Error propagation and statistical analysis for Markov chain Monte Carlo simulations in lattice QCD and statistical mechanics using autograd
Find a file
Justus Kuhlmann b930fab9c2
Fix keyword files with list of lists (#226)
* first impl. handle reps with list of lists

* implement explicit type checks
2024-02-18 13:39:35 +01:00
.github [ci] Update actions to use Node.js 20 (#228) 2024-02-06 17:54:33 +01:00
examples [docs] latex detection in example notebooks improved. 2023-11-22 17:53:58 +01:00
pyerrors Fix keyword files with list of lists (#226) 2024-02-18 13:39:35 +01:00
tests Fix keyword files with list of lists (#226) 2024-02-18 13:39:35 +01:00
.gitignore build: .hypothesis added to gitignore. 2023-03-17 17:56:40 +00:00
CHANGELOG.md [release] Version bumped to 2.10.0, CHANGELOG updated. 2023-11-24 17:05:11 +01:00
CITATION.cff docs: citation file corrected. 2023-04-29 10:59:45 +01:00
conftest.py tests: conftest.py added 2022-01-20 13:56:56 +00:00
CONTRIBUTING.md docs: Contributing guidelines clarified. 2023-07-10 16:11:25 +01:00
LICENSE Initial public release 2020-10-13 16:53:00 +02:00
pyproject.toml build: pyproject.toml added. 2022-08-01 16:43:19 +01:00
README.md docs: ask a question added to README. 2023-07-17 10:19:20 +01:00
setup.py [doc] Added Programming Language :: Python :: 3.12 classifier to setup.py 2023-11-14 20:28:52 +01:00

pytest License: MIT arXiv DOI

pyerrors

pyerrors is a python framework for error computation and propagation of Markov chain Monte Carlo data from lattice field theory and statistical mechanics simulations.

Installation

Install the most recent release using pip and pypi:

python -m pip install pyerrors     # Fresh install
python -m pip install -U pyerrors  # Update

Install the most recent release using conda and conda-forge:

conda install -c conda-forge pyerrors  # Fresh install
conda update -c conda-forge pyerrors   # Update

Contributing

We appreciate all contributions to the code, the documentation and the examples. If you want to get involved please have a look at our contribution guideline.

Citing pyerrors

If you use pyerrors for research that leads to a publication we suggest citing the following papers:

  • Fabian Joswig, Simon Kuberski, Justus T. Kuhlmann, Jan Neuendorf, pyerrors: a python framework for error analysis of Monte Carlo data. Comput.Phys.Commun. 288 (2023) 108750.
  • Ulli Wolff, Monte Carlo errors with less errors. Comput.Phys.Commun. 156 (2004) 143-153, Comput.Phys.Commun. 176 (2007) 383 (erratum).
  • Alberto Ramos, Automatic differentiation for error analysis of Monte Carlo data. Comput.Phys.Commun. 238 (2019) 19-35.
  • Stefan Schaefer, Rainer Sommer, Francesco Virotta, Critical slowing down and error analysis in lattice QCD simulations. Nucl.Phys.B 845 (2011) 93-119.