mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-03-15 14:50:25 +01:00
incorparated (uncorrelated) combined fits in fits.least_squares
This commit is contained in:
parent
78c7c32f1c
commit
9a05fc916a
3 changed files with 594 additions and 24 deletions
File diff suppressed because one or more lines are too long
|
@ -12,7 +12,7 @@ from numdifftools import Hessian as num_hessian
|
||||||
import scipy.optimize
|
import scipy.optimize
|
||||||
import scipy.stats
|
import scipy.stats
|
||||||
|
|
||||||
def combined_total_least_squares(x,y,funcs,silent=False,**kwargs):
|
def combined_fit(x,y,funcs,silent=False,**kwargs):
|
||||||
r'''Performs a combined non-linear fit.
|
r'''Performs a combined non-linear fit.
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
|
@ -62,10 +62,17 @@ def combined_total_least_squares(x,y,funcs,silent=False,**kwargs):
|
||||||
y_all+=y[key]
|
y_all+=y[key]
|
||||||
|
|
||||||
x_all = np.asarray(x_all)
|
x_all = np.asarray(x_all)
|
||||||
|
|
||||||
|
if len(x_all.shape) > 2:
|
||||||
|
raise Exception('Unknown format for x values')
|
||||||
|
|
||||||
# number of fit parameters
|
# number of fit parameters
|
||||||
n_parms_ls = []
|
n_parms_ls = []
|
||||||
for key in funcs.keys():
|
for key in funcs.keys():
|
||||||
|
if not callable(funcs[key]):
|
||||||
|
raise TypeError('func (key='+ key + ') is not a function.')
|
||||||
|
if len(x[key]) != len(y[key]):
|
||||||
|
raise Exception('x and y input (key='+ key + ') do not have the same length')
|
||||||
for i in range(42):
|
for i in range(42):
|
||||||
try:
|
try:
|
||||||
funcs[key](np.arange(i), x_all.T[0])
|
funcs[key](np.arange(i), x_all.T[0])
|
||||||
|
@ -76,7 +83,7 @@ def combined_total_least_squares(x,y,funcs,silent=False,**kwargs):
|
||||||
else:
|
else:
|
||||||
break
|
break
|
||||||
else:
|
else:
|
||||||
raise RuntimeError("Fit function is not valid.")
|
raise RuntimeError("Fit function (key="+ key + ") is not valid.")
|
||||||
n_parms = i
|
n_parms = i
|
||||||
n_parms_ls.append(n_parms)
|
n_parms_ls.append(n_parms)
|
||||||
n_parms = max(n_parms_ls)
|
n_parms = max(n_parms_ls)
|
||||||
|
@ -102,22 +109,34 @@ def combined_total_least_squares(x,y,funcs,silent=False,**kwargs):
|
||||||
chisq += anp.sum((y_f - model)@ C_inv @(y_f - model))
|
chisq += anp.sum((y_f - model)@ C_inv @(y_f - model))
|
||||||
return chisq
|
return chisq
|
||||||
|
|
||||||
if 'tol' in kwargs:
|
output.method = kwargs.get('method', 'Levenberg-Marquardt')
|
||||||
fit_result = iminuit.minimize(chisqfunc, x0,tol=kwargs.get('tol'))
|
if not silent:
|
||||||
fit_result = iminuit.minimize(chisqfunc, fit_result.x,tol=kwargs.get('tol'))
|
print('Method:', output.method)
|
||||||
else:
|
|
||||||
fit_result = iminuit.minimize(chisqfunc, x0,tol=1e-4)
|
|
||||||
fit_result = iminuit.minimize(chisqfunc, fit_result.x,tol=1e-4)
|
|
||||||
|
|
||||||
|
if output.method == 'migrad':
|
||||||
|
tolerance = 1e-4
|
||||||
|
if 'tol' in kwargs:
|
||||||
|
tolerance = kwargs.get('tol')
|
||||||
|
fit_result = iminuit.minimize(chisqfunc, x0, tol=tolerance) # Stopping criterion 0.002 * tol * errordef
|
||||||
|
output.iterations = fit_result.nfev
|
||||||
|
else:
|
||||||
|
tolerance = 1e-12
|
||||||
|
if 'tol' in kwargs:
|
||||||
|
tolerance = kwargs.get('tol')
|
||||||
|
fit_result = scipy.optimize.minimize(chisqfunc, x0, method=kwargs.get('method'), tol=tolerance)
|
||||||
|
output.iterations = fit_result.nit
|
||||||
|
|
||||||
chisquare = fit_result.fun
|
chisquare = fit_result.fun
|
||||||
|
|
||||||
output.method = 'migrad'
|
|
||||||
output.message = fit_result.message
|
output.message = fit_result.message
|
||||||
|
|
||||||
|
if not fit_result.success:
|
||||||
|
raise Exception('The minimization procedure did not converge.')
|
||||||
|
|
||||||
if x_all.shape[-1] - n_parms > 0:
|
if x_all.shape[-1] - n_parms > 0:
|
||||||
output.chisquare = chisqfunc(fit_result.x)
|
output.chisquare = chisqfunc(fit_result.x)
|
||||||
output.dof = x_all.shape[-1] - n_parms
|
output.dof = x_all.shape[-1] - n_parms
|
||||||
output.chisquare_by_dof = output.chisquare/output.dof
|
output.chisquare_by_dof = output.chisquare/output.dof
|
||||||
|
output.p_value = 1 - scipy.stats.chi2.cdf(output.chisquare, output.dof)
|
||||||
else:
|
else:
|
||||||
output.chisquare_by_dof = float('nan')
|
output.chisquare_by_dof = float('nan')
|
||||||
|
|
||||||
|
@ -145,9 +164,22 @@ def combined_total_least_squares(x,y,funcs,silent=False,**kwargs):
|
||||||
chisq = anp.sum(list_tmp)
|
chisq = anp.sum(list_tmp)
|
||||||
return chisq
|
return chisq
|
||||||
|
|
||||||
|
def prepare_hat_matrix(): # should be cross-checked again
|
||||||
|
hat_vector = []
|
||||||
|
for key in funcs.keys():
|
||||||
|
x_array = np.asarray(x[key])
|
||||||
|
if (len(x_array)!= 0):
|
||||||
|
hat_vector.append(anp.array(jacobian(funcs[key])(fit_result.x, x_array)))
|
||||||
|
hat_vector = [item for sublist in hat_vector for item in sublist]
|
||||||
|
return hat_vector
|
||||||
|
|
||||||
fitp = fit_result.x
|
fitp = fit_result.x
|
||||||
y_f = [o.value for o in y_all] # y_f is constructed based on the ordered dictionary if the order is changed then the y values are not allocated to the the correct x and func values in the hessian
|
y_f = [o.value for o in y_all] # y_f is constructed based on the ordered dictionary if the order is changed then the y values are not allocated to the the correct x and func values in the hessian
|
||||||
dy_f = [o.dvalue for o in y_all] # the same goes for dy_f
|
dy_f = [o.dvalue for o in y_all] # the same goes for dy_f
|
||||||
|
|
||||||
|
if np.any(np.asarray(dy_f) <= 0.0):
|
||||||
|
raise Exception('No y errors available, run the gamma method first.')
|
||||||
|
|
||||||
try:
|
try:
|
||||||
hess = hessian(chisqfunc)(fitp)
|
hess = hessian(chisqfunc)(fitp)
|
||||||
except TypeError:
|
except TypeError:
|
||||||
|
@ -160,6 +192,20 @@ def combined_total_least_squares(x,y,funcs,silent=False,**kwargs):
|
||||||
deriv_y = -scipy.linalg.solve(hess, jac_jac_y[:n_parms, n_parms:])
|
deriv_y = -scipy.linalg.solve(hess, jac_jac_y[:n_parms, n_parms:])
|
||||||
except np.linalg.LinAlgError:
|
except np.linalg.LinAlgError:
|
||||||
raise Exception("Cannot invert hessian matrix.")
|
raise Exception("Cannot invert hessian matrix.")
|
||||||
|
|
||||||
|
|
||||||
|
if kwargs.get('expected_chisquare') is True:
|
||||||
|
if kwargs.get('correlated_fit') is not True:
|
||||||
|
W = np.diag(1 / np.asarray(dy_f))
|
||||||
|
cov = covariance(y_all)
|
||||||
|
hat_vector = prepare_hat_matrix()
|
||||||
|
A = W @ hat_vector #hat_vector = 'jacobian(func)(fit_result.x, x)'
|
||||||
|
P_phi = A @ np.linalg.pinv(A.T @ A) @ A.T
|
||||||
|
expected_chisquare = np.trace((np.identity(x.shape[-1]) - P_phi) @ W @ cov @ W)
|
||||||
|
output.chisquare_by_expected_chisquare = chisquare / expected_chisquare
|
||||||
|
if not silent:
|
||||||
|
print('chisquare/expected_chisquare:', output.chisquare_by_expected_chisquare)
|
||||||
|
|
||||||
|
|
||||||
result = []
|
result = []
|
||||||
for i in range(n_parms):
|
for i in range(n_parms):
|
||||||
|
|
212
pyerrors/fits.py
212
pyerrors/fits.py
|
@ -70,9 +70,13 @@ class Fit_result(Sequence):
|
||||||
|
|
||||||
def least_squares(x, y, func, priors=None, silent=False, **kwargs):
|
def least_squares(x, y, func, priors=None, silent=False, **kwargs):
|
||||||
r'''Performs a non-linear fit to y = func(x).
|
r'''Performs a non-linear fit to y = func(x).
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
|
For an uncombined fit:
|
||||||
|
|
||||||
x : list
|
x : list
|
||||||
list of floats.
|
list of floats.
|
||||||
y : list
|
y : list
|
||||||
|
@ -94,9 +98,35 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs):
|
||||||
(x1, x2) = x
|
(x1, x2) = x
|
||||||
return a[0] * x1 ** 2 + a[1] * x2
|
return a[0] * x1 ** 2 + a[1] * x2
|
||||||
```
|
```
|
||||||
|
|
||||||
It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation
|
It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation
|
||||||
will not work.
|
will not work.
|
||||||
|
|
||||||
|
OR For a combined fit:
|
||||||
|
|
||||||
|
Do not need to use ordered dictionaries: python version >= 3.7: Dictionary order is guaranteed to be insertion order.
|
||||||
|
(https://docs.python.org/3/library/stdtypes.html#dict-views) Ensures that x, y and func values are mapped correctly.
|
||||||
|
|
||||||
|
x : ordered dict
|
||||||
|
dict of lists.
|
||||||
|
y : ordered dict
|
||||||
|
dict of lists of Obs.
|
||||||
|
funcs : ordered dict
|
||||||
|
dict of objects
|
||||||
|
fit functions have to be of the form (here a[0] is the common fit parameter)
|
||||||
|
```python
|
||||||
|
import autograd.numpy as anp
|
||||||
|
funcs = {"a": func_a,
|
||||||
|
"b": func_b}
|
||||||
|
|
||||||
|
def func_a(a, x):
|
||||||
|
return a[1] * anp.exp(-a[0] * x)
|
||||||
|
|
||||||
|
def func_b(a, x):
|
||||||
|
return a[2] * anp.exp(-a[0] * x)
|
||||||
|
|
||||||
|
It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation
|
||||||
|
will not work.
|
||||||
|
|
||||||
priors : list, optional
|
priors : list, optional
|
||||||
priors has to be a list with an entry for every parameter in the fit. The entries can either be
|
priors has to be a list with an entry for every parameter in the fit. The entries can either be
|
||||||
Obs (e.g. results from a previous fit) or strings containing a value and an error formatted like
|
Obs (e.g. results from a previous fit) or strings containing a value and an error formatted like
|
||||||
|
@ -130,6 +160,10 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs):
|
||||||
'''
|
'''
|
||||||
if priors is not None:
|
if priors is not None:
|
||||||
return _prior_fit(x, y, func, priors, silent=silent, **kwargs)
|
return _prior_fit(x, y, func, priors, silent=silent, **kwargs)
|
||||||
|
|
||||||
|
elif (type(x)==dict and type(y)==dict and type(func)==dict):
|
||||||
|
return _combined_fit(x, y, func, silent=silent, **kwargs)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
return _standard_fit(x, y, func, silent=silent, **kwargs)
|
return _standard_fit(x, y, func, silent=silent, **kwargs)
|
||||||
|
|
||||||
|
@ -462,7 +496,6 @@ def _prior_fit(x, y, func, priors, silent=False, **kwargs):
|
||||||
|
|
||||||
|
|
||||||
def _standard_fit(x, y, func, silent=False, **kwargs):
|
def _standard_fit(x, y, func, silent=False, **kwargs):
|
||||||
|
|
||||||
output = Fit_result()
|
output = Fit_result()
|
||||||
|
|
||||||
output.fit_function = func
|
output.fit_function = func
|
||||||
|
@ -655,6 +688,181 @@ def _standard_fit(x, y, func, silent=False, **kwargs):
|
||||||
|
|
||||||
return output
|
return output
|
||||||
|
|
||||||
|
def _combined_fit(x,y,func,silent=False,**kwargs):
|
||||||
|
|
||||||
|
if kwargs.get('correlated_fit') is True:
|
||||||
|
raise Exception("Correlated fit has not been implemented yet")
|
||||||
|
|
||||||
|
output = Fit_result()
|
||||||
|
output.fit_function = func
|
||||||
|
|
||||||
|
if kwargs.get('num_grad') is True:
|
||||||
|
jacobian = num_jacobian
|
||||||
|
hessian = num_hessian
|
||||||
|
else:
|
||||||
|
jacobian = auto_jacobian
|
||||||
|
hessian = auto_hessian
|
||||||
|
|
||||||
|
x_all = []
|
||||||
|
y_all = []
|
||||||
|
for key in x.keys():
|
||||||
|
x_all+=x[key]
|
||||||
|
y_all+=y[key]
|
||||||
|
|
||||||
|
x_all = np.asarray(x_all)
|
||||||
|
|
||||||
|
if len(x_all.shape) > 2:
|
||||||
|
raise Exception('Unknown format for x values')
|
||||||
|
|
||||||
|
# number of fit parameters
|
||||||
|
n_parms_ls = []
|
||||||
|
for key in func.keys():
|
||||||
|
if not callable(func[key]):
|
||||||
|
raise TypeError('func (key='+ key + ') is not a function.')
|
||||||
|
if len(x[key]) != len(y[key]):
|
||||||
|
raise Exception('x and y input (key='+ key + ') do not have the same length')
|
||||||
|
for i in range(42):
|
||||||
|
try:
|
||||||
|
func[key](np.arange(i), x_all.T[0])
|
||||||
|
except TypeError:
|
||||||
|
continue
|
||||||
|
except IndexError:
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
raise RuntimeError("Fit function (key="+ key + ") is not valid.")
|
||||||
|
n_parms = i
|
||||||
|
n_parms_ls.append(n_parms)
|
||||||
|
n_parms = max(n_parms_ls)
|
||||||
|
if not silent:
|
||||||
|
print('Fit with', n_parms, 'parameter' + 's' * (n_parms > 1))
|
||||||
|
|
||||||
|
if 'initial_guess' in kwargs:
|
||||||
|
x0 = kwargs.get('initial_guess')
|
||||||
|
if len(x0) != n_parms:
|
||||||
|
raise Exception('Initial guess does not have the correct length: %d vs. %d' % (len(x0), n_parms))
|
||||||
|
else:
|
||||||
|
x0 = [0.1] * n_parms
|
||||||
|
|
||||||
|
def chisqfunc(p):
|
||||||
|
chisq = 0.0
|
||||||
|
for key in func.keys():
|
||||||
|
x_array = np.asarray(x[key])
|
||||||
|
model = anp.array(func[key](p,x_array))
|
||||||
|
y_obs = y[key]
|
||||||
|
y_f = [o.value for o in y_obs]
|
||||||
|
dy_f = [o.dvalue for o in y_obs]
|
||||||
|
C_inv = np.diag(np.diag(np.ones((len(x_array),len(x_array)))))/dy_f/dy_f
|
||||||
|
chisq += anp.sum((y_f - model)@ C_inv @(y_f - model))
|
||||||
|
return chisq
|
||||||
|
|
||||||
|
output.method = kwargs.get('method', 'Levenberg-Marquardt')
|
||||||
|
if not silent:
|
||||||
|
print('Method:', output.method)
|
||||||
|
|
||||||
|
if output.method == 'migrad':
|
||||||
|
tolerance = 1e-4
|
||||||
|
if 'tol' in kwargs:
|
||||||
|
tolerance = kwargs.get('tol')
|
||||||
|
fit_result = iminuit.minimize(chisqfunc, x0, tol=tolerance) # Stopping criterion 0.002 * tol * errordef
|
||||||
|
output.iterations = fit_result.nfev
|
||||||
|
else:
|
||||||
|
tolerance = 1e-12
|
||||||
|
if 'tol' in kwargs:
|
||||||
|
tolerance = kwargs.get('tol')
|
||||||
|
fit_result = scipy.optimize.minimize(chisqfunc, x0, method=kwargs.get('method'), tol=tolerance)
|
||||||
|
output.iterations = fit_result.nit
|
||||||
|
|
||||||
|
chisquare = fit_result.fun
|
||||||
|
output.message = fit_result.message
|
||||||
|
|
||||||
|
if not fit_result.success:
|
||||||
|
raise Exception('The minimization procedure did not converge.')
|
||||||
|
|
||||||
|
if x_all.shape[-1] - n_parms > 0:
|
||||||
|
output.chisquare = chisqfunc(fit_result.x)
|
||||||
|
output.dof = x_all.shape[-1] - n_parms
|
||||||
|
output.chisquare_by_dof = output.chisquare/output.dof
|
||||||
|
output.p_value = 1 - scipy.stats.chi2.cdf(output.chisquare, output.dof)
|
||||||
|
else:
|
||||||
|
output.chisquare_by_dof = float('nan')
|
||||||
|
|
||||||
|
if not silent:
|
||||||
|
print(fit_result.message)
|
||||||
|
print('chisquare/d.o.f.:', output.chisquare_by_dof )
|
||||||
|
print('fit parameters',fit_result.x)
|
||||||
|
|
||||||
|
def chisqfunc_compact(d):
|
||||||
|
chisq = 0.0
|
||||||
|
list_tmp = []
|
||||||
|
c1 = 0
|
||||||
|
c2 = 0
|
||||||
|
for key in func.keys():
|
||||||
|
x_array = np.asarray(x[key])
|
||||||
|
c2+=len(x_array)
|
||||||
|
model = anp.array(func[key](d[:n_parms],x_array))
|
||||||
|
y_obs = y[key]
|
||||||
|
y_f = [o.value for o in y_obs]
|
||||||
|
dy_f = [o.dvalue for o in y_obs]
|
||||||
|
C_inv = np.diag(np.diag(np.ones((len(x_array),len(x_array)))))/dy_f/dy_f
|
||||||
|
list_tmp.append(anp.sum((d[n_parms+c1:n_parms+c2]- model)@ C_inv @(d[n_parms+c1:n_parms+c2]- model)))
|
||||||
|
c1+=len(x_array)
|
||||||
|
chisq = anp.sum(list_tmp)
|
||||||
|
return chisq
|
||||||
|
|
||||||
|
def prepare_hat_matrix():
|
||||||
|
hat_vector = []
|
||||||
|
for key in func.keys():
|
||||||
|
x_array = np.asarray(x[key])
|
||||||
|
if (len(x_array)!= 0):
|
||||||
|
hat_vector.append(anp.array(jacobian(func[key])(fit_result.x, x_array)))
|
||||||
|
hat_vector = [item for sublist in hat_vector for item in sublist]
|
||||||
|
return hat_vector
|
||||||
|
|
||||||
|
fitp = fit_result.x
|
||||||
|
y_f = [o.value for o in y_all]
|
||||||
|
dy_f = [o.dvalue for o in y_all]
|
||||||
|
|
||||||
|
if np.any(np.asarray(dy_f) <= 0.0):
|
||||||
|
raise Exception('No y errors available, run the gamma method first.')
|
||||||
|
|
||||||
|
try:
|
||||||
|
hess = hessian(chisqfunc)(fitp)
|
||||||
|
except TypeError:
|
||||||
|
raise Exception("It is required to use autograd.numpy instead of numpy within fit functions, see the documentation for details.") from None
|
||||||
|
|
||||||
|
jac_jac_y = hessian(chisqfunc_compact)(np.concatenate((fitp, y_f)))
|
||||||
|
|
||||||
|
# Compute hess^{-1} @ jac_jac_y[:n_parms + m, n_parms + m:] using LAPACK dgesv
|
||||||
|
try:
|
||||||
|
deriv_y = -scipy.linalg.solve(hess, jac_jac_y[:n_parms, n_parms:])
|
||||||
|
except np.linalg.LinAlgError:
|
||||||
|
raise Exception("Cannot invert hessian matrix.")
|
||||||
|
|
||||||
|
|
||||||
|
if kwargs.get('expected_chisquare') is True:
|
||||||
|
if kwargs.get('correlated_fit') is not True:
|
||||||
|
W = np.diag(1 / np.asarray(dy_f))
|
||||||
|
cov = covariance(y_all)
|
||||||
|
hat_vector = prepare_hat_matrix()
|
||||||
|
A = W @ hat_vector #hat_vector = 'jacobian(func)(fit_result.x, x)'
|
||||||
|
P_phi = A @ np.linalg.pinv(A.T @ A) @ A.T
|
||||||
|
expected_chisquare = np.trace((np.identity(x_all.shape[-1]) - P_phi) @ W @ cov @ W)
|
||||||
|
output.chisquare_by_expected_chisquare = chisquare / expected_chisquare
|
||||||
|
if not silent:
|
||||||
|
print('chisquare/expected_chisquare:', output.chisquare_by_expected_chisquare)
|
||||||
|
|
||||||
|
|
||||||
|
result = []
|
||||||
|
for i in range(n_parms):
|
||||||
|
result.append(derived_observable(lambda x_all, **kwargs: (x_all[0] + np.finfo(np.float64).eps) / (y_all[0].value + np.finfo(np.float64).eps) * fitp[i], list(y_all), man_grad=list(deriv_y[i])))
|
||||||
|
|
||||||
|
output.fit_parameters = result
|
||||||
|
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def fit_lin(x, y, **kwargs):
|
def fit_lin(x, y, **kwargs):
|
||||||
"""Performs a linear fit to y = n + m * x and returns two Obs n, m.
|
"""Performs a linear fit to y = n + m * x and returns two Obs n, m.
|
||||||
|
|
Loading…
Add table
Reference in a new issue