
|
||||
raise Exception("fitrange has to be a list with two elements")
|
||||
raise TypeError("fitrange has to be a list with two elements")
|
||||
if len(fitrange) != 2:
|
||||
raise Exception("fitrange has to have exactly two elements [fit_start, fit_stop]")
|
||||
raise ValueError("fitrange has to have exactly two elements [fit_start, fit_stop]")
|
||||
|
||||
xs = np.array([x for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None])
|
||||
ys = np.array([self.content[x][0] for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None])
|
||||
xs = np.array([x for x in range(fitrange[0], fitrange[1] + 1) if self.content[x] is not None])
|
||||
ys = np.array([self.content[x][0] for x in range(fitrange[0], fitrange[1] + 1) if self.content[x] is not None])
|
||||
result = least_squares(xs, ys, function, silent=silent, **kwargs)
|
||||
return result
|
||||
|
||||
|
@ -840,9 +840,9 @@ class Corr:
|
|||
else:
|
||||
raise Exception("no plateau range provided")
|
||||
if self.N != 1:
|
||||
raise Exception("Correlator must be projected before getting a plateau.")
|
||||
raise ValueError("Correlator must be projected before getting a plateau.")
|
||||
if (all([self.content[t] is None for t in range(plateau_range[0], plateau_range[1] + 1)])):
|
||||
raise Exception("plateau is undefined at all timeslices in plateaurange.")
|
||||
raise ValueError("plateau is undefined at all timeslices in plateaurange.")
|
||||
if auto_gamma:
|
||||
self.gamma_method()
|
||||
if method == "fit":
|
||||
|
@ -854,16 +854,16 @@ class Corr:
|
|||
return returnvalue
|
||||
|
||||
else:
|
||||
raise Exception("Unsupported plateau method: " + method)
|
||||
raise ValueError("Unsupported plateau method: " + method)
|
||||
|
||||
def set_prange(self, prange):
|
||||
"""Sets the attribute prange of the Corr object."""
|
||||
if not len(prange) == 2:
|
||||
raise Exception("prange must be a list or array with two values")
|
||||
raise ValueError("prange must be a list or array with two values")
|
||||
if not ((isinstance(prange[0], int)) and (isinstance(prange[1], int))):
|
||||
raise Exception("Start and end point must be integers")
|
||||
if not (0 <= prange[0] <= self.T and 0 <= prange[1] <= self.T and prange[0] < prange[1]):
|
||||
raise Exception("Start and end point must define a range in the interval 0,T")
|
||||
raise TypeError("Start and end point must be integers")
|
||||
if not (0 <= prange[0] <= self.T and 0 <= prange[1] <= self.T and prange[0] <= prange[1]):
|
||||
raise ValueError("Start and end point must define a range in the interval 0,T")
|
||||
|
||||
self.prange = prange
|
||||
return
|
||||
|
@ -900,7 +900,7 @@ class Corr:
|
|||
Optional title of the figure.
|
||||
"""
|
||||
if self.N != 1:
|
||||
raise Exception("Correlator must be projected before plotting")
|
||||
raise ValueError("Correlator must be projected before plotting")
|
||||
|
||||
if auto_gamma:
|
||||
self.gamma_method()
|
||||
|
@ -941,7 +941,7 @@ class Corr:
|
|||
hide_from = None
|
||||
ax1.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=corr.tag, mfc=plt.rcParams['axes.facecolor'])
|
||||
else:
|
||||
raise Exception("'comp' must be a correlator or a list of correlators.")
|
||||
raise TypeError("'comp' must be a correlator or a list of correlators.")
|
||||
|
||||
if plateau:
|
||||
if isinstance(plateau, Obs):
|
||||
|
@ -950,14 +950,14 @@ class Corr:
|
|||
ax1.axhline(y=plateau.value, linewidth=2, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--', label=str(plateau))
|
||||
ax1.axhspan(plateau.value - plateau.dvalue, plateau.value + plateau.dvalue, alpha=0.25, color=plt.rcParams['text.color'], ls='-')
|
||||
else:
|
||||
raise Exception("'plateau' must be an Obs")
|
||||
raise TypeError("'plateau' must be an Obs")
|
||||
|
||||
if references:
|
||||
if isinstance(references, list):
|
||||
for ref in references:
|
||||
ax1.axhline(y=ref, linewidth=1, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--')
|
||||
else:
|
||||
raise Exception("'references' must be a list of floating pint values.")
|
||||
raise TypeError("'references' must be a list of floating pint values.")
|
||||
|
||||
if self.prange:
|
||||
ax1.axvline(self.prange[0], 0, 1, ls='-', marker=',', color="black", zorder=0)
|
||||
|
@ -991,7 +991,7 @@ class Corr:
|
|||
if isinstance(save, str):
|
||||
fig.savefig(save, bbox_inches='tight')
|
||||
else:
|
||||
raise Exception("'save' has to be a string.")
|
||||
raise TypeError("'save' has to be a string.")
|
||||
|
||||
def spaghetti_plot(self, logscale=True):
|
||||
"""Produces a spaghetti plot of the correlator suited to monitor exceptional configurations.
|
||||
|
@ -1002,7 +1002,7 @@ class Corr:
|
|||
Determines whether the scale of the y-axis is logarithmic or standard.
|
||||
"""
|
||||
if self.N != 1:
|
||||
raise Exception("Correlator needs to be projected first.")
|
||||
raise ValueError("Correlator needs to be projected first.")
|
||||
|
||||
mc_names = list(set([item for sublist in [sum(map(o[0].e_content.get, o[0].mc_names), []) for o in self.content if o is not None] for item in sublist]))
|
||||
x0_vals = [n for (n, o) in zip(np.arange(self.T), self.content) if o is not None]
|
||||
|
@ -1044,7 +1044,7 @@ class Corr:
|
|||
elif datatype == "pickle":
|
||||
dump_object(self, filename, **kwargs)
|
||||
else:
|
||||
raise Exception("Unknown datatype " + str(datatype))
|
||||
raise ValueError("Unknown datatype " + str(datatype))
|
||||
|
||||
def print(self, print_range=None):
|
||||
print(self.__repr__(print_range))
|
||||
|
@ -1094,7 +1094,7 @@ class Corr:
|
|||
def __add__(self, y):
|
||||
if isinstance(y, Corr):
|
||||
if ((self.N != y.N) or (self.T != y.T)):
|
||||
raise Exception("Addition of Corrs with different shape")
|
||||
raise ValueError("Addition of Corrs with different shape")
|
||||
newcontent = []
|
||||
for t in range(self.T):
|
||||
if _check_for_none(self, self.content[t]) or _check_for_none(y, y.content[t]):
|
||||
|
@ -1122,7 +1122,7 @@ class Corr:
|
|||
def __mul__(self, y):
|
||||
if isinstance(y, Corr):
|
||||
if not ((self.N == 1 or y.N == 1 or self.N == y.N) and self.T == y.T):
|
||||
raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T")
|
||||
raise ValueError("Multiplication of Corr object requires N=N or N=1 and T=T")
|
||||
newcontent = []
|
||||
for t in range(self.T):
|
||||
if _check_for_none(self, self.content[t]) or _check_for_none(y, y.content[t]):
|
||||
|
@ -1193,7 +1193,7 @@ class Corr:
|
|||
def __truediv__(self, y):
|
||||
if isinstance(y, Corr):
|
||||
if not ((self.N == 1 or y.N == 1 or self.N == y.N) and self.T == y.T):
|
||||
raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T")
|
||||
raise ValueError("Multiplication of Corr object requires N=N or N=1 and T=T")
|
||||
newcontent = []
|
||||
for t in range(self.T):
|
||||
if _check_for_none(self, self.content[t]) or _check_for_none(y, y.content[t]):
|
||||
|
@ -1207,16 +1207,16 @@ class Corr:
|
|||
newcontent[t] = None
|
||||
|
||||
if all([item is None for item in newcontent]):
|
||||
raise Exception("Division returns completely undefined correlator")
|
||||
raise ValueError("Division returns completely undefined correlator")
|
||||
return Corr(newcontent)
|
||||
|
||||
elif isinstance(y, (Obs, CObs)):
|
||||
if isinstance(y, Obs):
|
||||
if y.value == 0:
|
||||
raise Exception('Division by zero will return undefined correlator')
|
||||
raise ValueError('Division by zero will return undefined correlator')
|
||||
if isinstance(y, CObs):
|
||||
if y.is_zero():
|
||||
raise Exception('Division by zero will return undefined correlator')
|
||||
raise ValueError('Division by zero will return undefined correlator')
|
||||
|
||||
newcontent = []
|
||||
for t in range(self.T):
|
||||
|
@ -1228,7 +1228,7 @@ class Corr:
|
|||
|
||||
elif isinstance(y, (int, float)):
|
||||
if y == 0:
|
||||
raise Exception('Division by zero will return undefined correlator')
|
||||
raise ValueError('Division by zero will return undefined correlator')
|
||||
newcontent = []
|
||||
for t in range(self.T):
|
||||
if _check_for_none(self, self.content[t]):
|
||||
|
@ -1284,7 +1284,7 @@ class Corr:
|
|||
if np.isnan(tmp_sum.value):
|
||||
newcontent[t] = None
|
||||
if all([item is None for item in newcontent]):
|
||||
raise Exception('Operation returns undefined correlator')
|
||||
raise ValueError('Operation returns undefined correlator')
|
||||
return Corr(newcontent)
|
||||
|
||||
def sin(self):
|
||||
|
@ -1392,13 +1392,13 @@ class Corr:
|
|||
'''
|
||||
|
||||
if self.N == 1:
|
||||
raise Exception('Method cannot be applied to one-dimensional correlators.')
|
||||
raise ValueError('Method cannot be applied to one-dimensional correlators.')
|
||||
if basematrix is None:
|
||||
basematrix = self
|
||||
if Ntrunc >= basematrix.N:
|
||||
raise Exception('Cannot truncate using Ntrunc <= %d' % (basematrix.N))
|
||||
raise ValueError('Cannot truncate using Ntrunc <= %d' % (basematrix.N))
|
||||
if basematrix.N != self.N:
|
||||
raise Exception('basematrix and targetmatrix have to be of the same size.')
|
||||
raise ValueError('basematrix and targetmatrix have to be of the same size.')
|
||||
|
||||
evecs = basematrix.GEVP(t0proj, tproj, sort=None)[:Ntrunc]
|
||||
|
||||
|
|
|
@ -34,7 +34,7 @@ def epsilon_tensor(i, j, k):
|
|||
"""
|
||||
test_set = set((i, j, k))
|
||||
if not (test_set <= set((1, 2, 3)) or test_set <= set((0, 1, 2))):
|
||||
raise Exception("Unexpected input", i, j, k)
|
||||
raise ValueError("Unexpected input", i, j, k)
|
||||
|
||||
return (i - j) * (j - k) * (k - i) / 2
|
||||
|
||||
|
@ -52,7 +52,7 @@ def epsilon_tensor_rank4(i, j, k, o):
|
|||
"""
|
||||
test_set = set((i, j, k, o))
|
||||
if not (test_set <= set((1, 2, 3, 4)) or test_set <= set((0, 1, 2, 3))):
|
||||
raise Exception("Unexpected input", i, j, k, o)
|
||||
raise ValueError("Unexpected input", i, j, k, o)
|
||||
|
||||
return (i - j) * (j - k) * (k - i) * (i - o) * (j - o) * (o - k) / 12
|
||||
|
||||
|
@ -92,5 +92,5 @@ def Grid_gamma(gamma_tag):
|
|||
elif gamma_tag == 'SigmaZT':
|
||||
g = 0.5 * (gamma[2] @ gamma[3] - gamma[3] @ gamma[2])
|
||||
else:
|
||||
raise Exception('Unkown gamma structure', gamma_tag)
|
||||
raise ValueError('Unkown gamma structure', gamma_tag)
|
||||
return g
|
||||
|
|
|
@ -14,7 +14,7 @@ from autograd import hessian as auto_hessian
|
|||
from autograd import elementwise_grad as egrad
|
||||
from numdifftools import Jacobian as num_jacobian
|
||||
from numdifftools import Hessian as num_hessian
|
||||
from .obs import Obs, derived_observable, covariance, cov_Obs
|
||||
from .obs import Obs, derived_observable, covariance, cov_Obs, invert_corr_cov_cholesky
|
||||
|
||||
|
||||
class Fit_result(Sequence):
|
||||
|
@ -151,6 +151,14 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs):
|
|||
For details about how the covariance matrix is estimated see `pyerrors.obs.covariance`.
|
||||
In practice the correlation matrix is Cholesky decomposed and inverted (instead of the covariance matrix).
|
||||
This procedure should be numerically more stable as the correlation matrix is typically better conditioned (Jacobi preconditioning).
|
||||
inv_chol_cov_matrix [array,list], optional
|
||||
array: shape = (no of y values) X (no of y values)
|
||||
list: for an uncombined fit: [""]
|
||||
for a combined fit: list of keys belonging to the corr_matrix saved in the array, must be the same as the keys of the y dict in alphabetical order
|
||||
If correlated_fit=True is set as well, can provide an inverse covariance matrix (y errors, dy_f included!) of your own choosing for a correlated fit.
|
||||
The matrix must be a lower triangular matrix constructed from a Cholesky decomposition: The function invert_corr_cov_cholesky(corr, inverrdiag) can be
|
||||
used to construct it from a correlation matrix (corr) and the errors dy_f of the data points (inverrdiag = np.diag(1 / np.asarray(dy_f))). For the correct
|
||||
ordering the correlation matrix (corr) can be sorted via the function sort_corr(corr, kl, yd) where kl is the list of keys and yd the y dict.
|
||||
expected_chisquare : bool
|
||||
If True estimates the expected chisquare which is
|
||||
corrected by effects caused by correlated input data (default False).
|
||||
|
@ -165,6 +173,57 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs):
|
|||
-------
|
||||
output : Fit_result
|
||||
Parameters and information on the fitted result.
|
||||
Examples
|
||||
------
|
||||
>>> # Example of a correlated (correlated_fit = True, inv_chol_cov_matrix handed over) combined fit, based on a randomly generated data set
|
||||
>>> import numpy as np
|
||||
>>> from scipy.stats import norm
|
||||
>>> from scipy.linalg import cholesky
|
||||
>>> import pyerrors as pe
|
||||
>>> # generating the random data set
|
||||
>>> num_samples = 400
|
||||
>>> N = 3
|
||||
>>> x = np.arange(N)
|
||||
>>> x1 = norm.rvs(size=(N, num_samples)) # generate random numbers
|
||||
>>> x2 = norm.rvs(size=(N, num_samples)) # generate random numbers
|
||||
>>> r = r1 = r2 = np.zeros((N, N))
|
||||
>>> y = {}
|
||||
>>> for i in range(N):
|
||||
>>> for j in range(N):
|
||||
>>> r[i, j] = np.exp(-0.8 * np.fabs(i - j)) # element in correlation matrix
|
||||
>>> errl = np.sqrt([3.4, 2.5, 3.6]) # set y errors
|
||||
>>> for i in range(N):
|
||||
>>> for j in range(N):
|
||||
>>> r[i, j] *= errl[i] * errl[j] # element in covariance matrix
|
||||
>>> c = cholesky(r, lower=True)
|
||||
>>> y = {'a': np.dot(c, x1), 'b': np.dot(c, x2)} # generate y data with the covariance matrix defined
|
||||
>>> # random data set has been generated, now the dictionaries and the inverse covariance matrix to be handed over are built
|
||||
>>> x_dict = {}
|
||||
>>> y_dict = {}
|
||||
>>> chol_inv_dict = {}
|
||||
>>> data = []
|
||||
>>> for key in y.keys():
|
||||
>>> x_dict[key] = x
|
||||
>>> for i in range(N):
|
||||
>>> data.append(pe.Obs([[i + 1 + o for o in y[key][i]]], ['ens'])) # generate y Obs from the y data
|
||||
>>> [o.gamma_method() for o in data]
|
||||
>>> corr = pe.covariance(data, correlation=True)
|
||||
>>> inverrdiag = np.diag(1 / np.asarray([o.dvalue for o in data]))
|
||||
>>> chol_inv = pe.obs.invert_corr_cov_cholesky(corr, inverrdiag) # gives form of the inverse covariance matrix needed for the combined correlated fit below
|
||||
>>> y_dict = {'a': data[:3], 'b': data[3:]}
|
||||
>>> # common fit parameter p[0] in combined fit
|
||||
>>> def fit1(p, x):
|
||||
>>> return p[0] + p[1] * x
|
||||
>>> def fit2(p, x):
|
||||
>>> return p[0] + p[2] * x
|
||||
>>> fitf_dict = {'a': fit1, 'b':fit2}
|
||||
>>> fitp_inv_cov_combined_fit = pe.least_squares(x_dict,y_dict, fitf_dict, correlated_fit = True, inv_chol_cov_matrix = [chol_inv,['a','b']])
|
||||
Fit with 3 parameters
|
||||
Method: Levenberg-Marquardt
|
||||
`ftol` termination condition is satisfied.
|
||||
chisquare/d.o.f.: 0.5388013574561786 # random
|
||||
fit parameters [1.11897846 0.96361162 0.92325319] # random
|
||||
|
||||
'''
|
||||
output = Fit_result()
|
||||
|
||||
|
@ -197,7 +256,7 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs):
|
|||
if sorted(list(funcd.keys())) != key_ls:
|
||||
raise ValueError('x and func dictionaries do not contain the same keys.')
|
||||
|
||||
x_all = np.concatenate([np.array(xd[key]) for key in key_ls])
|
||||
x_all = np.concatenate([np.array(xd[key]).transpose() for key in key_ls]).transpose()
|
||||
y_all = np.concatenate([np.array(yd[key]) for key in key_ls])
|
||||
|
||||
y_f = [o.value for o in y_all]
|
||||
|
@ -234,7 +293,7 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs):
|
|||
if len(key_ls) > 1:
|
||||
for key in key_ls:
|
||||
if np.asarray(yd[key]).shape != funcd[key](np.arange(n_parms), xd[key]).shape:
|
||||
raise ValueError(f"Fit function {key} returns the wrong shape ({funcd[key](np.arange(n_parms), xd[key]).shape} instead of {xd[key].shape})\nIf the fit function is just a constant you could try adding x*0 to get the correct shape.")
|
||||
raise ValueError(f"Fit function {key} returns the wrong shape ({funcd[key](np.arange(n_parms), xd[key]).shape} instead of {np.asarray(yd[key]).shape})\nIf the fit function is just a constant you could try adding x*0 to get the correct shape.")
|
||||
|
||||
if not silent:
|
||||
print('Fit with', n_parms, 'parameter' + 's' * (n_parms > 1))
|
||||
|
@ -297,15 +356,21 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs):
|
|||
return anp.sum(general_chisqfunc_uncorr(p, y_f, p_f) ** 2)
|
||||
|
||||
if kwargs.get('correlated_fit') is True:
|
||||
if 'inv_chol_cov_matrix' in kwargs:
|
||||
chol_inv = kwargs.get('inv_chol_cov_matrix')
|
||||
if (chol_inv[0].shape[0] != len(dy_f)):
|
||||
raise TypeError('The number of columns of the inverse covariance matrix handed over needs to be equal to the number of y errors.')
|
||||
if (chol_inv[0].shape[0] != chol_inv[0].shape[1]):
|
||||
raise TypeError('The inverse covariance matrix handed over needs to have the same number of rows as columns.')
|
||||
if (chol_inv[1] != key_ls):
|
||||
raise ValueError('The keys of inverse covariance matrix are not the same or do not appear in the same order as the x and y values.')
|
||||
chol_inv = chol_inv[0]
|
||||
if np.any(np.diag(chol_inv) <= 0) or (not np.all(chol_inv == np.tril(chol_inv))):
|
||||
raise ValueError('The inverse covariance matrix inv_chol_cov_matrix[0] has to be a lower triangular matrix constructed from a Cholesky decomposition.')
|
||||
else:
|
||||
corr = covariance(y_all, correlation=True, **kwargs)
|
||||
covdiag = np.diag(1 / np.asarray(dy_f))
|
||||
condn = np.linalg.cond(corr)
|
||||
if condn > 0.1 / np.finfo(float).eps:
|
||||
raise Exception(f"Cannot invert correlation matrix as its condition number exceeds machine precision ({condn:1.2e})")
|
||||
if condn > 1e13:
|
||||
warnings.warn("Correlation matrix may be ill-conditioned, condition number: {%1.2e}" % (condn), RuntimeWarning)
|
||||
chol = np.linalg.cholesky(corr)
|
||||
chol_inv = scipy.linalg.solve_triangular(chol, covdiag, lower=True)
|
||||
inverrdiag = np.diag(1 / np.asarray(dy_f))
|
||||
chol_inv = invert_corr_cov_cholesky(corr, inverrdiag)
|
||||
|
||||
def general_chisqfunc(p, ivars, pr):
|
||||
model = anp.concatenate([anp.array(funcd[key](p, xd[key])).reshape(-1) for key in key_ls])
|
||||
|
@ -350,7 +415,6 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs):
|
|||
|
||||
fit_result = scipy.optimize.least_squares(chisqfunc_residuals_uncorr, x0, method='lm', ftol=1e-15, gtol=1e-15, xtol=1e-15)
|
||||
if kwargs.get('correlated_fit') is True:
|
||||
|
||||
def chisqfunc_residuals(p):
|
||||
return general_chisqfunc(p, y_f, p_f)
|
||||
|
||||
|
|
|
@ -5,11 +5,11 @@ r'''
|
|||
For comparison with other analysis workflows `pyerrors` can also generate jackknife samples from an `Obs` object or import jackknife samples into an `Obs` object.
|
||||
See `pyerrors.obs.Obs.export_jackknife` and `pyerrors.obs.import_jackknife` for details.
|
||||
'''
|
||||
from . import bdio
|
||||
from . import dobs
|
||||
from . import hadrons
|
||||
from . import json
|
||||
from . import misc
|
||||
from . import openQCD
|
||||
from . import pandas
|
||||
from . import sfcf
|
||||
from . import bdio as bdio
|
||||
from . import dobs as dobs
|
||||
from . import hadrons as hadrons
|
||||
from . import json as json
|
||||
from . import misc as misc
|
||||
from . import openQCD as openQCD
|
||||
from . import pandas as pandas
|
||||
from . import sfcf as sfcf
|
||||
|
|
|
@ -79,7 +79,7 @@ def _dict_to_xmlstring_spaces(d, space=' '):
|
|||
o += space
|
||||
o += li + '\n'
|
||||
if li.startswith('<') and not cm:
|
||||
if not '<%s' % ('/') in li:
|
||||
if '<%s' % ('/') not in li:
|
||||
c += 1
|
||||
cm = False
|
||||
return o
|
||||
|
@ -529,7 +529,8 @@ def import_dobs_string(content, full_output=False, separator_insertion=True):
|
|||
deltas.append(repdeltas)
|
||||
idl.append(repidl)
|
||||
|
||||
res.append(Obs(deltas, obs_names, idl=idl))
|
||||
obsmeans = [np.average(deltas[j]) for j in range(len(deltas))]
|
||||
res.append(Obs([np.array(deltas[j]) - obsmeans[j] for j in range(len(obsmeans))], obs_names, idl=idl, means=obsmeans))
|
||||
res[-1]._value = mean[i]
|
||||
_check(len(e_names) == ne)
|
||||
|
||||
|
@ -671,7 +672,7 @@ def _dobsdict_to_xmlstring_spaces(d, space=' '):
|
|||
o += space
|
||||
o += li + '\n'
|
||||
if li.startswith('<') and not cm:
|
||||
if not '<%s' % ('/') in li:
|
||||
if '<%s' % ('/') not in li:
|
||||
c += 1
|
||||
cm = False
|
||||
return o
|
||||
|
|
|
@ -113,7 +113,7 @@ def read_hd5(filestem, ens_id, group, attrs=None, idl=None, part="real"):
|
|||
infos = []
|
||||
for hd5_file in files:
|
||||
h5file = h5py.File(path + '/' + hd5_file, "r")
|
||||
if not group + '/' + entry in h5file:
|
||||
if group + '/' + entry not in h5file:
|
||||
raise Exception("Entry '" + entry + "' not contained in the files.")
|
||||
raw_data = h5file[group + '/' + entry + '/corr']
|
||||
real_data = raw_data[:].view("complex")
|
||||
|
@ -186,7 +186,7 @@ def _extract_real_arrays(path, files, tree, keys):
|
|||
for hd5_file in files:
|
||||
h5file = h5py.File(path + '/' + hd5_file, "r")
|
||||
for key in keys:
|
||||
if not tree + '/' + key in h5file:
|
||||
if tree + '/' + key not in h5file:
|
||||
raise Exception("Entry '" + key + "' not contained in the files.")
|
||||
raw_data = h5file[tree + '/' + key + '/data']
|
||||
real_data = raw_data[:].astype(np.double)
|
||||
|
|
|
@ -133,10 +133,11 @@ def create_json_string(ol, description='', indent=1):
|
|||
names = []
|
||||
idl = []
|
||||
for key, value in obs.idl.items():
|
||||
samples.append([np.nan] * len(value))
|
||||
samples.append(np.array([np.nan] * len(value)))
|
||||
names.append(key)
|
||||
idl.append(value)
|
||||
my_obs = Obs(samples, names, idl)
|
||||
my_obs = Obs(samples, names, idl, means=[np.nan for n in names])
|
||||
my_obs._value = np.nan
|
||||
my_obs._covobs = obs._covobs
|
||||
for name in obs._covobs:
|
||||
my_obs.names.append(name)
|
||||
|
@ -331,7 +332,8 @@ def _parse_json_dict(json_dict, verbose=True, full_output=False):
|
|||
cd = _gen_covobsd_from_cdatad(o.get('cdata', {}))
|
||||
|
||||
if od:
|
||||
ret = Obs([[ddi[0] + values[0] for ddi in di] for di in od['deltas']], od['names'], idl=od['idl'])
|
||||
r_offsets = [np.average([ddi[0] for ddi in di]) for di in od['deltas']]
|
||||
ret = Obs([np.array([ddi[0] for ddi in od['deltas'][i]]) - r_offsets[i] for i in range(len(od['deltas']))], od['names'], idl=od['idl'], means=[ro + values[0] for ro in r_offsets])
|
||||
ret._value = values[0]
|
||||
else:
|
||||
ret = Obs([], [], means=[])
|
||||
|
@ -356,7 +358,8 @@ def _parse_json_dict(json_dict, verbose=True, full_output=False):
|
|||
taglist = o.get('tag', layout * [None])
|
||||
for i in range(layout):
|
||||
if od:
|
||||
ret.append(Obs([list(di[:, i] + values[i]) for di in od['deltas']], od['names'], idl=od['idl']))
|
||||
r_offsets = np.array([np.average(di[:, i]) for di in od['deltas']])
|
||||
ret.append(Obs([od['deltas'][j][:, i] - r_offsets[j] for j in range(len(od['deltas']))], od['names'], idl=od['idl'], means=[ro + values[i] for ro in r_offsets]))
|
||||
ret[-1]._value = values[i]
|
||||
else:
|
||||
ret.append(Obs([], [], means=[]))
|
||||
|
@ -383,7 +386,8 @@ def _parse_json_dict(json_dict, verbose=True, full_output=False):
|
|||
taglist = o.get('tag', N * [None])
|
||||
for i in range(N):
|
||||
if od:
|
||||
ret.append(Obs([di[:, i] + values[i] for di in od['deltas']], od['names'], idl=od['idl']))
|
||||
r_offsets = np.array([np.average(di[:, i]) for di in od['deltas']])
|
||||
ret.append(Obs([od['deltas'][j][:, i] - r_offsets[j] for j in range(len(od['deltas']))], od['names'], idl=od['idl'], means=[ro + values[i] for ro in r_offsets]))
|
||||
ret[-1]._value = values[i]
|
||||
else:
|
||||
ret.append(Obs([], [], means=[]))
|
||||
|
|
|
@ -47,7 +47,7 @@ def read_rwms(path, prefix, version='2.0', names=None, **kwargs):
|
|||
Reweighting factors read
|
||||
"""
|
||||
known_oqcd_versions = ['1.4', '1.6', '2.0']
|
||||
if not (version in known_oqcd_versions):
|
||||
if version not in known_oqcd_versions:
|
||||
raise Exception('Unknown openQCD version defined!')
|
||||
print("Working with openQCD version " + version)
|
||||
if 'postfix' in kwargs:
|
||||
|
@ -1286,7 +1286,9 @@ def read_ms5_xsf(path, prefix, qc, corr, sep="r", **kwargs):
|
|||
imagsamples[repnum][t].append(corrres[1][t])
|
||||
if 'idl' in kwargs:
|
||||
left_idl = list(left_idl)
|
||||
if len(left_idl) > 0:
|
||||
if expected_idl[repnum] == left_idl:
|
||||
raise ValueError("None of the idls searched for were found in replikum of file " + file)
|
||||
elif len(left_idl) > 0:
|
||||
warnings.warn('Could not find idls ' + str(left_idl) + ' in replikum of file ' + file, UserWarning)
|
||||
repnum += 1
|
||||
s = "Read correlator " + corr + " from " + str(repnum) + " replika with idls" + str(realsamples[0][t])
|
||||
|
|
|
@ -121,13 +121,14 @@ def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list=
|
|||
String that separates the ensemble identifier from the configuration number (default 'n').
|
||||
replica: list
|
||||
list of replica to be read, default is all
|
||||
files: list
|
||||
files: list[list[int]]
|
||||
list of files to be read per replica, default is all.
|
||||
for non-compact output format, hand the folders to be read here.
|
||||
check_configs: list[list[int]]
|
||||
list of list of supposed configs, eg. [range(1,1000)]
|
||||
for one replicum with 1000 configs
|
||||
|
||||
rep_string: str
|
||||
Separator of ensemble name and replicum. Example: In "ensAr0", "r" would be the separator string.
|
||||
Returns
|
||||
-------
|
||||
result: dict[list[Obs]]
|
||||
|
@ -184,6 +185,8 @@ def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list=
|
|||
|
||||
else:
|
||||
replica = len([file.split(".")[-1] for file in ls]) // len(set([file.split(".")[-1] for file in ls]))
|
||||
if replica == 0:
|
||||
raise Exception('No replica found in directory')
|
||||
if not silent:
|
||||
print('Read', part, 'part of', name_list, 'from', prefix[:-1], ',', replica, 'replica')
|
||||
|
||||
|
@ -197,9 +200,9 @@ def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list=
|
|||
else:
|
||||
ens_name = kwargs.get("ens_name")
|
||||
if not appended:
|
||||
new_names = _get_rep_names(ls, ens_name)
|
||||
new_names = _get_rep_names(ls, ens_name, rep_sep=(kwargs.get('rep_string', 'r')))
|
||||
else:
|
||||
new_names = _get_appended_rep_names(ls, prefix, name_list[0], ens_name)
|
||||
new_names = _get_appended_rep_names(ls, prefix, name_list[0], ens_name, rep_sep=(kwargs.get('rep_string', 'r')))
|
||||
new_names = sort_names(new_names)
|
||||
|
||||
idl = []
|
||||
|
@ -222,12 +225,23 @@ def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list=
|
|||
intern[name]["spec"][quarks][off] = {}
|
||||
for w in wf_list:
|
||||
intern[name]["spec"][quarks][off][w] = {}
|
||||
if b2b:
|
||||
for w2 in wf2_list:
|
||||
intern[name]["spec"][quarks][off][w][w2] = {}
|
||||
intern[name]["spec"][quarks][off][w][w2]["pattern"] = _make_pattern(version, name, off, w, w2, intern[name]['b2b'], quarks)
|
||||
else:
|
||||
intern[name]["spec"][quarks][off][w]["0"] = {}
|
||||
intern[name]["spec"][quarks][off][w]["0"]["pattern"] = _make_pattern(version, name, off, w, 0, intern[name]['b2b'], quarks)
|
||||
|
||||
internal_ret_dict = {}
|
||||
needed_keys = _lists2key(name_list, quarks_list, noffset_list, wf_list, wf2_list)
|
||||
needed_keys = []
|
||||
for name, corr_type in zip(name_list, corr_type_list):
|
||||
b2b, single = _extract_corr_type(corr_type)
|
||||
if b2b:
|
||||
needed_keys.extend(_lists2key([name], quarks_list, noffset_list, wf_list, wf2_list))
|
||||
else:
|
||||
needed_keys.extend(_lists2key([name], quarks_list, noffset_list, wf_list, ["0"]))
|
||||
|
||||
for key in needed_keys:
|
||||
internal_ret_dict[key] = []
|
||||
|
||||
|
@ -236,6 +250,16 @@ def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list=
|
|||
rep_path = path + '/' + item
|
||||
if "files" in kwargs:
|
||||
files = kwargs.get("files")
|
||||
if isinstance(files, list):
|
||||
if all(isinstance(f, list) for f in files):
|
||||
files = files[i]
|
||||
elif all(isinstance(f, str) for f in files):
|
||||
files = files
|
||||
else:
|
||||
raise TypeError("files has to be of type list[list[str]] or list[str]!")
|
||||
else:
|
||||
raise TypeError("files has to be of type list[list[str]] or list[str]!")
|
||||
|
||||
else:
|
||||
files = []
|
||||
sub_ls = _find_files(rep_path, prefix, compact, files)
|
||||
|
@ -248,7 +272,7 @@ def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list=
|
|||
else:
|
||||
rep_idl.append(int(cfg[3:]))
|
||||
except Exception:
|
||||
raise Exception("Couldn't parse idl from directroy, problem with file " + cfg)
|
||||
raise Exception("Couldn't parse idl from directory, problem with file " + cfg)
|
||||
rep_idl.sort()
|
||||
# maybe there is a better way to print the idls
|
||||
if not silent:
|
||||
|
@ -258,10 +282,14 @@ def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list=
|
|||
if i == 0:
|
||||
if version != "0.0" and compact:
|
||||
file = path + '/' + item + '/' + sub_ls[0]
|
||||
for name in name_list:
|
||||
for name_index, name in enumerate(name_list):
|
||||
if version == "0.0" or not compact:
|
||||
file = path + '/' + item + '/' + sub_ls[0] + '/' + name
|
||||
for key in _lists2key(quarks_list, noffset_list, wf_list, wf2_list):
|
||||
if corr_type_list[name_index] == 'bi':
|
||||
name_keys = _lists2key(quarks_list, noffset_list, wf_list, ["0"])
|
||||
else:
|
||||
name_keys = _lists2key(quarks_list, noffset_list, wf_list, wf2_list)
|
||||
for key in name_keys:
|
||||
specs = _key2specs(key)
|
||||
quarks = specs[0]
|
||||
off = specs[1]
|
||||
|
@ -295,7 +323,6 @@ def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list=
|
|||
cfg_path = path + '/' + item + '/' + subitem
|
||||
file_data = _read_o_file(cfg_path, name, needed_keys, intern, version, im)
|
||||
rep_data.append(file_data)
|
||||
print(rep_data)
|
||||
for t in range(intern[name]["T"]):
|
||||
internal_ret_dict[key][t].append([])
|
||||
for cfg in range(no_cfg):
|
||||
|
@ -309,7 +336,10 @@ def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list=
|
|||
w = specs[3]
|
||||
w2 = specs[4]
|
||||
if "files" in kwargs:
|
||||
ls = kwargs.get("files")
|
||||
if isinstance(kwargs.get("files"), list) and all(isinstance(f, str) for f in kwargs.get("files")):
|
||||
name_ls = kwargs.get("files")
|
||||
else:
|
||||
raise TypeError("In append mode, files has to be of type list[str]!")
|
||||
else:
|
||||
name_ls = ls
|
||||
for exc in name_ls:
|
||||
|
@ -348,12 +378,13 @@ def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list=
|
|||
result_dict = {}
|
||||
if keyed_out:
|
||||
for key in needed_keys:
|
||||
name = _key2specs(key)[0]
|
||||
result = []
|
||||
for t in range(intern[name]["T"]):
|
||||
result.append(Obs(internal_ret_dict[key][t], new_names, idl=idl))
|
||||
result_dict[key] = result
|
||||
else:
|
||||
for name in name_list:
|
||||
for name, corr_type in zip(name_list, corr_type_list):
|
||||
result_dict[name] = {}
|
||||
for quarks in quarks_list:
|
||||
result_dict[name][quarks] = {}
|
||||
|
@ -361,12 +392,19 @@ def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list=
|
|||
result_dict[name][quarks][off] = {}
|
||||
for w in wf_list:
|
||||
result_dict[name][quarks][off][w] = {}
|
||||
if corr_type != 'bi':
|
||||
for w2 in wf2_list:
|
||||
key = _specs2key(name, quarks, off, w, w2)
|
||||
result = []
|
||||
for t in range(intern[name]["T"]):
|
||||
result.append(Obs(internal_ret_dict[key][t], new_names, idl=idl))
|
||||
result_dict[name][quarks][str(off)][str(w)][str(w2)] = result
|
||||
else:
|
||||
key = _specs2key(name, quarks, off, w, "0")
|
||||
result = []
|
||||
for t in range(intern[name]["T"]):
|
||||
result.append(Obs(internal_ret_dict[key][t], new_names, idl=idl))
|
||||
result_dict[name][quarks][str(off)][str(w)][str(0)] = result
|
||||
return result_dict
|
||||
|
||||
|
||||
|
@ -609,22 +647,22 @@ def _read_append_rep(filename, pattern, b2b, cfg_separator, im, single):
|
|||
return T, rep_idl, data
|
||||
|
||||
|
||||
def _get_rep_names(ls, ens_name=None):
|
||||
def _get_rep_names(ls, ens_name=None, rep_sep='r'):
|
||||
new_names = []
|
||||
for entry in ls:
|
||||
try:
|
||||
idx = entry.index('r')
|
||||
idx = entry.index(rep_sep)
|
||||
except Exception:
|
||||
raise Exception("Automatic recognition of replicum failed, please enter the key word 'names'.")
|
||||
|
||||
if ens_name:
|
||||
new_names.append('ens_name' + '|' + entry[idx:])
|
||||
new_names.append(ens_name + '|' + entry[idx:])
|
||||
else:
|
||||
new_names.append(entry[:idx] + '|' + entry[idx:])
|
||||
return new_names
|
||||
|
||||
|
||||
def _get_appended_rep_names(ls, prefix, name, ens_name=None):
|
||||
def _get_appended_rep_names(ls, prefix, name, ens_name=None, rep_sep='r'):
|
||||
new_names = []
|
||||
for exc in ls:
|
||||
if not fnmatch.fnmatch(exc, prefix + '*.' + name):
|
||||
|
@ -633,12 +671,12 @@ def _get_appended_rep_names(ls, prefix, name, ens_name=None):
|
|||
for entry in ls:
|
||||
myentry = entry[:-len(name) - 1]
|
||||
try:
|
||||
idx = myentry.index('r')
|
||||
idx = myentry.index(rep_sep)
|
||||
except Exception:
|
||||
raise Exception("Automatic recognition of replicum failed, please enter the key word 'names'.")
|
||||
|
||||
if ens_name:
|
||||
new_names.append('ens_name' + '|' + entry[idx:])
|
||||
new_names.append(ens_name + '|' + entry[idx:])
|
||||
else:
|
||||
new_names.append(myentry[:idx] + '|' + myentry[idx:])
|
||||
return new_names
|
||||
|
|
|
@ -20,7 +20,7 @@ def print_config():
|
|||
"pandas": pd.__version__}
|
||||
|
||||
for key, value in config.items():
|
||||
print(f"{key : <10}\t {value}")
|
||||
print(f"{key: <10}\t {value}")
|
||||
|
||||
|
||||
def errorbar(x, y, axes=plt, **kwargs):
|
||||
|
|
189
pyerrors/obs.py
189
pyerrors/obs.py
|
@ -82,6 +82,8 @@ class Obs:
|
|||
raise ValueError('Names are not unique.')
|
||||
if not all(isinstance(x, str) for x in names):
|
||||
raise TypeError('All names have to be strings.')
|
||||
if len(set([o.split('|')[0] for o in names])) > 1:
|
||||
raise ValueError('Cannot initialize Obs based on multiple ensembles. Please average separate Obs from each ensemble.')
|
||||
else:
|
||||
if not isinstance(names[0], str):
|
||||
raise TypeError('All names have to be strings.')
|
||||
|
@ -222,7 +224,7 @@ class Obs:
|
|||
tmp = kwargs.get(kwarg_name)
|
||||
if isinstance(tmp, (int, float)):
|
||||
if tmp < 0:
|
||||
raise Exception(kwarg_name + ' has to be larger or equal to 0.')
|
||||
raise ValueError(kwarg_name + ' has to be larger or equal to 0.')
|
||||
for e, e_name in enumerate(self.e_names):
|
||||
getattr(self, kwarg_name)[e_name] = tmp
|
||||
else:
|
||||
|
@ -291,7 +293,7 @@ class Obs:
|
|||
texp = self.tau_exp[e_name]
|
||||
# Critical slowing down analysis
|
||||
if w_max // 2 <= 1:
|
||||
raise Exception("Need at least 8 samples for tau_exp error analysis")
|
||||
raise ValueError("Need at least 8 samples for tau_exp error analysis")
|
||||
for n in range(1, w_max // 2):
|
||||
_compute_drho(n + 1)
|
||||
if (self.e_rho[e_name][n] - self.N_sigma[e_name] * self.e_drho[e_name][n]) < 0 or n >= w_max // 2 - 2:
|
||||
|
@ -620,7 +622,7 @@ class Obs:
|
|||
if not hasattr(self, 'e_dvalue'):
|
||||
raise Exception('Run the gamma method first.')
|
||||
if np.isclose(0.0, self._dvalue, atol=1e-15):
|
||||
raise Exception('Error is 0.0')
|
||||
raise ValueError('Error is 0.0')
|
||||
labels = self.e_names
|
||||
sizes = [self.e_dvalue[name] ** 2 for name in labels] / self._dvalue ** 2
|
||||
fig1, ax1 = plt.subplots()
|
||||
|
@ -659,7 +661,7 @@ class Obs:
|
|||
with open(file_name + '.p', 'wb') as fb:
|
||||
pickle.dump(self, fb)
|
||||
else:
|
||||
raise Exception("Unknown datatype " + str(datatype))
|
||||
raise TypeError("Unknown datatype " + str(datatype))
|
||||
|
||||
def export_jackknife(self):
|
||||
"""Export jackknife samples from the Obs
|
||||
|
@ -676,7 +678,7 @@ class Obs:
|
|||
"""
|
||||
|
||||
if len(self.names) != 1:
|
||||
raise Exception("'export_jackknife' is only implemented for Obs defined on one ensemble and replicum.")
|
||||
raise ValueError("'export_jackknife' is only implemented for Obs defined on one ensemble and replicum.")
|
||||
|
||||
name = self.names[0]
|
||||
full_data = self.deltas[name] + self.r_values[name]
|
||||
|
@ -711,7 +713,7 @@ class Obs:
|
|||
should agree with samples from a full bootstrap analysis up to O(1/N).
|
||||
"""
|
||||
if len(self.names) != 1:
|
||||
raise Exception("'export_boostrap' is only implemented for Obs defined on one ensemble and replicum.")
|
||||
raise ValueError("'export_boostrap' is only implemented for Obs defined on one ensemble and replicum.")
|
||||
|
||||
name = self.names[0]
|
||||
length = self.N
|
||||
|
@ -856,15 +858,12 @@ class Obs:
|
|||
|
||||
def __pow__(self, y):
|
||||
if isinstance(y, Obs):
|
||||
return derived_observable(lambda x: x[0] ** x[1], [self, y])
|
||||
return derived_observable(lambda x, **kwargs: x[0] ** x[1], [self, y], man_grad=[y.value * self.value ** (y.value - 1), self.value ** y.value * np.log(self.value)])
|
||||
else:
|
||||
return derived_observable(lambda x: x[0] ** y, [self])
|
||||
return derived_observable(lambda x, **kwargs: x[0] ** y, [self], man_grad=[y * self.value ** (y - 1)])
|
||||
|
||||
def __rpow__(self, y):
|
||||
if isinstance(y, Obs):
|
||||
return derived_observable(lambda x: x[0] ** x[1], [y, self])
|
||||
else:
|
||||
return derived_observable(lambda x: y ** x[0], [self])
|
||||
return derived_observable(lambda x, **kwargs: y ** x[0], [self], man_grad=[y ** self.value * np.log(y)])
|
||||
|
||||
def __abs__(self):
|
||||
return derived_observable(lambda x: anp.abs(x[0]), [self])
|
||||
|
@ -1138,7 +1137,7 @@ def _intersection_idx(idl):
|
|||
return idinter
|
||||
|
||||
|
||||
def _expand_deltas_for_merge(deltas, idx, shape, new_idx):
|
||||
def _expand_deltas_for_merge(deltas, idx, shape, new_idx, scalefactor):
|
||||
"""Expand deltas defined on idx to the list of configs that is defined by new_idx.
|
||||
New, empty entries are filled by 0. If idx and new_idx are of type range, the smallest
|
||||
common divisor of the step sizes is used as new step size.
|
||||
|
@ -1154,15 +1153,20 @@ def _expand_deltas_for_merge(deltas, idx, shape, new_idx):
|
|||
Number of configs in idx.
|
||||
new_idx : list
|
||||
List of configs that defines the new range, has to be sorted in ascending order.
|
||||
scalefactor : float
|
||||
An additional scaling factor that can be applied to scale the fluctuations,
|
||||
e.g., when Obs with differing numbers of replica are merged.
|
||||
"""
|
||||
|
||||
if type(idx) is range and type(new_idx) is range:
|
||||
if idx == new_idx:
|
||||
if scalefactor == 1:
|
||||
return deltas
|
||||
else:
|
||||
return deltas * scalefactor
|
||||
ret = np.zeros(new_idx[-1] - new_idx[0] + 1)
|
||||
for i in range(shape):
|
||||
ret[idx[i] - new_idx[0]] = deltas[i]
|
||||
return np.array([ret[new_idx[i] - new_idx[0]] for i in range(len(new_idx))]) * len(new_idx) / len(idx)
|
||||
return np.array([ret[new_idx[i] - new_idx[0]] for i in range(len(new_idx))]) * len(new_idx) / len(idx) * scalefactor
|
||||
|
||||
|
||||
def derived_observable(func, data, array_mode=False, **kwargs):
|
||||
|
@ -1243,10 +1247,29 @@ def derived_observable(func, data, array_mode=False, **kwargs):
|
|||
new_r_values[name] = func(tmp_values, **kwargs)
|
||||
new_idl_d[name] = _merge_idx(idl)
|
||||
|
||||
def _compute_scalefactor_missing_rep(obs):
|
||||
"""
|
||||
Computes the scale factor that is to be multiplied with the deltas
|
||||
in the case where Obs with different subsets of replica are merged.
|
||||
Returns a dictionary with the scale factor for each Monte Carlo name.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
obs : Obs
|
||||
The observable corresponding to the deltas that are to be scaled
|
||||
"""
|
||||
scalef_d = {}
|
||||
for mc_name in obs.mc_names:
|
||||
mc_idl_d = [name for name in obs.idl if name.startswith(mc_name + '|')]
|
||||
new_mc_idl_d = [name for name in new_idl_d if name.startswith(mc_name + '|')]
|
||||
if len(mc_idl_d) > 0 and len(mc_idl_d) < len(new_mc_idl_d):
|
||||
scalef_d[mc_name] = sum([len(new_idl_d[name]) for name in new_mc_idl_d]) / sum([len(new_idl_d[name]) for name in mc_idl_d])
|
||||
return scalef_d
|
||||
|
||||
if 'man_grad' in kwargs:
|
||||
deriv = np.asarray(kwargs.get('man_grad'))
|
||||
if new_values.shape + data.shape != deriv.shape:
|
||||
raise Exception('Manual derivative does not have correct shape.')
|
||||
raise ValueError('Manual derivative does not have correct shape.')
|
||||
elif kwargs.get('num_grad') is True:
|
||||
if multi > 0:
|
||||
raise Exception('Multi mode currently not supported for numerical derivative')
|
||||
|
@ -1280,7 +1303,7 @@ def derived_observable(func, data, array_mode=False, **kwargs):
|
|||
d_extracted[name] = []
|
||||
ens_length = len(new_idl_d[name])
|
||||
for i_dat, dat in enumerate(data):
|
||||
d_extracted[name].append(np.array([_expand_deltas_for_merge(o.deltas.get(name, np.zeros(ens_length)), o.idl.get(name, new_idl_d[name]), o.shape.get(name, ens_length), new_idl_d[name]) for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (ens_length, )))
|
||||
d_extracted[name].append(np.array([_expand_deltas_for_merge(o.deltas.get(name, np.zeros(ens_length)), o.idl.get(name, new_idl_d[name]), o.shape.get(name, ens_length), new_idl_d[name], _compute_scalefactor_missing_rep(o).get(name.split('|')[0], 1)) for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (ens_length, )))
|
||||
for name in new_cov_names:
|
||||
g_extracted[name] = []
|
||||
zero_grad = _Zero_grad(new_covobs_lengths[name])
|
||||
|
@ -1302,16 +1325,17 @@ def derived_observable(func, data, array_mode=False, **kwargs):
|
|||
new_grad[name] += np.tensordot(deriv[i_val + (i_dat, )], dat)
|
||||
else:
|
||||
for j_obs, obs in np.ndenumerate(data):
|
||||
scalef_d = _compute_scalefactor_missing_rep(obs)
|
||||
for name in obs.names:
|
||||
if name in obs.cov_names:
|
||||
new_grad[name] = new_grad.get(name, 0) + deriv[i_val + j_obs] * obs.covobs[name].grad
|
||||
else:
|
||||
new_deltas[name] = new_deltas.get(name, 0) + deriv[i_val + j_obs] * _expand_deltas_for_merge(obs.deltas[name], obs.idl[name], obs.shape[name], new_idl_d[name])
|
||||
new_deltas[name] = new_deltas.get(name, 0) + deriv[i_val + j_obs] * _expand_deltas_for_merge(obs.deltas[name], obs.idl[name], obs.shape[name], new_idl_d[name], scalef_d.get(name.split('|')[0], 1))
|
||||
|
||||
new_covobs = {name: Covobs(0, allcov[name], name, grad=new_grad[name]) for name in new_grad}
|
||||
|
||||
if not set(new_covobs.keys()).isdisjoint(new_deltas.keys()):
|
||||
raise Exception('The same name has been used for deltas and covobs!')
|
||||
raise ValueError('The same name has been used for deltas and covobs!')
|
||||
new_samples = []
|
||||
new_means = []
|
||||
new_idl = []
|
||||
|
@ -1352,7 +1376,7 @@ def _reduce_deltas(deltas, idx_old, idx_new):
|
|||
Has to be a subset of idx_old.
|
||||
"""
|
||||
if not len(deltas) == len(idx_old):
|
||||
raise Exception('Length of deltas and idx_old have to be the same: %d != %d' % (len(deltas), len(idx_old)))
|
||||
raise ValueError('Length of deltas and idx_old have to be the same: %d != %d' % (len(deltas), len(idx_old)))
|
||||
if type(idx_old) is range and type(idx_new) is range:
|
||||
if idx_old == idx_new:
|
||||
return deltas
|
||||
|
@ -1360,7 +1384,7 @@ def _reduce_deltas(deltas, idx_old, idx_new):
|
|||
return deltas
|
||||
indices = np.intersect1d(idx_old, idx_new, assume_unique=True, return_indices=True)[1]
|
||||
if len(indices) < len(idx_new):
|
||||
raise Exception('Error in _reduce_deltas: Config of idx_new not in idx_old')
|
||||
raise ValueError('Error in _reduce_deltas: Config of idx_new not in idx_old')
|
||||
return np.array(deltas)[indices]
|
||||
|
||||
|
||||
|
@ -1382,12 +1406,14 @@ def reweight(weight, obs, **kwargs):
|
|||
result = []
|
||||
for i in range(len(obs)):
|
||||
if len(obs[i].cov_names):
|
||||
raise Exception('Error: Not possible to reweight an Obs that contains covobs!')
|
||||
raise ValueError('Error: Not possible to reweight an Obs that contains covobs!')
|
||||
if not set(obs[i].names).issubset(weight.names):
|
||||
raise Exception('Error: Ensembles do not fit')
|
||||
raise ValueError('Error: Ensembles do not fit')
|
||||
if len(obs[i].mc_names) > 1 or len(weight.mc_names) > 1:
|
||||
raise ValueError('Error: Cannot reweight an Obs that contains multiple ensembles.')
|
||||
for name in obs[i].names:
|
||||
if not set(obs[i].idl[name]).issubset(weight.idl[name]):
|
||||
raise Exception('obs[%d] has to be defined on a subset of the configs in weight.idl[%s]!' % (i, name))
|
||||
raise ValueError('obs[%d] has to be defined on a subset of the configs in weight.idl[%s]!' % (i, name))
|
||||
new_samples = []
|
||||
w_deltas = {}
|
||||
for name in sorted(obs[i].names):
|
||||
|
@ -1420,18 +1446,21 @@ def correlate(obs_a, obs_b):
|
|||
-----
|
||||
Keep in mind to only correlate primary observables which have not been reweighted
|
||||
yet. The reweighting has to be applied after correlating the observables.
|
||||
Currently only works if ensembles are identical (this is not strictly necessary).
|
||||
Only works if a single ensemble is present in the Obs.
|
||||
Currently only works if ensemble content is identical (this is not strictly necessary).
|
||||
"""
|
||||
|
||||
if len(obs_a.mc_names) > 1 or len(obs_b.mc_names) > 1:
|
||||
raise ValueError('Error: Cannot correlate Obs that contain multiple ensembles.')
|
||||
if sorted(obs_a.names) != sorted(obs_b.names):
|
||||
raise Exception(f"Ensembles do not fit {set(sorted(obs_a.names)) ^ set(sorted(obs_b.names))}")
|
||||
raise ValueError(f"Ensembles do not fit {set(sorted(obs_a.names)) ^ set(sorted(obs_b.names))}")
|
||||
if len(obs_a.cov_names) or len(obs_b.cov_names):
|
||||
raise Exception('Error: Not possible to correlate Obs that contain covobs!')
|
||||
raise ValueError('Error: Not possible to correlate Obs that contain covobs!')
|
||||
for name in obs_a.names:
|
||||
if obs_a.shape[name] != obs_b.shape[name]:
|
||||
raise Exception('Shapes of ensemble', name, 'do not fit')
|
||||
raise ValueError('Shapes of ensemble', name, 'do not fit')
|
||||
if obs_a.idl[name] != obs_b.idl[name]:
|
||||
raise Exception('idl of ensemble', name, 'do not fit')
|
||||
raise ValueError('idl of ensemble', name, 'do not fit')
|
||||
|
||||
if obs_a.reweighted is True:
|
||||
warnings.warn("The first observable is already reweighted.", RuntimeWarning)
|
||||
|
@ -1519,6 +1548,92 @@ def covariance(obs, visualize=False, correlation=False, smooth=None, **kwargs):
|
|||
return cov
|
||||
|
||||
|
||||
def invert_corr_cov_cholesky(corr, inverrdiag):
|
||||
"""Constructs a lower triangular matrix `chol` via the Cholesky decomposition of the correlation matrix `corr`
|
||||
and then returns the inverse covariance matrix `chol_inv` as a lower triangular matrix by solving `chol * x = inverrdiag`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
corr : np.ndarray
|
||||
correlation matrix
|
||||
inverrdiag : np.ndarray
|
||||
diagonal matrix, the entries are the inverse errors of the data points considered
|
||||
"""
|
||||
|
||||
condn = np.linalg.cond(corr)
|
||||
if condn > 0.1 / np.finfo(float).eps:
|
||||
raise ValueError(f"Cannot invert correlation matrix as its condition number exceeds machine precision ({condn:1.2e})")
|
||||
if condn > 1e13:
|
||||
warnings.warn("Correlation matrix may be ill-conditioned, condition number: {%1.2e}" % (condn), RuntimeWarning)
|
||||
chol = np.linalg.cholesky(corr)
|
||||
chol_inv = scipy.linalg.solve_triangular(chol, inverrdiag, lower=True)
|
||||
|
||||
return chol_inv
|
||||
|
||||
|
||||
def sort_corr(corr, kl, yd):
|
||||
""" Reorders a correlation matrix to match the alphabetical order of its underlying y data.
|
||||
|
||||
The ordering of the input correlation matrix `corr` is given by the list of keys `kl`.
|
||||
The input dictionary `yd` (with the same keys `kl`) must contain the corresponding y data
|
||||
that the correlation matrix is based on.
|
||||
This function sorts the list of keys `kl` alphabetically and sorts the matrix `corr`
|
||||
according to this alphabetical order such that the sorted matrix `corr_sorted` corresponds
|
||||
to the y data `yd` when arranged in an alphabetical order by its keys.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
corr : np.ndarray
|
||||
A square correlation matrix constructed using the order of the y data specified by `kl`.
|
||||
The dimensions of `corr` should match the total number of y data points in `yd` combined.
|
||||
kl : list of str
|
||||
A list of keys that denotes the order in which the y data from `yd` was used to build the
|
||||
input correlation matrix `corr`.
|
||||
yd : dict of list
|
||||
A dictionary where each key corresponds to a unique identifier, and its value is a list of
|
||||
y data points. The total number of y data points across all keys must match the dimensions
|
||||
of `corr`. The lists in the dictionary can be lists of Obs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
np.ndarray
|
||||
A new, sorted correlation matrix that corresponds to the y data from `yd` when arranged alphabetically by its keys.
|
||||
|
||||
Example
|
||||
-------
|
||||
>>> import numpy as np
|
||||
>>> import pyerrors as pe
|
||||
>>> corr = np.array([[1, 0.2, 0.3], [0.2, 1, 0.4], [0.3, 0.4, 1]])
|
||||
>>> kl = ['b', 'a']
|
||||
>>> yd = {'a': [1, 2], 'b': [3]}
|
||||
>>> sorted_corr = pe.obs.sort_corr(corr, kl, yd)
|
||||
>>> print(sorted_corr)
|
||||
array([[1. , 0.3, 0.4],
|
||||
[0.3, 1. , 0.2],
|
||||
[0.4, 0.2, 1. ]])
|
||||
|
||||
"""
|
||||
kl_sorted = sorted(kl)
|
||||
|
||||
posd = {}
|
||||
ofs = 0
|
||||
for ki, k in enumerate(kl):
|
||||
posd[k] = [i + ofs for i in range(len(yd[k]))]
|
||||
ofs += len(posd[k])
|
||||
|
||||
mapping = []
|
||||
for k in kl_sorted:
|
||||
for i in range(len(yd[k])):
|
||||
mapping.append(posd[k][i])
|
||||
|
||||
corr_sorted = np.zeros_like(corr)
|
||||
for i in range(corr.shape[0]):
|
||||
for j in range(corr.shape[0]):
|
||||
corr_sorted[i][j] = corr[mapping[i]][mapping[j]]
|
||||
|
||||
return corr_sorted
|
||||
|
||||
|
||||
def _smooth_eigenvalues(corr, E):
|
||||
"""Eigenvalue smoothing as described in hep-lat/9412087
|
||||
|
||||
|
@ -1528,7 +1643,7 @@ def _smooth_eigenvalues(corr, E):
|
|||
Number of eigenvalues to be left substantially unchanged
|
||||
"""
|
||||
if not (2 < E < corr.shape[0] - 1):
|
||||
raise Exception(f"'E' has to be between 2 and the dimension of the correlation matrix minus 1 ({corr.shape[0] - 1}).")
|
||||
raise ValueError(f"'E' has to be between 2 and the dimension of the correlation matrix minus 1 ({corr.shape[0] - 1}).")
|
||||
vals, vec = np.linalg.eigh(corr)
|
||||
lambda_min = np.mean(vals[:-E])
|
||||
vals[vals < lambda_min] = lambda_min
|
||||
|
@ -1647,7 +1762,11 @@ def import_bootstrap(boots, name, random_numbers):
|
|||
|
||||
|
||||
def merge_obs(list_of_obs):
|
||||
"""Combine all observables in list_of_obs into one new observable
|
||||
"""Combine all observables in list_of_obs into one new observable.
|
||||
This allows to merge Obs that have been computed on multiple replica
|
||||
of the same ensemble.
|
||||
If you like to merge Obs that are based on several ensembles, please
|
||||
average them yourself.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
@ -1660,9 +1779,9 @@ def merge_obs(list_of_obs):
|
|||
"""
|
||||
replist = [item for obs in list_of_obs for item in obs.names]
|
||||
if (len(replist) == len(set(replist))) is False:
|
||||
raise Exception('list_of_obs contains duplicate replica: %s' % (str(replist)))
|
||||
raise ValueError('list_of_obs contains duplicate replica: %s' % (str(replist)))
|
||||
if any([len(o.cov_names) for o in list_of_obs]):
|
||||
raise Exception('Not possible to merge data that contains covobs!')
|
||||
raise ValueError('Not possible to merge data that contains covobs!')
|
||||
new_dict = {}
|
||||
idl_dict = {}
|
||||
for o in list_of_obs:
|
||||
|
@ -1713,7 +1832,7 @@ def cov_Obs(means, cov, name, grad=None):
|
|||
for i in range(len(means)):
|
||||
ol.append(covobs_to_obs(Covobs(means[i], cov, name, pos=i, grad=grad)))
|
||||
if ol[0].covobs[name].N != len(means):
|
||||
raise Exception('You have to provide %d mean values!' % (ol[0].N))
|
||||
raise ValueError('You have to provide %d mean values!' % (ol[0].N))
|
||||
if len(ol) == 1:
|
||||
return ol[0]
|
||||
return ol
|
||||
|
@ -1729,7 +1848,7 @@ def _determine_gap(o, e_content, e_name):
|
|||
|
||||
gap = min(gaps)
|
||||
if not np.all([gi % gap == 0 for gi in gaps]):
|
||||
raise Exception(f"Replica for ensemble {e_name} do not have a common spacing.", gaps)
|
||||
raise ValueError(f"Replica for ensemble {e_name} do not have a common spacing.", gaps)
|
||||
|
||||
return gap
|
||||
|
||||
|
|
23
pyerrors/special.py
Normal file
23
pyerrors/special.py
Normal file
|
@ -0,0 +1,23 @@
|
|||
import scipy
|
||||
import numpy as np
|
||||
from autograd.extend import primitive, defvjp
|
||||
from autograd.scipy.special import j0, y0, j1, y1, jn, yn, i0, i1, iv, ive, beta, betainc, betaln
|
||||
from autograd.scipy.special import polygamma, psi, digamma, gamma, gammaln, gammainc, gammaincc, gammasgn, rgamma, multigammaln
|
||||
from autograd.scipy.special import erf, erfc, erfinv, erfcinv, logit, expit, logsumexp
|
||||
|
||||
|
||||
__all__ = ["beta", "betainc", "betaln",
|
||||
"polygamma", "psi", "digamma", "gamma", "gammaln", "gammainc", "gammaincc", "gammasgn", "rgamma", "multigammaln",
|
||||
"kn", "j0", "y0", "j1", "y1", "jn", "yn", "i0", "i1", "iv", "ive",
|
||||
"erf", "erfc", "erfinv", "erfcinv", "logit", "expit", "logsumexp"]
|
||||
|
||||
|
||||
@primitive
|
||||
def kn(n, x):
|
||||
"""Modified Bessel function of the second kind of integer order n"""
|
||||
if int(n) != n:
|
||||
raise TypeError("The order 'n' needs to be an integer.")
|
||||
return scipy.special.kn(n, x)
|
||||
|
||||
|
||||
defvjp(kn, None, lambda ans, n, x: lambda g: - g * 0.5 * (kn(np.abs(n - 1), x) + kn(n + 1, x)))
|
|
@ -1 +1 @@
|
|||
__version__ = "2.10.0"
|
||||
__version__ = "2.15.0-dev"
|
||||
|
|
|
@ -1,3 +1,6 @@
|
|||
[build-system]
|
||||
requires = ["setuptools >= 63.0.0", "wheel"]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
||||
[tool.ruff.lint]
|
||||
ignore = ["F403"]
|
||||
|
|
6
setup.py
6
setup.py
|
@ -24,19 +24,19 @@ setup(name='pyerrors',
|
|||
author_email='fabian.joswig@ed.ac.uk',
|
||||
license="MIT",
|
||||
packages=find_packages(),
|
||||
python_requires='>=3.8.0',
|
||||
install_requires=['numpy>=1.24', 'autograd>=1.6.2', 'numdifftools>=0.9.41', 'matplotlib>=3.7', 'scipy>=1.10', 'iminuit>=2.21', 'h5py>=3.8', 'lxml>=4.9', 'python-rapidjson>=1.10', 'pandas>=2.0'],
|
||||
python_requires='>=3.9.0',
|
||||
install_requires=['numpy>=2.0', 'autograd>=1.7.0', 'numdifftools>=0.9.41', 'matplotlib>=3.9', 'scipy>=1.13', 'iminuit>=2.28', 'h5py>=3.11', 'lxml>=5.0', 'python-rapidjson>=1.20', 'pandas>=2.2'],
|
||||
extras_require={'test': ['pytest', 'pytest-cov', 'pytest-benchmark', 'hypothesis', 'nbmake', 'flake8']},
|
||||
classifiers=[
|
||||
'Development Status :: 5 - Production/Stable',
|
||||
'Intended Audience :: Science/Research',
|
||||
'License :: OSI Approved :: MIT License',
|
||||
'Programming Language :: Python :: 3',
|
||||
'Programming Language :: Python :: 3.8',
|
||||
'Programming Language :: Python :: 3.9',
|
||||
'Programming Language :: Python :: 3.10',
|
||||
'Programming Language :: Python :: 3.11',
|
||||
'Programming Language :: Python :: 3.12',
|
||||
'Programming Language :: Python :: 3.13',
|
||||
'Topic :: Scientific/Engineering :: Physics'
|
||||
],
|
||||
)
|
||||
|
|
|
@ -129,7 +129,7 @@ def test_m_eff():
|
|||
with pytest.warns(RuntimeWarning):
|
||||
my_corr.m_eff('sinh')
|
||||
|
||||
with pytest.raises(Exception):
|
||||
with pytest.raises(ValueError):
|
||||
my_corr.m_eff('unkown_variant')
|
||||
|
||||
|
||||
|
@ -140,7 +140,7 @@ def test_m_eff_negative_values():
|
|||
assert m_eff_log[padding + 1] is None
|
||||
m_eff_cosh = my_corr.m_eff('cosh')
|
||||
assert m_eff_cosh[padding + 1] is None
|
||||
with pytest.raises(Exception):
|
||||
with pytest.raises(ValueError):
|
||||
my_corr.m_eff('logsym')
|
||||
|
||||
|
||||
|
@ -155,7 +155,7 @@ def test_correlate():
|
|||
my_corr = pe.correlators.Corr([pe.pseudo_Obs(10, 0.1, 't'), pe.pseudo_Obs(0, 0.05, 't')])
|
||||
corr1 = my_corr.correlate(my_corr)
|
||||
corr2 = my_corr.correlate(my_corr[0])
|
||||
with pytest.raises(Exception):
|
||||
with pytest.raises(TypeError):
|
||||
corr3 = my_corr.correlate(7.3)
|
||||
|
||||
|
||||
|
@ -176,9 +176,9 @@ def test_fit_correlator():
|
|||
assert fit_res[0] == my_corr[0]
|
||||
assert fit_res[1] == my_corr[1] - my_corr[0]
|
||||
|
||||
with pytest.raises(Exception):
|
||||
with pytest.raises(TypeError):
|
||||
my_corr.fit(f, "from 0 to 3")
|
||||
with pytest.raises(Exception):
|
||||
with pytest.raises(ValueError):
|
||||
my_corr.fit(f, [0, 2, 3])
|
||||
|
||||
|
||||
|
@ -256,11 +256,11 @@ def test_prange():
|
|||
corr = pe.correlators.Corr(corr_content)
|
||||
|
||||
corr.set_prange([2, 4])
|
||||
with pytest.raises(Exception):
|
||||
with pytest.raises(ValueError):
|
||||
corr.set_prange([2])
|
||||
with pytest.raises(Exception):
|
||||
with pytest.raises(TypeError):
|
||||
corr.set_prange([2, 2.3])
|
||||
with pytest.raises(Exception):
|
||||
with pytest.raises(ValueError):
|
||||
corr.set_prange([4, 1])
|
||||
|
||||
|
||||
|
|
|
@ -30,7 +30,7 @@ def test_grid_dirac():
|
|||
'SigmaYZ',
|
||||
'SigmaZT']:
|
||||
pe.dirac.Grid_gamma(gamma)
|
||||
with pytest.raises(Exception):
|
||||
with pytest.raises(ValueError):
|
||||
pe.dirac.Grid_gamma('Not a gamma matrix')
|
||||
|
||||
|
||||
|
@ -44,7 +44,7 @@ def test_epsilon_tensor():
|
|||
(1, 1, 3) : 0.0}
|
||||
for key, value in check.items():
|
||||
assert pe.dirac.epsilon_tensor(*key) == value
|
||||
with pytest.raises(Exception):
|
||||
with pytest.raises(ValueError):
|
||||
pe.dirac.epsilon_tensor(0, 1, 3)
|
||||
|
||||
|
||||
|
@ -59,5 +59,5 @@ def test_epsilon_tensor_rank4():
|
|||
(1, 2, 3, 1) : 0.0}
|
||||
for key, value in check.items():
|
||||
assert pe.dirac.epsilon_tensor_rank4(*key) == value
|
||||
with pytest.raises(Exception):
|
||||
with pytest.raises(ValueError):
|
||||
pe.dirac.epsilon_tensor_rank4(0, 1, 3, 4)
|
||||
|
|
|
@ -152,6 +152,127 @@ def test_alternative_solvers():
|
|||
chisquare_values = np.array(chisquare_values)
|
||||
assert np.all(np.isclose(chisquare_values, chisquare_values[0]))
|
||||
|
||||
def test_inv_cov_matrix_input_least_squares():
|
||||
|
||||
|
||||
num_samples = 400
|
||||
N = 10
|
||||
|
||||
x = norm.rvs(size=(N, num_samples)) # generate random numbers
|
||||
|
||||
r = np.zeros((N, N))
|
||||
for i in range(N):
|
||||
for j in range(N):
|
||||
r[i, j] = np.exp(-0.8 * np.fabs(i - j)) # element in correlation matrix
|
||||
|
||||
errl = np.sqrt([3.4, 2.5, 3.6, 2.8, 4.2, 4.7, 4.9, 5.1, 3.2, 4.2]) # set y errors
|
||||
for i in range(N):
|
||||
for j in range(N):
|
||||
r[i, j] *= errl[i] * errl[j] # element in covariance matrix
|
||||
|
||||
c = cholesky(r, lower=True)
|
||||
y = np.dot(c, x)
|
||||
x = np.arange(N)
|
||||
x_dict = {}
|
||||
y_dict = {}
|
||||
for i,item in enumerate(x):
|
||||
x_dict[str(item)] = [x[i]]
|
||||
|
||||
for linear in [True, False]:
|
||||
data = []
|
||||
for i in range(N):
|
||||
if linear:
|
||||
data.append(pe.Obs([[i + 1 + o for o in y[i]]], ['ens']))
|
||||
else:
|
||||
data.append(pe.Obs([[np.exp(-(i + 1)) + np.exp(-(i + 1)) * o for o in y[i]]], ['ens']))
|
||||
|
||||
[o.gamma_method() for o in data]
|
||||
|
||||
data_dict = {}
|
||||
for i,item in enumerate(x):
|
||||
data_dict[str(item)] = [data[i]]
|
||||
|
||||
corr = pe.covariance(data, correlation=True)
|
||||
chol = np.linalg.cholesky(corr)
|
||||
covdiag = np.diag(1 / np.asarray([o.dvalue for o in data]))
|
||||
chol_inv = scipy.linalg.solve_triangular(chol, covdiag, lower=True)
|
||||
chol_inv_keys = [""]
|
||||
chol_inv_keys_combined_fit = [str(item) for i,item in enumerate(x)]
|
||||
|
||||
if linear:
|
||||
def fitf(p, x):
|
||||
return p[1] + p[0] * x
|
||||
fitf_dict = {}
|
||||
for i,item in enumerate(x):
|
||||
fitf_dict[str(item)] = fitf
|
||||
else:
|
||||
def fitf(p, x):
|
||||
return p[1] * anp.exp(-p[0] * x)
|
||||
fitf_dict = {}
|
||||
for i,item in enumerate(x):
|
||||
fitf_dict[str(item)] = fitf
|
||||
|
||||
fitpc = pe.least_squares(x, data, fitf, correlated_fit=True)
|
||||
fitp_inv_cov = pe.least_squares(x, data, fitf, correlated_fit = True, inv_chol_cov_matrix = [chol_inv,chol_inv_keys])
|
||||
fitp_inv_cov_combined_fit = pe.least_squares(x_dict, data_dict, fitf_dict, correlated_fit = True, inv_chol_cov_matrix = [chol_inv,chol_inv_keys_combined_fit])
|
||||
for i in range(2):
|
||||
diff_inv_cov = fitp_inv_cov[i] - fitpc[i]
|
||||
diff_inv_cov.gamma_method()
|
||||
assert(diff_inv_cov.is_zero(atol=0.0))
|
||||
diff_inv_cov_combined_fit = fitp_inv_cov_combined_fit[i] - fitpc[i]
|
||||
diff_inv_cov_combined_fit.gamma_method()
|
||||
assert(diff_inv_cov_combined_fit.is_zero(atol=1e-12))
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
pe.least_squares(x_dict, data_dict, fitf_dict, correlated_fit = True, inv_chol_cov_matrix = [corr,chol_inv_keys_combined_fit])
|
||||
|
||||
def test_least_squares_invalid_inv_cov_matrix_input():
|
||||
xvals = []
|
||||
yvals = []
|
||||
err = 0.1
|
||||
def func_valid(a,x):
|
||||
return a[0] + a[1] * x
|
||||
for x in range(1, 8, 2):
|
||||
xvals.append(x)
|
||||
yvals.append(pe.pseudo_Obs(x + np.random.normal(0.0, err), err, 'test1') + pe.pseudo_Obs(0, err / 100, 'test2', samples=87))
|
||||
|
||||
[o.gamma_method() for o in yvals]
|
||||
|
||||
#dictionaries for a combined fit
|
||||
xvals_dict = { }
|
||||
yvals_dict = { }
|
||||
for i,item in enumerate(np.arange(1, 8, 2)):
|
||||
xvals_dict[str(item)] = [xvals[i]]
|
||||
yvals_dict[str(item)] = [yvals[i]]
|
||||
chol_inv_keys_combined_fit = ['1', '3', '5', '7']
|
||||
chol_inv_keys_combined_fit_invalid = ['2', '7', '100', '8']
|
||||
func_dict_valid = {"1": func_valid,"3": func_valid,"5": func_valid,"7": func_valid}
|
||||
|
||||
corr_valid = pe.covariance(yvals, correlation = True)
|
||||
chol = np.linalg.cholesky(corr_valid)
|
||||
covdiag = np.diag(1 / np.asarray([o.dvalue for o in yvals]))
|
||||
chol_inv_valid = scipy.linalg.solve_triangular(chol, covdiag, lower=True)
|
||||
chol_inv_keys = [""]
|
||||
pe.least_squares(xvals, yvals,func_valid, correlated_fit = True, inv_chol_cov_matrix = [chol_inv_valid,chol_inv_keys])
|
||||
pe.least_squares(xvals_dict, yvals_dict,func_dict_valid, correlated_fit = True, inv_chol_cov_matrix = [chol_inv_valid,chol_inv_keys_combined_fit])
|
||||
chol_inv_invalid_shape1 = np.zeros((len(yvals),len(yvals)-1))
|
||||
chol_inv_invalid_shape2 = np.zeros((len(yvals)+2,len(yvals)))
|
||||
|
||||
# for an uncombined fit
|
||||
with pytest.raises(TypeError):
|
||||
pe.least_squares(xvals, yvals, func_valid, correlated_fit = True, inv_chol_cov_matrix = [chol_inv_invalid_shape1,chol_inv_keys])
|
||||
with pytest.raises(TypeError):
|
||||
pe.least_squares(xvals, yvals, func_valid,correlated_fit = True, inv_chol_cov_matrix = [chol_inv_invalid_shape2,chol_inv_keys])
|
||||
with pytest.raises(ValueError):
|
||||
pe.least_squares(xvals, yvals, func_valid,correlated_fit = True, inv_chol_cov_matrix = [chol_inv_valid,chol_inv_keys_combined_fit_invalid])
|
||||
|
||||
#repeat for a combined fit
|
||||
with pytest.raises(TypeError):
|
||||
pe.least_squares(xvals_dict, yvals_dict,func_dict_valid, correlated_fit = True, inv_chol_cov_matrix = [chol_inv_invalid_shape1,chol_inv_keys_combined_fit])
|
||||
with pytest.raises(TypeError):
|
||||
pe.least_squares(xvals_dict, yvals_dict,func_dict_valid, correlated_fit = True, inv_chol_cov_matrix = [chol_inv_invalid_shape2,chol_inv_keys_combined_fit])
|
||||
with pytest.raises(ValueError):
|
||||
pe.least_squares(xvals_dict, yvals_dict,func_dict_valid, correlated_fit = True, inv_chol_cov_matrix = [chol_inv_valid,chol_inv_keys_combined_fit_invalid])
|
||||
|
||||
def test_correlated_fit():
|
||||
num_samples = 400
|
||||
|
@ -964,6 +1085,20 @@ def test_combined_resplot_qqplot():
|
|||
fr = pe.least_squares(xd, yd, fd, resplot=True, qqplot=True)
|
||||
plt.close('all')
|
||||
|
||||
def test_combined_fit_xerr():
|
||||
fitd = {
|
||||
'a' : lambda p, x: p[0] * x[0] + p[1] * x[1],
|
||||
'b' : lambda p, x: p[0] * x[0] + p[2] * x[1],
|
||||
'c' : lambda p, x: p[0] * x[0] + p[3] * x[1],
|
||||
}
|
||||
yd = {
|
||||
'a': [pe.cov_Obs(3 + .1 * np.random.uniform(), .1**2, 'a' + str(i)) for i in range(5)],
|
||||
'b': [pe.cov_Obs(1 + .1 * np.random.uniform(), .1**2, 'b' + str(i)) for i in range(6)],
|
||||
'c': [pe.cov_Obs(3 + .1 * np.random.uniform(), .1**2, 'c' + str(i)) for i in range(3)],
|
||||
}
|
||||
xd = {k: np.transpose([[1 + .01 * np.random.uniform(), 2] for i in range(len(yd[k]))]) for k in fitd}
|
||||
pe.fits.least_squares(xd, yd, fitd)
|
||||
|
||||
|
||||
def test_x_multidim_fit():
|
||||
x1 = np.arange(1, 10)
|
||||
|
|
|
@ -12,7 +12,7 @@ def test_jsonio():
|
|||
o = pe.pseudo_Obs(1.0, .2, 'one')
|
||||
o2 = pe.pseudo_Obs(0.5, .1, 'two|r1')
|
||||
o3 = pe.pseudo_Obs(0.5, .1, 'two|r2')
|
||||
o4 = pe.merge_obs([o2, o3])
|
||||
o4 = pe.merge_obs([o2, o3, pe.pseudo_Obs(0.5, .1, 'two|r3', samples=3221)])
|
||||
otag = 'This has been merged!'
|
||||
o4.tag = otag
|
||||
do = o - .2 * o4
|
||||
|
@ -101,8 +101,8 @@ def test_json_string_reconstruction():
|
|||
|
||||
|
||||
def test_json_corr_io():
|
||||
my_list = [pe.Obs([np.random.normal(1.0, 0.1, 100)], ['ens1']) for o in range(8)]
|
||||
rw_list = pe.reweight(pe.Obs([np.random.normal(1.0, 0.1, 100)], ['ens1']), my_list)
|
||||
my_list = [pe.Obs([np.random.normal(1.0, 0.1, 100), np.random.normal(1.0, 0.1, 321)], ['ens1|r1', 'ens1|r2'], idl=[range(1, 201, 2), range(321)]) for o in range(8)]
|
||||
rw_list = pe.reweight(pe.Obs([np.random.normal(1.0, 0.1, 100), np.random.normal(1.0, 0.1, 321)], ['ens1|r1', 'ens1|r2'], idl=[range(1, 201, 2), range(321)]), my_list)
|
||||
|
||||
for obs_list in [my_list, rw_list]:
|
||||
for tag in [None, "test"]:
|
||||
|
@ -111,7 +111,8 @@ def test_json_corr_io():
|
|||
for corr_tag in [None, 'my_Corr_tag']:
|
||||
for prange in [None, [3, 6]]:
|
||||
for gap in [False, True]:
|
||||
my_corr = pe.Corr(obs_list, padding=[pad, pad], prange=prange)
|
||||
for mult in [1., pe.cov_Obs([12.22, 1.21], [.212**2, .11**2], 'renorm')[0]]:
|
||||
my_corr = mult * pe.Corr(obs_list, padding=[pad, pad], prange=prange)
|
||||
my_corr.tag = corr_tag
|
||||
if gap:
|
||||
my_corr.content[4] = None
|
||||
|
@ -128,13 +129,23 @@ def test_json_corr_io():
|
|||
|
||||
|
||||
def test_json_corr_2d_io():
|
||||
obs_list = [np.array([[pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test'), pe.pseudo_Obs(0.0, 0.1 * i, 'test')], [pe.pseudo_Obs(0.0, 0.1 * i, 'test'), pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test')]]) for i in range(4)]
|
||||
obs_list = [np.array([
|
||||
[
|
||||
pe.merge_obs([pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test|r2'), pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test|r1', samples=321)]),
|
||||
pe.merge_obs([pe.pseudo_Obs(0.0, 0.1 * i, 'test|r2'), pe.pseudo_Obs(0.0, 0.1 * i, 'test|r1', samples=321)]),
|
||||
],
|
||||
[
|
||||
pe.merge_obs([pe.pseudo_Obs(0.0, 0.1 * i, 'test|r2'), pe.pseudo_Obs(0.0, 0.1 * i, 'test|r1', samples=321),]),
|
||||
pe.merge_obs([pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test|r2'), pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test|r1', samples=321)]),
|
||||
],
|
||||
]) for i in range(4)]
|
||||
|
||||
for tag in [None, "test"]:
|
||||
obs_list[3][0, 1].tag = tag
|
||||
for padding in [0, 1]:
|
||||
for prange in [None, [3, 6]]:
|
||||
my_corr = pe.Corr(obs_list, padding=[padding, padding], prange=prange)
|
||||
for mult in [1., pe.cov_Obs([12.22, 1.21], [.212**2, .11**2], 'renorm')[0]]:
|
||||
my_corr = mult * pe.Corr(obs_list, padding=[padding, padding], prange=prange)
|
||||
my_corr.tag = tag
|
||||
pe.input.json.dump_to_json(my_corr, 'corr')
|
||||
recover = pe.input.json.load_json('corr')
|
||||
|
@ -211,6 +222,7 @@ def test_json_dict_io():
|
|||
'd': pe.pseudo_Obs(.01, .001, 'testd', samples=10) * pe.cov_Obs(1, .01, 'cov1'),
|
||||
'se': None,
|
||||
'sf': 1.2,
|
||||
'k': pe.cov_Obs(.1, .001**2, 'cov') * pe.merge_obs([pe.pseudo_Obs(1.0, 0.1, 'test|r2'), pe.pseudo_Obs(1.0, 0.1, 'test|r1', samples=321)]),
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -314,7 +326,7 @@ def test_dobsio():
|
|||
|
||||
o2 = pe.pseudo_Obs(0.5, .1, 'two|r1')
|
||||
o3 = pe.pseudo_Obs(0.5, .1, 'two|r2')
|
||||
o4 = pe.merge_obs([o2, o3])
|
||||
o4 = pe.merge_obs([o2, o3, pe.pseudo_Obs(0.5, .1, 'two|r3', samples=3221)])
|
||||
otag = 'This has been merged!'
|
||||
o4.tag = otag
|
||||
do = o - .2 * o4
|
||||
|
@ -328,7 +340,7 @@ def test_dobsio():
|
|||
o5 /= co2[0]
|
||||
o5.tag = 2 * otag
|
||||
|
||||
tt1 = pe.Obs([np.random.rand(100), np.random.rand(100)], ['t|r1', 't|r2'], idl=[range(2, 202, 2), range(22, 222, 2)])
|
||||
tt1 = pe.Obs([np.random.rand(100), np.random.rand(102)], ['t|r1', 't|r2'], idl=[range(2, 202, 2), range(22, 226, 2)])
|
||||
tt3 = pe.Obs([np.random.rand(102)], ['qe|r1'])
|
||||
|
||||
tt = tt1 + tt3
|
||||
|
@ -337,7 +349,7 @@ def test_dobsio():
|
|||
|
||||
tt4 = pe.Obs([np.random.rand(100), np.random.rand(100)], ['t|r1', 't|r2'], idl=[range(1, 101, 1), range(2, 202, 2)])
|
||||
|
||||
ol = [o2, o3, o4, do, o5, tt, tt4, np.log(tt4 / o5**2), np.exp(o5 + np.log(co3 / tt3 + o4) / tt)]
|
||||
ol = [o2, o3, o4, do, o5, tt, tt4, np.log(tt4 / o5**2), np.exp(o5 + np.log(co3 / tt3 + o4) / tt), o4.reweight(o4)]
|
||||
print(ol)
|
||||
fname = 'test_rw'
|
||||
|
||||
|
@ -362,9 +374,12 @@ def test_dobsio():
|
|||
|
||||
|
||||
def test_reconstruct_non_linear_r_obs(tmp_path):
|
||||
to = pe.Obs([np.random.rand(500), np.random.rand(500), np.random.rand(111)],
|
||||
["e|r1", "e|r2", "my_new_ensemble_54^£$|8'[@124435%6^7&()~#"],
|
||||
idl=[range(1, 501), range(0, 500), range(1, 999, 9)])
|
||||
to = (
|
||||
pe.Obs([np.random.rand(500), np.random.rand(1200)],
|
||||
["e|r1", "e|r2", ],
|
||||
idl=[range(1, 501), range(0, 1200)])
|
||||
+ pe.Obs([np.random.rand(111)], ["my_new_ensemble_54^£$|8'[@124435%6^7&()~#"], idl=[range(1, 999, 9)])
|
||||
)
|
||||
to = np.log(to ** 2) / to
|
||||
to.dump((tmp_path / "test_equality").as_posix())
|
||||
ro = pe.input.json.load_json((tmp_path / "test_equality").as_posix())
|
||||
|
@ -372,9 +387,12 @@ def test_reconstruct_non_linear_r_obs(tmp_path):
|
|||
|
||||
|
||||
def test_reconstruct_non_linear_r_obs_list(tmp_path):
|
||||
to = pe.Obs([np.random.rand(500), np.random.rand(500), np.random.rand(111)],
|
||||
["e|r1", "e|r2", "my_new_ensemble_54^£$|8'[@124435%6^7&()~#"],
|
||||
idl=[range(1, 501), range(0, 500), range(1, 999, 9)])
|
||||
to = (
|
||||
pe.Obs([np.random.rand(500), np.random.rand(1200)],
|
||||
["e|r1", "e|r2", ],
|
||||
idl=[range(1, 501), range(0, 1200)])
|
||||
+ pe.Obs([np.random.rand(111)], ["my_new_ensemble_54^£$|8'[@124435%6^7&()~#"], idl=[range(1, 999, 9)])
|
||||
)
|
||||
to = np.log(to ** 2) / to
|
||||
for to_list in [[to, to, to], np.array([to, to, to])]:
|
||||
pe.input.json.dump_to_json(to_list, (tmp_path / "test_equality_list").as_posix())
|
||||
|
|
|
@ -34,7 +34,7 @@ def test_matmul():
|
|||
my_list = []
|
||||
length = 100 + np.random.randint(200)
|
||||
for i in range(dim ** 2):
|
||||
my_list.append(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']))
|
||||
my_list.append(pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2']))
|
||||
my_array = const * np.array(my_list).reshape((dim, dim))
|
||||
tt = pe.linalg.matmul(my_array, my_array) - my_array @ my_array
|
||||
for t, e in np.ndenumerate(tt):
|
||||
|
@ -43,8 +43,8 @@ def test_matmul():
|
|||
my_list = []
|
||||
length = 100 + np.random.randint(200)
|
||||
for i in range(dim ** 2):
|
||||
my_list.append(pe.CObs(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']),
|
||||
pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2'])))
|
||||
my_list.append(pe.CObs(pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2']),
|
||||
pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2'])))
|
||||
my_array = np.array(my_list).reshape((dim, dim)) * const
|
||||
tt = pe.linalg.matmul(my_array, my_array) - my_array @ my_array
|
||||
for t, e in np.ndenumerate(tt):
|
||||
|
@ -151,7 +151,7 @@ def test_multi_dot():
|
|||
my_list = []
|
||||
length = 1000 + np.random.randint(200)
|
||||
for i in range(dim ** 2):
|
||||
my_list.append(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']))
|
||||
my_list.append(pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2']))
|
||||
my_array = pe.cov_Obs(1.0, 0.002, 'cov') * np.array(my_list).reshape((dim, dim))
|
||||
tt = pe.linalg.matmul(my_array, my_array, my_array, my_array) - my_array @ my_array @ my_array @ my_array
|
||||
for t, e in np.ndenumerate(tt):
|
||||
|
@ -160,8 +160,8 @@ def test_multi_dot():
|
|||
my_list = []
|
||||
length = 1000 + np.random.randint(200)
|
||||
for i in range(dim ** 2):
|
||||
my_list.append(pe.CObs(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']),
|
||||
pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2'])))
|
||||
my_list.append(pe.CObs(pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2']),
|
||||
pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2'])))
|
||||
my_array = np.array(my_list).reshape((dim, dim)) * pe.cov_Obs(1.0, 0.002, 'cov')
|
||||
tt = pe.linalg.matmul(my_array, my_array, my_array, my_array) - my_array @ my_array @ my_array @ my_array
|
||||
for t, e in np.ndenumerate(tt):
|
||||
|
@ -209,7 +209,7 @@ def test_irregular_matrix_inverse():
|
|||
for idl in [range(8, 508, 10), range(250, 273), [2, 8, 19, 20, 78, 99, 828, 10548979]]:
|
||||
irregular_array = []
|
||||
for i in range(dim ** 2):
|
||||
irregular_array.append(pe.Obs([np.random.normal(1.1, 0.2, len(idl)), np.random.normal(0.25, 0.1, 10)], ['ens1', 'ens2'], idl=[idl, range(1, 11)]))
|
||||
irregular_array.append(pe.Obs([np.random.normal(1.1, 0.2, len(idl))], ['ens1'], idl=[idl]) + pe.Obs([np.random.normal(0.25, 0.1, 10)], ['ens2'], idl=[range(1, 11)]))
|
||||
irregular_matrix = np.array(irregular_array).reshape((dim, dim)) * pe.cov_Obs(1.0, 0.002, 'cov') * pe.pseudo_Obs(1.0, 0.002, 'ens2|r23')
|
||||
|
||||
invertible_irregular_matrix = np.identity(dim) + irregular_matrix @ irregular_matrix.T
|
||||
|
@ -276,10 +276,10 @@ def test_matrix_functions():
|
|||
for (i, j), entry in np.ndenumerate(check_inv):
|
||||
entry.gamma_method()
|
||||
if(i == j):
|
||||
assert math.isclose(entry.value, 1.0, abs_tol=1e-9), 'value ' + str(i) + ',' + str(j) + ' ' + str(entry.value)
|
||||
assert math.isclose(entry.value, 1.0, abs_tol=2e-9), 'value ' + str(i) + ',' + str(j) + ' ' + str(entry.value)
|
||||
else:
|
||||
assert math.isclose(entry.value, 0.0, abs_tol=1e-9), 'value ' + str(i) + ',' + str(j) + ' ' + str(entry.value)
|
||||
assert math.isclose(entry.dvalue, 0.0, abs_tol=1e-9), 'dvalue ' + str(i) + ',' + str(j) + ' ' + str(entry.dvalue)
|
||||
assert math.isclose(entry.value, 0.0, abs_tol=2e-9), 'value ' + str(i) + ',' + str(j) + ' ' + str(entry.value)
|
||||
assert math.isclose(entry.dvalue, 0.0, abs_tol=2e-9), 'dvalue ' + str(i) + ',' + str(j) + ' ' + str(entry.dvalue)
|
||||
|
||||
# Check Cholesky decomposition
|
||||
sym = np.dot(matrix, matrix.T)
|
||||
|
@ -299,7 +299,7 @@ def test_matrix_functions():
|
|||
|
||||
# Check eigv
|
||||
v2 = pe.linalg.eigv(sym)
|
||||
assert(np.all(v - v2).is_zero())
|
||||
assert np.sum(v - v2).is_zero()
|
||||
|
||||
# Check eig function
|
||||
e2 = pe.linalg.eig(sym)
|
||||
|
|
|
@ -5,6 +5,7 @@ import copy
|
|||
import matplotlib.pyplot as plt
|
||||
import pyerrors as pe
|
||||
import pytest
|
||||
import pyerrors.linalg
|
||||
from hypothesis import given, strategies as st
|
||||
|
||||
np.random.seed(0)
|
||||
|
@ -60,9 +61,9 @@ def test_Obs_exceptions():
|
|||
my_obs.plot_rep_dist()
|
||||
with pytest.raises(Exception):
|
||||
my_obs.plot_piechart()
|
||||
with pytest.raises(Exception):
|
||||
with pytest.raises(TypeError):
|
||||
my_obs.gamma_method(S='2.3')
|
||||
with pytest.raises(Exception):
|
||||
with pytest.raises(ValueError):
|
||||
my_obs.gamma_method(tau_exp=2.3)
|
||||
my_obs.gamma_method()
|
||||
my_obs.details()
|
||||
|
@ -198,7 +199,7 @@ def test_gamma_method_no_windowing():
|
|||
assert np.isclose(np.sqrt(np.var(obs.deltas['ens'], ddof=1) / obs.shape['ens']), obs.dvalue)
|
||||
obs.gamma_method(S=1.1)
|
||||
assert obs.e_tauint['ens'] > 0.5
|
||||
with pytest.raises(Exception):
|
||||
with pytest.raises(ValueError):
|
||||
obs.gamma_method(S=-0.2)
|
||||
|
||||
|
||||
|
@ -332,7 +333,7 @@ def test_derived_observables():
|
|||
|
||||
def test_multi_ens():
|
||||
names = ['A0', 'A1|r001', 'A1|r002']
|
||||
test_obs = pe.Obs([np.random.rand(50), np.random.rand(50), np.random.rand(50)], names)
|
||||
test_obs = pe.Obs([np.random.rand(50)], names[:1]) + pe.Obs([np.random.rand(50), np.random.rand(50)], names[1:])
|
||||
assert test_obs.e_names == ['A0', 'A1']
|
||||
assert test_obs.e_content['A0'] == ['A0']
|
||||
assert test_obs.e_content['A1'] == ['A1|r001', 'A1|r002']
|
||||
|
@ -344,6 +345,9 @@ def test_multi_ens():
|
|||
ensembles.append(str(i))
|
||||
assert my_sum.e_names == sorted(ensembles)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
test_obs = pe.Obs([np.random.rand(50), np.random.rand(50), np.random.rand(50)], names)
|
||||
|
||||
|
||||
def test_multi_ens2():
|
||||
names = ['ens', 'e', 'en', 'e|r010', 'E|er', 'ens|', 'Ens|34', 'ens|r548984654ez4e3t34terh']
|
||||
|
@ -460,6 +464,18 @@ def test_cobs_overloading():
|
|||
obs / cobs
|
||||
|
||||
|
||||
def test_pow():
|
||||
data = [1, 2.341, pe.pseudo_Obs(4.8, 0.48, "test_obs"), pe.cov_Obs(1.1, 0.3 ** 2, "test_cov_obs")]
|
||||
|
||||
for d in data:
|
||||
assert d * d == d ** 2
|
||||
assert d * d * d == d ** 3
|
||||
|
||||
for d2 in data:
|
||||
assert np.log(d ** d2) == d2 * np.log(d)
|
||||
assert (d ** d2) ** (1 / d2) == d
|
||||
|
||||
|
||||
def test_reweighting():
|
||||
my_obs = pe.Obs([np.random.rand(1000)], ['t'])
|
||||
assert not my_obs.reweighted
|
||||
|
@ -477,26 +493,33 @@ def test_reweighting():
|
|||
r_obs2 = r_obs[0] * my_obs
|
||||
assert r_obs2.reweighted
|
||||
my_covobs = pe.cov_Obs(1.0, 0.003, 'cov')
|
||||
with pytest.raises(Exception):
|
||||
with pytest.raises(ValueError):
|
||||
pe.reweight(my_obs, [my_covobs])
|
||||
my_obs2 = pe.Obs([np.random.rand(1000)], ['t2'])
|
||||
with pytest.raises(Exception):
|
||||
with pytest.raises(ValueError):
|
||||
pe.reweight(my_obs, [my_obs + my_obs2])
|
||||
with pytest.raises(Exception):
|
||||
with pytest.raises(ValueError):
|
||||
pe.reweight(my_irregular_obs, [my_obs])
|
||||
|
||||
my_merged_obs = my_obs + pe.Obs([np.random.rand(1000)], ['q'])
|
||||
with pytest.raises(ValueError):
|
||||
pe.reweight(my_merged_obs, [my_merged_obs])
|
||||
|
||||
|
||||
def test_merge_obs():
|
||||
my_obs1 = pe.Obs([np.random.rand(100)], ['t'])
|
||||
my_obs2 = pe.Obs([np.random.rand(100)], ['q'], idl=[range(1, 200, 2)])
|
||||
my_obs1 = pe.Obs([np.random.normal(1, .1, 100)], ['t|1'])
|
||||
my_obs2 = pe.Obs([np.random.normal(1, .1, 100)], ['t|2'], idl=[range(1, 200, 2)])
|
||||
merged = pe.merge_obs([my_obs1, my_obs2])
|
||||
diff = merged - my_obs2 - my_obs1
|
||||
assert diff == -(my_obs1.value + my_obs2.value) / 2
|
||||
with pytest.raises(Exception):
|
||||
diff = merged - (my_obs2 + my_obs1) / 2
|
||||
assert np.isclose(0, diff.value, atol=1e-16)
|
||||
with pytest.raises(ValueError):
|
||||
pe.merge_obs([my_obs1, my_obs1])
|
||||
my_covobs = pe.cov_Obs(1.0, 0.003, 'cov')
|
||||
with pytest.raises(Exception):
|
||||
with pytest.raises(ValueError):
|
||||
pe.merge_obs([my_obs1, my_covobs])
|
||||
my_obs3 = pe.Obs([np.random.rand(100)], ['q|2'], idl=[range(1, 200, 2)])
|
||||
with pytest.raises(ValueError):
|
||||
pe.merge_obs([my_obs1, my_obs3])
|
||||
|
||||
|
||||
|
||||
|
@ -518,23 +541,26 @@ def test_correlate():
|
|||
assert corr1 == corr2
|
||||
|
||||
my_obs3 = pe.Obs([np.random.rand(100)], ['t'], idl=[range(2, 102)])
|
||||
with pytest.raises(Exception):
|
||||
with pytest.raises(ValueError):
|
||||
pe.correlate(my_obs1, my_obs3)
|
||||
|
||||
my_obs4 = pe.Obs([np.random.rand(99)], ['t'])
|
||||
with pytest.raises(Exception):
|
||||
with pytest.raises(ValueError):
|
||||
pe.correlate(my_obs1, my_obs4)
|
||||
|
||||
my_obs5 = pe.Obs([np.random.rand(100)], ['t'], idl=[range(5, 505, 5)])
|
||||
my_obs6 = pe.Obs([np.random.rand(100)], ['t'], idl=[range(5, 505, 5)])
|
||||
corr3 = pe.correlate(my_obs5, my_obs6)
|
||||
assert my_obs5.idl == corr3.idl
|
||||
my_obs7 = pe.Obs([np.random.rand(99)], ['q'])
|
||||
with pytest.raises(ValueError):
|
||||
pe.correlate(my_obs1, my_obs7)
|
||||
|
||||
my_new_obs = pe.Obs([np.random.rand(100)], ['q3'])
|
||||
with pytest.raises(Exception):
|
||||
with pytest.raises(ValueError):
|
||||
pe.correlate(my_obs1, my_new_obs)
|
||||
my_covobs = pe.cov_Obs(1.0, 0.003, 'cov')
|
||||
with pytest.raises(Exception):
|
||||
with pytest.raises(ValueError):
|
||||
pe.correlate(my_covobs, my_covobs)
|
||||
r_obs = pe.reweight(my_obs1, [my_obs1])[0]
|
||||
with pytest.warns(RuntimeWarning):
|
||||
|
@ -553,11 +579,11 @@ def test_merge_idx():
|
|||
|
||||
for j in range(5):
|
||||
idll = [range(1, int(round(np.random.uniform(300, 700))), int(round(np.random.uniform(1, 14)))) for i in range(10)]
|
||||
assert pe.obs._merge_idx(idll) == sorted(set().union(*idll))
|
||||
assert list(pe.obs._merge_idx(idll)) == sorted(set().union(*idll))
|
||||
|
||||
for j in range(5):
|
||||
idll = [range(int(round(np.random.uniform(1, 28))), int(round(np.random.uniform(300, 700))), int(round(np.random.uniform(1, 14)))) for i in range(10)]
|
||||
assert pe.obs._merge_idx(idll) == sorted(set().union(*idll))
|
||||
assert list(pe.obs._merge_idx(idll)) == sorted(set().union(*idll))
|
||||
|
||||
idl = [list(np.arange(1, 14)) + list(range(16, 100, 4)), range(4, 604, 4), [2, 4, 5, 6, 8, 9, 12, 24], range(1, 20, 1), range(50, 789, 7)]
|
||||
new_idx = pe.obs._merge_idx(idl)
|
||||
|
@ -668,14 +694,14 @@ def test_gamma_method_irregular():
|
|||
assert (a.dvalue - 5 * a.ddvalue < expe and expe < a.dvalue + 5 * a.ddvalue)
|
||||
|
||||
arr2 = np.random.normal(1, .2, size=N)
|
||||
afull = pe.Obs([arr, arr2], ['a1', 'a2'])
|
||||
afull = pe.Obs([arr], ['a1']) + pe.Obs([arr2], ['a2'])
|
||||
|
||||
configs = np.ones_like(arr2)
|
||||
for i in np.random.uniform(0, len(arr2), size=int(.8*N)):
|
||||
configs[int(i)] = 0
|
||||
zero_arr2 = [arr2[i] for i in range(len(arr2)) if not configs[i] == 0]
|
||||
idx2 = [i + 1 for i in range(len(configs)) if configs[i] == 1]
|
||||
a = pe.Obs([zero_arr, zero_arr2], ['a1', 'a2'], idl=[idx, idx2])
|
||||
a = pe.Obs([zero_arr], ['a1'], idl=[idx]) + pe.Obs([zero_arr2], ['a2'], idl=[idx2])
|
||||
|
||||
afull.gamma_method()
|
||||
a.gamma_method()
|
||||
|
@ -761,7 +787,7 @@ def test_gamma_method_irregular():
|
|||
my_obs.gm()
|
||||
idl += [range(1, 400, 4)]
|
||||
my_obs = pe.Obs([dat for i in range(len(idl))], ['%s|%d' % ('A', i) for i in range(len(idl))], idl=idl)
|
||||
with pytest.raises(Exception):
|
||||
with pytest.raises(ValueError):
|
||||
my_obs.gm()
|
||||
|
||||
# check cases where tau is large compared to the chain length
|
||||
|
@ -777,11 +803,11 @@ def test_gamma_method_irregular():
|
|||
carr = gen_autocorrelated_array(arr, .8)
|
||||
o = pe.Obs([carr], ['test'])
|
||||
o.gamma_method()
|
||||
no = np.NaN * o
|
||||
no = np.nan * o
|
||||
no.gamma_method()
|
||||
o.idl['test'] = range(1, 1998, 2)
|
||||
o.gamma_method()
|
||||
no = np.NaN * o
|
||||
no = np.nan * o
|
||||
no.gamma_method()
|
||||
|
||||
|
||||
|
@ -839,7 +865,7 @@ def test_covariance_vs_numpy():
|
|||
data1 = np.random.normal(2.5, 0.2, N)
|
||||
data2 = np.random.normal(0.5, 0.08, N)
|
||||
data3 = np.random.normal(-178, 5, N)
|
||||
uncorr = np.row_stack([data1, data2, data3])
|
||||
uncorr = np.vstack([data1, data2, data3])
|
||||
corr = np.random.multivariate_normal([0.0, 17, -0.0487], [[1.0, 0.6, -0.22], [0.6, 0.8, 0.01], [-0.22, 0.01, 1.9]], N).T
|
||||
|
||||
for X in [uncorr, corr]:
|
||||
|
@ -1009,7 +1035,7 @@ def test_correlation_intersection_of_idls():
|
|||
|
||||
|
||||
def test_covariance_non_identical_objects():
|
||||
obs1 = pe.Obs([np.random.normal(1.0, 0.1, 1000), np.random.normal(1.0, 0.1, 1000), np.random.normal(1.0, 0.1, 732)], ["ens|r1", "ens|r2", "ens2"])
|
||||
obs1 = pe.Obs([np.random.normal(1.0, 0.1, 1000), np.random.normal(1.0, 0.1, 1000)], ["ens|r1", "ens|r2"]) + pe.Obs([np.random.normal(1.0, 0.1, 732)], ['ens2'])
|
||||
obs1.gamma_method()
|
||||
obs2 = obs1 + 1e-18
|
||||
obs2.gamma_method()
|
||||
|
@ -1062,6 +1088,27 @@ def test_covariance_reorder_non_overlapping_data():
|
|||
assert np.isclose(corr1[0, 1], corr2[0, 1], atol=1e-14)
|
||||
|
||||
|
||||
def test_sort_corr():
|
||||
xd = {
|
||||
'b': [1, 2, 3],
|
||||
'a': [2.2, 4.4],
|
||||
'c': [3.7, 5.1]
|
||||
}
|
||||
|
||||
yd = {k : pe.cov_Obs(xd[k], [.2 * o for o in xd[k]], k) for k in xd}
|
||||
key_orig = list(yd.keys())
|
||||
y_all = np.concatenate([np.array(yd[key]) for key in key_orig])
|
||||
[o.gm() for o in y_all]
|
||||
cov = pe.covariance(y_all)
|
||||
|
||||
key_ls = key_sorted = sorted(key_orig)
|
||||
y_sorted = np.concatenate([np.array(yd[key]) for key in key_sorted])
|
||||
[o.gm() for o in y_sorted]
|
||||
cov_sorted = pe.covariance(y_sorted)
|
||||
retcov = pe.obs.sort_corr(cov, key_orig, yd)
|
||||
assert np.sum(retcov - cov_sorted) == 0
|
||||
|
||||
|
||||
def test_empty_obs():
|
||||
o = pe.Obs([np.random.rand(100)], ['test'])
|
||||
q = o + pe.Obs([], [], means=[])
|
||||
|
@ -1072,6 +1119,9 @@ def test_reweight_method():
|
|||
obs1 = pe.pseudo_Obs(0.2, 0.01, 'test')
|
||||
rw = pe.pseudo_Obs(0.999, 0.001, 'test')
|
||||
assert obs1.reweight(rw) == pe.reweight(rw, [obs1])[0]
|
||||
rw2 = pe.pseudo_Obs(0.999, 0.001, 'test2')
|
||||
with pytest.raises(ValueError):
|
||||
obs1.reweight(rw2)
|
||||
|
||||
|
||||
def test_jackknife():
|
||||
|
@ -1088,7 +1138,7 @@ def test_jackknife():
|
|||
|
||||
assert np.allclose(tmp_jacks, my_obs.export_jackknife())
|
||||
my_new_obs = my_obs + pe.Obs([full_data], ['test2'])
|
||||
with pytest.raises(Exception):
|
||||
with pytest.raises(ValueError):
|
||||
my_new_obs.export_jackknife()
|
||||
|
||||
|
||||
|
@ -1276,7 +1326,7 @@ def test_nan_obs():
|
|||
no.gamma_method()
|
||||
|
||||
o.idl['test'] = [1, 5] + list(range(7, 2002, 2))
|
||||
no = np.NaN * o
|
||||
no = np.nan * o
|
||||
no.gamma_method()
|
||||
|
||||
|
||||
|
@ -1285,9 +1335,9 @@ def test_format_uncertainty():
|
|||
assert pe.obs._format_uncertainty(0.548, 2.48497, 2) == '0.5(2.5)'
|
||||
assert pe.obs._format_uncertainty(0.548, 2.48497, 4) == '0.548(2.485)'
|
||||
assert pe.obs._format_uncertainty(0.548, 20078.3, 9) == '0.5480(20078.3000)'
|
||||
pe.obs._format_uncertainty(np.NaN, 1)
|
||||
pe.obs._format_uncertainty(1, np.NaN)
|
||||
pe.obs._format_uncertainty(np.NaN, np.inf)
|
||||
pe.obs._format_uncertainty(np.nan, 1)
|
||||
pe.obs._format_uncertainty(1, np.nan)
|
||||
pe.obs._format_uncertainty(np.nan, np.inf)
|
||||
|
||||
|
||||
def test_format():
|
||||
|
@ -1338,9 +1388,101 @@ def test_vec_gm():
|
|||
pe.gm(cc, S=4.12)
|
||||
assert np.all(np.vectorize(lambda x: x.S["qq"])(cc.content) == 4.12)
|
||||
|
||||
|
||||
def test_complex_addition():
|
||||
o = pe.pseudo_Obs(34.12, 1e-4, "testens")
|
||||
r = o + 2j
|
||||
assert r.real == o
|
||||
r = r * 1j
|
||||
assert r.imag == o
|
||||
|
||||
|
||||
def test_missing_replica():
|
||||
N1 = 3000
|
||||
N2 = 2000
|
||||
O1 = np.random.normal(1.0, .1, N1 + N2)
|
||||
O2 = .5 * O1[:N1]
|
||||
|
||||
w1 = N1 / (N1 + N2)
|
||||
w2 = N2 / (N1 + N2)
|
||||
m12 = np.mean(O1[N1:])
|
||||
m2 = np.mean(O2)
|
||||
d12 = np.std(O1[N1:]) / np.sqrt(N2) # error of <O1> from second rep
|
||||
d2 = np.std(O2) / np.sqrt(N1) # error of <O2> from first rep
|
||||
dval = np.sqrt((w2 * d12 / m2)**2 + (w2 * m12 * d2 / m2**2)**2) # complete error of <O1>/<O2>
|
||||
|
||||
# pyerrors version that should give the same result
|
||||
O1dobs = pe.Obs([O1[:N1], O1[N1:]], names=['E|1', 'E|2'])
|
||||
O2dobs = pe.Obs([O2], names=['E|1'])
|
||||
O1O2 = O1dobs / O2dobs
|
||||
O1O2.gm(S=0)
|
||||
|
||||
# explicit construction with different ensembles
|
||||
O1a = pe.Obs([O1[:N1]], names=['E|1'])
|
||||
O1b = pe.Obs([O1[N1:]], names=['F|2'])
|
||||
O1O2b = (w1 * O1a + w2 * O1b) / O2dobs
|
||||
O1O2b.gm(S=0)
|
||||
|
||||
# pyerrors version without replica (missing configs)
|
||||
O1c = pe.Obs([O1], names=['E|1'])
|
||||
O1O2c = O1c / O2dobs
|
||||
O1O2c.gm(S=0)
|
||||
|
||||
for o in [O1O2, O1O2b, O1O2c]:
|
||||
assert(np.isclose(dval, o.dvalue, atol=0, rtol=5e-2))
|
||||
|
||||
o = O1O2 * O2dobs - O1dobs
|
||||
o.gm()
|
||||
assert(o.is_zero())
|
||||
|
||||
o = O1dobs / O1O2 - O2dobs
|
||||
o.gm()
|
||||
assert(o.is_zero())
|
||||
|
||||
# bring more randomness and complexity into the game
|
||||
Nl = [int(np.random.uniform(low=500, high=5000)) for i in range(4)]
|
||||
wl = np.array(Nl) / sum(Nl)
|
||||
O1 = np.random.normal(1.0, .1, sum(Nl))
|
||||
|
||||
# pyerrors replica version
|
||||
datl = [O1[:Nl[0]], O1[Nl[0]:sum(Nl[:2])], O1[sum(Nl[:2]):sum(Nl[:3])], O1[sum(Nl[:3]):sum(Nl[:4])]]
|
||||
O1dobs = pe.Obs(datl, names=['E|%d' % (d) for d in range(len(Nl))])
|
||||
O2dobs = .5 * pe.Obs([datl[0]], names=['E|0'])
|
||||
O3dobs = 2. / pe.Obs([datl[1]], names=['E|1'])
|
||||
O1O2 = O1dobs / O2dobs
|
||||
O1O2.gm(S=0)
|
||||
O1O2O3 = O1O2 * np.sinh(O3dobs)
|
||||
O1O2O3.gm(S=0)
|
||||
|
||||
# explicit construction with different ensembles
|
||||
charl = ['E', 'F', 'G', 'H']
|
||||
Ol = [pe.Obs([datl[i]], names=['%s|%d' % (charl[i], i)]) for i in range(len(Nl))]
|
||||
O1O2b = sum(np.array(Ol) * wl) / O2dobs
|
||||
O1O2b.gm(S=0)
|
||||
i = 1
|
||||
O3dobsb = 2. / pe.Obs([datl[i]], names=['%s|%d' % (charl[i], i)])
|
||||
O1O2O3b = O1O2b * np.sinh(O3dobsb)
|
||||
O1O2O3b.gm(S=0)
|
||||
|
||||
for op in [[O1O2, O1O2b], [O1O2O3, O1O2O3b]]:
|
||||
assert np.isclose(op[0].value, op[1].value)
|
||||
assert np.isclose(op[0].dvalue, op[1].dvalue, atol=0, rtol=5e-2)
|
||||
|
||||
# perform the same test using the array_mode of derived_observable
|
||||
O1O2 = pyerrors.linalg.matmul(np.diag(np.diag(np.reshape(4 * [O1dobs], (2, 2)))), np.diag(np.diag(np.reshape(4 * [1. / O2dobs], (2, 2)))))
|
||||
O1O2O3 = pyerrors.linalg.matmul(O1O2, np.diag(np.diag(np.sinh(np.reshape(4 * [O3dobs], (2, 2))))))
|
||||
O1O2 = O1O2[0][0]
|
||||
O1O2.gm(S=0)
|
||||
O1O2O3 = O1O2O3[0][0]
|
||||
O1O2O3.gm(S=0)
|
||||
|
||||
O1O2b = pyerrors.linalg.matmul(np.diag(np.diag(np.reshape(4 * [sum(np.array(Ol) * wl)], (2, 2)))), np.diag(np.diag(np.reshape(4 * [1. / O2dobs], (2, 2)))))
|
||||
O1O2O3b = pyerrors.linalg.matmul(O1O2b, np.diag(np.diag(np.sinh(np.reshape(4 * [O3dobsb], (2, 2))))))
|
||||
O1O2b = O1O2b[0][0]
|
||||
O1O2b.gm(S=0)
|
||||
O1O2O3b = O1O2O3b[0][0]
|
||||
O1O2O3b.gm(S=0)
|
||||
|
||||
for op in [[O1O2, O1O2b], [O1O2O3, O1O2O3b]]:
|
||||
assert np.isclose(op[1].value, op[0].value)
|
||||
assert np.isclose(op[1].dvalue, op[0].dvalue, atol=0, rtol=5e-2)
|
||||
|
|
|
@ -50,6 +50,18 @@ def test_o_bi(tmp_path):
|
|||
assert f_A[2].value == -41.025094911185185
|
||||
|
||||
|
||||
def test_o_bi_files(tmp_path):
|
||||
build_test_environment(str(tmp_path), "o", 10, 3)
|
||||
f_A = sfin.read_sfcf(str(tmp_path) + "/data_o", "test", "f_A", quarks="lquark lquark", wf=0, version="2.0",
|
||||
files=[["cfg" + str(i) for i in range(1, 11, 2)], ["cfg" + str(i) for i in range(2, 11, 2)], ["cfg" + str(i) for i in range(1, 11, 2)]])
|
||||
print(f_A)
|
||||
assert len(f_A) == 3
|
||||
assert list(f_A[0].shape.keys()) == ["test_|r0", "test_|r1", "test_|r2"]
|
||||
assert f_A[0].value == 65.4711887279723
|
||||
assert f_A[1].value == 1.0447210336915187
|
||||
assert f_A[2].value == -41.025094911185185
|
||||
|
||||
|
||||
def test_o_bib(tmp_path):
|
||||
build_test_environment(str(tmp_path), "o", 5, 3)
|
||||
f_V0 = sfin.read_sfcf(str(tmp_path) + "/data_o", "test", "F_V0", quarks="lquark lquark", wf=0, wf2=0, version="2.0", corr_type="bib")
|
||||
|
@ -120,6 +132,25 @@ def test_c_bi(tmp_path):
|
|||
assert f_A[2].value == -41.025094911185185
|
||||
|
||||
|
||||
def test_c_bi_files(tmp_path):
|
||||
build_test_environment(str(tmp_path), "c", 10, 3)
|
||||
f_A = sfin.read_sfcf(str(tmp_path) + "/data_c", "data_c", "f_A", quarks="lquark lquark", wf=0, version="2.0c",
|
||||
files=[["data_c_r0_n" + str(i) for i in range(1, 11, 2)], ["data_c_r1_n" + str(i) for i in range(2, 11, 2)], ["data_c_r2_n" + str(i) for i in range(1, 11, 2)]])
|
||||
print(f_A)
|
||||
assert len(f_A) == 3
|
||||
assert list(f_A[0].shape.keys()) == ["data_c_|r0", "data_c_|r1", "data_c_|r2"]
|
||||
assert f_A[0].value == 65.4711887279723
|
||||
assert f_A[1].value == 1.0447210336915187
|
||||
assert f_A[2].value == -41.025094911185185
|
||||
|
||||
|
||||
def test_c_bi_files_int_fail(tmp_path):
|
||||
build_test_environment(str(tmp_path), "c", 10, 3)
|
||||
with pytest.raises(TypeError):
|
||||
sfin.read_sfcf(str(tmp_path) + "/data_c", "data_c", "f_A", quarks="lquark lquark", wf=0, version="2.0c",
|
||||
files=[[range(1, 11, 2)], [range(2, 11, 2)], [range(1, 11, 2)]])
|
||||
|
||||
|
||||
def test_c_bib(tmp_path):
|
||||
build_test_environment(str(tmp_path), "c", 5, 3)
|
||||
f_V0 = sfin.read_sfcf(str(tmp_path) + "/data_c", "data_c", "F_V0", quarks="lquark lquark", wf=0, wf2=0, version="2.0c", corr_type="bib")
|
||||
|
@ -256,6 +287,24 @@ def test_a_bi(tmp_path):
|
|||
assert f_A[2].value == -41.025094911185185
|
||||
|
||||
|
||||
def test_a_bi_files(tmp_path):
|
||||
build_test_environment(str(tmp_path), "a", 5, 3)
|
||||
f_A = sfin.read_sfcf(str(tmp_path) + "/data_a", "data_a", "f_A", quarks="lquark lquark", wf=0, version="2.0a", files=["data_a_r0.f_A", "data_a_r1.f_A", "data_a_r2.f_A"])
|
||||
print(f_A)
|
||||
assert len(f_A) == 3
|
||||
assert list(f_A[0].shape.keys()) == ["data_a_|r0", "data_a_|r1", "data_a_|r2"]
|
||||
assert f_A[0].value == 65.4711887279723
|
||||
assert f_A[1].value == 1.0447210336915187
|
||||
assert f_A[2].value == -41.025094911185185
|
||||
|
||||
|
||||
def test_a_bi_files_int_fail(tmp_path):
|
||||
build_test_environment(str(tmp_path), "a", 10, 3)
|
||||
with pytest.raises(TypeError):
|
||||
sfin.read_sfcf(str(tmp_path) + "/data_a", "data_a", "f_A", quarks="lquark lquark", wf=0, version="2.0a",
|
||||
files=[[range(1, 11, 2)], [range(2, 11, 2)], [range(1, 11, 2)]])
|
||||
|
||||
|
||||
def test_a_bib(tmp_path):
|
||||
build_test_environment(str(tmp_path), "a", 5, 3)
|
||||
f_V0 = sfin.read_sfcf(str(tmp_path) + "/data_a", "data_a", "F_V0", quarks="lquark lquark", wf=0, wf2=0, version="2.0a", corr_type="bib")
|
||||
|
@ -338,3 +387,33 @@ def test_find_correlator():
|
|||
found_start, found_T = sfin._find_correlator(file, "2.0", "name f_A\nquarks lquark lquark\noffset 0\nwf 0", False, False)
|
||||
assert found_start == 21
|
||||
assert found_T == 3
|
||||
|
||||
|
||||
def test_get_rep_name():
|
||||
names = ['data_r0', 'data_r1', 'data_r2']
|
||||
new_names = sfin._get_rep_names(names)
|
||||
assert len(new_names) == 3
|
||||
assert new_names[0] == 'data_|r0'
|
||||
assert new_names[1] == 'data_|r1'
|
||||
assert new_names[2] == 'data_|r2'
|
||||
names = ['data_q0', 'data_q1', 'data_q2']
|
||||
new_names = sfin._get_rep_names(names, rep_sep='q')
|
||||
assert len(new_names) == 3
|
||||
assert new_names[0] == 'data_|q0'
|
||||
assert new_names[1] == 'data_|q1'
|
||||
assert new_names[2] == 'data_|q2'
|
||||
|
||||
|
||||
def test_get_appended_rep_name():
|
||||
names = ['data_r0.f_1', 'data_r1.f_1', 'data_r2.f_1']
|
||||
new_names = sfin._get_appended_rep_names(names, 'data', 'f_1')
|
||||
assert len(new_names) == 3
|
||||
assert new_names[0] == 'data_|r0'
|
||||
assert new_names[1] == 'data_|r1'
|
||||
assert new_names[2] == 'data_|r2'
|
||||
names = ['data_q0.f_1', 'data_q1.f_1', 'data_q2.f_1']
|
||||
new_names = sfin._get_appended_rep_names(names, 'data', 'f_1', rep_sep='q')
|
||||
assert len(new_names) == 3
|
||||
assert new_names[0] == 'data_|q0'
|
||||
assert new_names[1] == 'data_|q1'
|
||||
assert new_names[2] == 'data_|q2'
|
||||
|
|
12
tests/special_test.py
Normal file
12
tests/special_test.py
Normal file
|
@ -0,0 +1,12 @@
|
|||
import numpy as np
|
||||
import scipy
|
||||
import pyerrors as pe
|
||||
import pytest
|
||||
|
||||
from autograd import jacobian
|
||||
from numdifftools import Jacobian as num_jacobian
|
||||
|
||||
def test_kn():
|
||||
for n in np.arange(0, 10):
|
||||
for val in np.linspace(0.1, 7.3, 10):
|
||||
assert np.isclose(num_jacobian(lambda x: scipy.special.kn(n, x))(val), jacobian(lambda x: pe.special.kn(n, x))(val), rtol=1e-10, atol=1e-10)
|
Loading…
Add table
Reference in a new issue