Merge branch 'develop' into feat/typehints

This commit is contained in:
Fabian Joswig 2025-05-05 19:11:51 +02:00
commit 6d80efd388
15 changed files with 156 additions and 93 deletions

View file

@ -316,7 +316,7 @@ def least_squares(x: Any, y: Union[dict[str, ndarray], list[Obs], ndarray, dict[
if len(key_ls) > 1:
for key in key_ls:
if np.asarray(yd[key]).shape != funcd[key](np.arange(n_parms), xd[key]).shape:
raise ValueError(f"Fit function {key} returns the wrong shape ({funcd[key](np.arange(n_parms), xd[key]).shape} instead of {xd[key].shape})\nIf the fit function is just a constant you could try adding x*0 to get the correct shape.")
raise ValueError(f"Fit function {key} returns the wrong shape ({funcd[key](np.arange(n_parms), xd[key]).shape} instead of {np.asarray(yd[key]).shape})\nIf the fit function is just a constant you could try adding x*0 to get the correct shape.")
if not silent:
print('Fit with', n_parms, 'parameter' + 's' * (n_parms > 1))
@ -387,6 +387,8 @@ def least_squares(x: Any, y: Union[dict[str, ndarray], list[Obs], ndarray, dict[
if (chol_inv[1] != key_ls):
raise ValueError('The keys of inverse covariance matrix are not the same or do not appear in the same order as the x and y values.')
chol_inv = chol_inv[0]
if np.any(np.diag(chol_inv) <= 0) or (not np.all(chol_inv == np.tril(chol_inv))):
raise ValueError('The inverse covariance matrix inv_chol_cov_matrix[0] has to be a lower triangular matrix constructed from a Cholesky decomposition.')
else:
corr = covariance(y_all, correlation=True, **kwargs)
inverrdiag = np.diag(1 / np.asarray(dy_f))