diff --git a/.github/workflows/examples.yml b/.github/workflows/examples.yml index b8220691..51322b2c 100644 --- a/.github/workflows/examples.yml +++ b/.github/workflows/examples.yml @@ -27,17 +27,17 @@ jobs: uses: actions/setup-python@v5 with: python-version: ${{ matrix.python-version }} + - name: uv + uses: astral-sh/setup-uv@v5 - name: Install run: | sudo apt-get update sudo apt-get install dvipng texlive-latex-extra texlive-fonts-recommended cm-super - python -m pip install --upgrade pip - pip install wheel - pip install . - pip install pytest - pip install nbmake - pip install -U matplotlib!=3.7.0 # Exclude version 3.7.0 of matplotlib as this breaks local imports of style files. + uv pip install wheel --system + uv pip install . --system + uv pip install pytest nbmake --system + uv pip install -U matplotlib!=3.7.0 --system # Exclude version 3.7.0 of matplotlib as this breaks local imports of style files. - name: Run tests run: pytest -vv --nbmake examples/*.ipynb diff --git a/.github/workflows/pytest.yml b/.github/workflows/pytest.yml index e4b517bd..56612831 100644 --- a/.github/workflows/pytest.yml +++ b/.github/workflows/pytest.yml @@ -20,7 +20,9 @@ jobs: python-version: ["3.9", "3.10", "3.11", "3.12", "3.13"] include: - os: macos-latest - python-version: "3.10" + python-version: "3.12" + - os: ubuntu-24.04-arm + python-version: "3.12" steps: - name: Checkout source @@ -30,18 +32,15 @@ jobs: uses: actions/setup-python@v5 with: python-version: ${{ matrix.python-version }} + - name: uv + uses: astral-sh/setup-uv@v5 - name: Install run: | - python -m pip install --upgrade pip - pip install wheel - pip install . - pip install pytest - pip install pytest-cov - pip install pytest-benchmark - pip install hypothesis - pip install typing_extensions - pip freeze + uv pip install wheel --system + uv pip install . --system + uv pip install pytest pytest-cov pytest-benchmark hypothesis typing_extensions --system + uv pip freeze --system - name: Run tests - run: pytest --cov=pyerrors -vv + run: pytest --cov=pyerrors -vv -Werror diff --git a/CHANGELOG.md b/CHANGELOG.md index d019608c..7a61e766 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -2,6 +2,21 @@ All notable changes to this project will be documented in this file. +## [2.14.0] - 2025-03-09 + +### Added +- Explicit checks of the provided inverse matrix for correlated fits #259 + +### Changed +- Compute derivative for pow explicitly instead of relying on autograd. This results in a ~4x speedup for pow operations #246 +- More explicit exception types #248 + +### Fixed +- Removed the possibility to create an Obs from data on several replica #258 +- Fix range in `set_prange` #247 +- Fix ensemble name handling in sfcf input modules #253 +- Correct error message for fit shape mismatch #257 + ## [2.13.0] - 2024-11-03 ### Added diff --git a/examples/06_gevp.ipynb b/examples/06_gevp.ipynb index 3e6c12d5..3de14d5e 100644 --- a/examples/06_gevp.ipynb +++ b/examples/06_gevp.ipynb @@ -151,7 +151,7 @@ "\n", "$$C_{\\textrm{projected}}(t)=v_1^T \\underline{C}(t) v_2$$\n", "\n", - "If we choose the vectors to be $v_1=v_2=(0,1,0,0)$, we should get the same correlator as in the cell above. \n", + "If we choose the vectors to be $v_1=v_2=(1,0,0,0)$, we should get the same correlator as in the cell above. \n", "\n", "Thinking about it this way is usefull in the Context of the generalized eigenvalue problem (GEVP), used to find the source-sink combination, which best describes a certain energy eigenstate.\n", "A good introduction is found in https://arxiv.org/abs/0902.1265." diff --git a/pyerrors/fits.py b/pyerrors/fits.py index 4d72ae5e..379033fd 100644 --- a/pyerrors/fits.py +++ b/pyerrors/fits.py @@ -316,7 +316,7 @@ def least_squares(x: Any, y: Union[dict[str, ndarray], list[Obs], ndarray, dict[ if len(key_ls) > 1: for key in key_ls: if np.asarray(yd[key]).shape != funcd[key](np.arange(n_parms), xd[key]).shape: - raise ValueError(f"Fit function {key} returns the wrong shape ({funcd[key](np.arange(n_parms), xd[key]).shape} instead of {xd[key].shape})\nIf the fit function is just a constant you could try adding x*0 to get the correct shape.") + raise ValueError(f"Fit function {key} returns the wrong shape ({funcd[key](np.arange(n_parms), xd[key]).shape} instead of {np.asarray(yd[key]).shape})\nIf the fit function is just a constant you could try adding x*0 to get the correct shape.") if not silent: print('Fit with', n_parms, 'parameter' + 's' * (n_parms > 1)) @@ -387,6 +387,8 @@ def least_squares(x: Any, y: Union[dict[str, ndarray], list[Obs], ndarray, dict[ if (chol_inv[1] != key_ls): raise ValueError('The keys of inverse covariance matrix are not the same or do not appear in the same order as the x and y values.') chol_inv = chol_inv[0] + if np.any(np.diag(chol_inv) <= 0) or (not np.all(chol_inv == np.tril(chol_inv))): + raise ValueError('The inverse covariance matrix inv_chol_cov_matrix[0] has to be a lower triangular matrix constructed from a Cholesky decomposition.') else: corr = covariance(y_all, correlation=True, **kwargs) inverrdiag = np.diag(1 / np.asarray(dy_f)) diff --git a/pyerrors/input/dobs.py b/pyerrors/input/dobs.py index 719773b6..8a03b5ac 100644 --- a/pyerrors/input/dobs.py +++ b/pyerrors/input/dobs.py @@ -538,7 +538,8 @@ def import_dobs_string(content: bytes, full_output: bool=False, separator_insert deltas.append(repdeltas) idl.append(repidl) - res.append(Obs(deltas, obs_names, idl=idl)) + obsmeans = [np.average(deltas[j]) for j in range(len(deltas))] + res.append(Obs([np.array(deltas[j]) - obsmeans[j] for j in range(len(obsmeans))], obs_names, idl=idl, means=obsmeans)) res[-1]._value = mean[i] _check(len(e_names) == ne) diff --git a/pyerrors/input/json.py b/pyerrors/input/json.py index e5b56a96..f46f6af0 100644 --- a/pyerrors/input/json.py +++ b/pyerrors/input/json.py @@ -135,10 +135,11 @@ def create_json_string(ol: list, description: Union[str, dict]='', indent: int=1 names = [] idl = [] for key, value in obs.idl.items(): - samples.append([np.nan] * len(value)) + samples.append(np.array([np.nan] * len(value))) names.append(key) idl.append(value) - my_obs = Obs(samples, names, idl) + my_obs = Obs(samples, names, idl, means=[np.nan for n in names]) + my_obs._value = np.nan my_obs._covobs = obs._covobs for name in obs._covobs: my_obs.names.append(name) @@ -334,7 +335,8 @@ def _parse_json_dict(json_dict: dict[str, Any], verbose: bool=True, full_output: cd = _gen_covobsd_from_cdatad(o.get('cdata', {})) if od: - ret = Obs([[ddi[0] + values[0] for ddi in di] for di in od['deltas']], od['names'], idl=od['idl']) + r_offsets = [np.average([ddi[0] for ddi in di]) for di in od['deltas']] + ret = Obs([np.array([ddi[0] for ddi in od['deltas'][i]]) - r_offsets[i] for i in range(len(od['deltas']))], od['names'], idl=od['idl'], means=[ro + values[0] for ro in r_offsets]) ret._value = values[0] else: ret = Obs([], [], means=[]) @@ -359,7 +361,8 @@ def _parse_json_dict(json_dict: dict[str, Any], verbose: bool=True, full_output: taglist = o.get('tag', layout * [None]) for i in range(layout): if od: - ret.append(Obs([list(di[:, i] + values[i]) for di in od['deltas']], od['names'], idl=od['idl'])) + r_offsets = np.array([np.average(di[:, i]) for di in od['deltas']]) + ret.append(Obs([od['deltas'][j][:, i] - r_offsets[j] for j in range(len(od['deltas']))], od['names'], idl=od['idl'], means=[ro + values[i] for ro in r_offsets])) ret[-1]._value = values[i] else: ret.append(Obs([], [], means=[])) @@ -386,7 +389,8 @@ def _parse_json_dict(json_dict: dict[str, Any], verbose: bool=True, full_output: taglist = o.get('tag', N * [None]) for i in range(N): if od: - ret.append(Obs([di[:, i] + values[i] for di in od['deltas']], od['names'], idl=od['idl'])) + r_offsets = np.array([np.average(di[:, i]) for di in od['deltas']]) + ret.append(Obs([od['deltas'][j][:, i] - r_offsets[j] for j in range(len(od['deltas']))], od['names'], idl=od['idl'], means=[ro + values[i] for ro in r_offsets])) ret[-1]._value = values[i] else: ret.append(Obs([], [], means=[])) @@ -570,7 +574,6 @@ def _ol_from_dict(ind: dict, reps: str='DICTOBS') -> tuple[list, dict]: counter = 0 def dict_replace_obs(d): - nonlocal ol nonlocal counter x = {} for k, v in d.items(): @@ -591,7 +594,6 @@ def _ol_from_dict(ind: dict, reps: str='DICTOBS') -> tuple[list, dict]: return x def list_replace_obs(li): - nonlocal ol nonlocal counter x = [] for e in li: @@ -612,7 +614,6 @@ def _ol_from_dict(ind: dict, reps: str='DICTOBS') -> tuple[list, dict]: return x def obslist_replace_obs(li): - nonlocal ol nonlocal counter il = [] for e in li: @@ -693,7 +694,6 @@ def _od_from_list_and_dict(ol: list, ind: dict, reps: str='DICTOBS') -> dict[str def dict_replace_string(d): nonlocal counter - nonlocal ol x = {} for k, v in d.items(): if isinstance(v, dict): @@ -709,7 +709,6 @@ def _od_from_list_and_dict(ol: list, ind: dict, reps: str='DICTOBS') -> dict[str def list_replace_string(li): nonlocal counter - nonlocal ol x = [] for e in li: if isinstance(e, list): diff --git a/pyerrors/input/pandas.py b/pyerrors/input/pandas.py index f6cdb7bf..717b9b24 100644 --- a/pyerrors/input/pandas.py +++ b/pyerrors/input/pandas.py @@ -2,6 +2,7 @@ from __future__ import annotations import warnings import gzip import sqlite3 +from contextlib import closing import pandas as pd from ..obs import Obs from ..correlators import Corr @@ -32,9 +33,8 @@ def to_sql(df: DataFrame, table_name: str, db: str, if_exists: str='fail', gz: b None """ se_df = _serialize_df(df, gz=gz) - con = sqlite3.connect(db) - se_df.to_sql(table_name, con, if_exists=if_exists, index=False, **kwargs) - con.close() + with closing(sqlite3.connect(db)) as con: + se_df.to_sql(table_name, con=con, if_exists=if_exists, index=False, **kwargs) def read_sql(sql: str, db: str, auto_gamma: bool=False, **kwargs) -> DataFrame: @@ -55,9 +55,8 @@ def read_sql(sql: str, db: str, auto_gamma: bool=False, **kwargs) -> DataFrame: data : pandas.DataFrame Dataframe with the content of the sqlite database. """ - con = sqlite3.connect(db) - extract_df = pd.read_sql(sql, con, **kwargs) - con.close() + with closing(sqlite3.connect(db)) as con: + extract_df = pd.read_sql(sql, con=con, **kwargs) return _deserialize_df(extract_df, auto_gamma=auto_gamma) diff --git a/pyerrors/obs.py b/pyerrors/obs.py index f8dc5229..e76ae597 100644 --- a/pyerrors/obs.py +++ b/pyerrors/obs.py @@ -95,6 +95,8 @@ class Obs: raise ValueError('Names are not unique.') if not all(isinstance(x, str) for x in names): raise TypeError('All names have to be strings.') + if len(set([o.split('|')[0] for o in names])) > 1: + raise ValueError('Cannot initialize Obs based on multiple ensembles. Please average separate Obs from each ensemble.') else: if not isinstance(names[0], str): raise TypeError('All names have to be strings.') @@ -1434,6 +1436,8 @@ def reweight(weight: Obs, obs: Union[ndarray, list[Obs]], **kwargs) -> list[Obs] raise ValueError('Error: Not possible to reweight an Obs that contains covobs!') if not set(obs[i].names).issubset(weight.names): raise ValueError('Error: Ensembles do not fit') + if len(obs[i].mc_names) > 1 or len(weight.mc_names) > 1: + raise ValueError('Error: Cannot reweight an Obs that contains multiple ensembles.') for name in obs[i].names: if not set(obs[i].idl[name]).issubset(weight.idl[name]): raise ValueError('obs[%d] has to be defined on a subset of the configs in weight.idl[%s]!' % (i, name)) @@ -1469,9 +1473,12 @@ def correlate(obs_a: Obs, obs_b: Obs) -> Obs: ----- Keep in mind to only correlate primary observables which have not been reweighted yet. The reweighting has to be applied after correlating the observables. - Currently only works if ensembles are identical (this is not strictly necessary). + Only works if a single ensemble is present in the Obs. + Currently only works if ensemble content is identical (this is not strictly necessary). """ + if len(obs_a.mc_names) > 1 or len(obs_b.mc_names) > 1: + raise ValueError('Error: Cannot correlate Obs that contain multiple ensembles.') if sorted(obs_a.names) != sorted(obs_b.names): raise ValueError(f"Ensembles do not fit {set(sorted(obs_a.names)) ^ set(sorted(obs_b.names))}") if len(obs_a.cov_names) or len(obs_b.cov_names): @@ -1781,8 +1788,13 @@ def import_bootstrap(boots: ndarray, name: str, random_numbers: ndarray) -> Obs: return ret +<<<<<<< HEAD def merge_obs(list_of_obs: list[Obs]) -> Obs: - """Combine all observables in list_of_obs into one new observable + """Combine all observables in list_of_obs into one new observable. + This allows to merge Obs that have been computed on multiple replica + of the same ensemble. + If you like to merge Obs that are based on several ensembles, please + average them yourself. Parameters ---------- diff --git a/pyerrors/version.py b/pyerrors/version.py index 941c31df..806254b1 100644 --- a/pyerrors/version.py +++ b/pyerrors/version.py @@ -1 +1 @@ -__version__ = "2.14.0-dev" +__version__ = "2.15.0-dev" diff --git a/setup.py b/setup.py index 76efe7e2..8c42f4a6 100644 --- a/setup.py +++ b/setup.py @@ -30,7 +30,6 @@ setup(name='pyerrors', classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Science/Research', - 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', diff --git a/tests/fits_test.py b/tests/fits_test.py index 2eeb6a49..283ff6a2 100644 --- a/tests/fits_test.py +++ b/tests/fits_test.py @@ -223,6 +223,9 @@ def test_inv_cov_matrix_input_least_squares(): diff_inv_cov_combined_fit.gamma_method() assert(diff_inv_cov_combined_fit.is_zero(atol=1e-12)) + with pytest.raises(ValueError): + pe.least_squares(x_dict, data_dict, fitf_dict, correlated_fit = True, inv_chol_cov_matrix = [corr,chol_inv_keys_combined_fit]) + def test_least_squares_invalid_inv_cov_matrix_input(): xvals = [] yvals = [] diff --git a/tests/json_io_test.py b/tests/json_io_test.py index dafaaa41..a9263691 100644 --- a/tests/json_io_test.py +++ b/tests/json_io_test.py @@ -12,7 +12,7 @@ def test_jsonio(): o = pe.pseudo_Obs(1.0, .2, 'one') o2 = pe.pseudo_Obs(0.5, .1, 'two|r1') o3 = pe.pseudo_Obs(0.5, .1, 'two|r2') - o4 = pe.merge_obs([o2, o3]) + o4 = pe.merge_obs([o2, o3, pe.pseudo_Obs(0.5, .1, 'two|r3', samples=3221)]) otag = 'This has been merged!' o4.tag = otag do = o - .2 * o4 @@ -101,8 +101,8 @@ def test_json_string_reconstruction(): def test_json_corr_io(): - my_list = [pe.Obs([np.random.normal(1.0, 0.1, 100)], ['ens1']) for o in range(8)] - rw_list = pe.reweight(pe.Obs([np.random.normal(1.0, 0.1, 100)], ['ens1']), my_list) + my_list = [pe.Obs([np.random.normal(1.0, 0.1, 100), np.random.normal(1.0, 0.1, 321)], ['ens1|r1', 'ens1|r2'], idl=[range(1, 201, 2), range(321)]) for o in range(8)] + rw_list = pe.reweight(pe.Obs([np.random.normal(1.0, 0.1, 100), np.random.normal(1.0, 0.1, 321)], ['ens1|r1', 'ens1|r2'], idl=[range(1, 201, 2), range(321)]), my_list) for obs_list in [my_list, rw_list]: for tag in [None, "test"]: @@ -111,40 +111,51 @@ def test_json_corr_io(): for corr_tag in [None, 'my_Corr_tag']: for prange in [None, [3, 6]]: for gap in [False, True]: - my_corr = pe.Corr(obs_list, padding=[pad, pad], prange=prange) - my_corr.tag = corr_tag - if gap: - my_corr.content[4] = None - pe.input.json.dump_to_json(my_corr, 'corr') - recover = pe.input.json.load_json('corr') - os.remove('corr.json.gz') - assert np.all([o.is_zero() for o in [x for x in (my_corr - recover) if x is not None]]) - for index, entry in enumerate(my_corr): - if entry is None: - assert recover[index] is None - assert my_corr.tag == recover.tag - assert my_corr.prange == recover.prange - assert my_corr.reweighted == recover.reweighted + for mult in [1., pe.cov_Obs([12.22, 1.21], [.212**2, .11**2], 'renorm')[0]]: + my_corr = mult * pe.Corr(obs_list, padding=[pad, pad], prange=prange) + my_corr.tag = corr_tag + if gap: + my_corr.content[4] = None + pe.input.json.dump_to_json(my_corr, 'corr') + recover = pe.input.json.load_json('corr') + os.remove('corr.json.gz') + assert np.all([o.is_zero() for o in [x for x in (my_corr - recover) if x is not None]]) + for index, entry in enumerate(my_corr): + if entry is None: + assert recover[index] is None + assert my_corr.tag == recover.tag + assert my_corr.prange == recover.prange + assert my_corr.reweighted == recover.reweighted def test_json_corr_2d_io(): - obs_list = [np.array([[pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test'), pe.pseudo_Obs(0.0, 0.1 * i, 'test')], [pe.pseudo_Obs(0.0, 0.1 * i, 'test'), pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test')]]) for i in range(4)] + obs_list = [np.array([ + [ + pe.merge_obs([pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test|r2'), pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test|r1', samples=321)]), + pe.merge_obs([pe.pseudo_Obs(0.0, 0.1 * i, 'test|r2'), pe.pseudo_Obs(0.0, 0.1 * i, 'test|r1', samples=321)]), + ], + [ + pe.merge_obs([pe.pseudo_Obs(0.0, 0.1 * i, 'test|r2'), pe.pseudo_Obs(0.0, 0.1 * i, 'test|r1', samples=321),]), + pe.merge_obs([pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test|r2'), pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test|r1', samples=321)]), + ], + ]) for i in range(4)] for tag in [None, "test"]: obs_list[3][0, 1].tag = tag for padding in [0, 1]: for prange in [None, [3, 6]]: - my_corr = pe.Corr(obs_list, padding=[padding, padding], prange=prange) - my_corr.tag = tag - pe.input.json.dump_to_json(my_corr, 'corr') - recover = pe.input.json.load_json('corr') - os.remove('corr.json.gz') - assert np.all([np.all([o.is_zero() for o in q]) for q in [x.ravel() for x in (my_corr - recover) if x is not None]]) - for index, entry in enumerate(my_corr): - if entry is None: - assert recover[index] is None - assert my_corr.tag == recover.tag - assert my_corr.prange == recover.prange + for mult in [1., pe.cov_Obs([12.22, 1.21], [.212**2, .11**2], 'renorm')[0]]: + my_corr = mult * pe.Corr(obs_list, padding=[padding, padding], prange=prange) + my_corr.tag = tag + pe.input.json.dump_to_json(my_corr, 'corr') + recover = pe.input.json.load_json('corr') + os.remove('corr.json.gz') + assert np.all([np.all([o.is_zero() for o in q]) for q in [x.ravel() for x in (my_corr - recover) if x is not None]]) + for index, entry in enumerate(my_corr): + if entry is None: + assert recover[index] is None + assert my_corr.tag == recover.tag + assert my_corr.prange == recover.prange def test_json_dict_io(): @@ -211,6 +222,7 @@ def test_json_dict_io(): 'd': pe.pseudo_Obs(.01, .001, 'testd', samples=10) * pe.cov_Obs(1, .01, 'cov1'), 'se': None, 'sf': 1.2, + 'k': pe.cov_Obs(.1, .001**2, 'cov') * pe.merge_obs([pe.pseudo_Obs(1.0, 0.1, 'test|r2'), pe.pseudo_Obs(1.0, 0.1, 'test|r1', samples=321)]), } } @@ -314,7 +326,7 @@ def test_dobsio(): o2 = pe.pseudo_Obs(0.5, .1, 'two|r1') o3 = pe.pseudo_Obs(0.5, .1, 'two|r2') - o4 = pe.merge_obs([o2, o3]) + o4 = pe.merge_obs([o2, o3, pe.pseudo_Obs(0.5, .1, 'two|r3', samples=3221)]) otag = 'This has been merged!' o4.tag = otag do = o - .2 * o4 @@ -328,7 +340,7 @@ def test_dobsio(): o5 /= co2[0] o5.tag = 2 * otag - tt1 = pe.Obs([np.random.rand(100), np.random.rand(100)], ['t|r1', 't|r2'], idl=[range(2, 202, 2), range(22, 222, 2)]) + tt1 = pe.Obs([np.random.rand(100), np.random.rand(102)], ['t|r1', 't|r2'], idl=[range(2, 202, 2), range(22, 226, 2)]) tt3 = pe.Obs([np.random.rand(102)], ['qe|r1']) tt = tt1 + tt3 @@ -337,7 +349,7 @@ def test_dobsio(): tt4 = pe.Obs([np.random.rand(100), np.random.rand(100)], ['t|r1', 't|r2'], idl=[range(1, 101, 1), range(2, 202, 2)]) - ol = [o2, o3, o4, do, o5, tt, tt4, np.log(tt4 / o5**2), np.exp(o5 + np.log(co3 / tt3 + o4) / tt)] + ol = [o2, o3, o4, do, o5, tt, tt4, np.log(tt4 / o5**2), np.exp(o5 + np.log(co3 / tt3 + o4) / tt), o4.reweight(o4)] print(ol) fname = 'test_rw' @@ -362,9 +374,12 @@ def test_dobsio(): def test_reconstruct_non_linear_r_obs(tmp_path): - to = pe.Obs([np.random.rand(500), np.random.rand(500), np.random.rand(111)], - ["e|r1", "e|r2", "my_new_ensemble_54^£$|8'[@124435%6^7&()~#"], - idl=[range(1, 501), range(0, 500), range(1, 999, 9)]) + to = ( + pe.Obs([np.random.rand(500), np.random.rand(1200)], + ["e|r1", "e|r2", ], + idl=[range(1, 501), range(0, 1200)]) + + pe.Obs([np.random.rand(111)], ["my_new_ensemble_54^£$|8'[@124435%6^7&()~#"], idl=[range(1, 999, 9)]) + ) to = np.log(to ** 2) / to to.dump((tmp_path / "test_equality").as_posix()) ro = pe.input.json.load_json((tmp_path / "test_equality").as_posix()) @@ -372,9 +387,12 @@ def test_reconstruct_non_linear_r_obs(tmp_path): def test_reconstruct_non_linear_r_obs_list(tmp_path): - to = pe.Obs([np.random.rand(500), np.random.rand(500), np.random.rand(111)], - ["e|r1", "e|r2", "my_new_ensemble_54^£$|8'[@124435%6^7&()~#"], - idl=[range(1, 501), range(0, 500), range(1, 999, 9)]) + to = ( + pe.Obs([np.random.rand(500), np.random.rand(1200)], + ["e|r1", "e|r2", ], + idl=[range(1, 501), range(0, 1200)]) + + pe.Obs([np.random.rand(111)], ["my_new_ensemble_54^£$|8'[@124435%6^7&()~#"], idl=[range(1, 999, 9)]) + ) to = np.log(to ** 2) / to for to_list in [[to, to, to], np.array([to, to, to])]: pe.input.json.dump_to_json(to_list, (tmp_path / "test_equality_list").as_posix()) diff --git a/tests/linalg_test.py b/tests/linalg_test.py index 4fb952d3..9323cfcf 100644 --- a/tests/linalg_test.py +++ b/tests/linalg_test.py @@ -34,7 +34,7 @@ def test_matmul(): my_list = [] length = 100 + np.random.randint(200) for i in range(dim ** 2): - my_list.append(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2'])) + my_list.append(pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2'])) my_array = const * np.array(my_list).reshape((dim, dim)) tt = pe.linalg.matmul(my_array, my_array) - my_array @ my_array for t, e in np.ndenumerate(tt): @@ -43,8 +43,8 @@ def test_matmul(): my_list = [] length = 100 + np.random.randint(200) for i in range(dim ** 2): - my_list.append(pe.CObs(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']), - pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']))) + my_list.append(pe.CObs(pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2']), + pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2']))) my_array = np.array(my_list).reshape((dim, dim)) * const tt = pe.linalg.matmul(my_array, my_array) - my_array @ my_array for t, e in np.ndenumerate(tt): @@ -151,7 +151,7 @@ def test_multi_dot(): my_list = [] length = 1000 + np.random.randint(200) for i in range(dim ** 2): - my_list.append(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2'])) + my_list.append(pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2'])) my_array = pe.cov_Obs(1.0, 0.002, 'cov') * np.array(my_list).reshape((dim, dim)) tt = pe.linalg.matmul(my_array, my_array, my_array, my_array) - my_array @ my_array @ my_array @ my_array for t, e in np.ndenumerate(tt): @@ -160,8 +160,8 @@ def test_multi_dot(): my_list = [] length = 1000 + np.random.randint(200) for i in range(dim ** 2): - my_list.append(pe.CObs(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']), - pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']))) + my_list.append(pe.CObs(pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2']), + pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2']))) my_array = np.array(my_list).reshape((dim, dim)) * pe.cov_Obs(1.0, 0.002, 'cov') tt = pe.linalg.matmul(my_array, my_array, my_array, my_array) - my_array @ my_array @ my_array @ my_array for t, e in np.ndenumerate(tt): @@ -209,7 +209,7 @@ def test_irregular_matrix_inverse(): for idl in [range(8, 508, 10), range(250, 273), [2, 8, 19, 20, 78, 99, 828, 10548979]]: irregular_array = [] for i in range(dim ** 2): - irregular_array.append(pe.Obs([np.random.normal(1.1, 0.2, len(idl)), np.random.normal(0.25, 0.1, 10)], ['ens1', 'ens2'], idl=[idl, range(1, 11)])) + irregular_array.append(pe.Obs([np.random.normal(1.1, 0.2, len(idl))], ['ens1'], idl=[idl]) + pe.Obs([np.random.normal(0.25, 0.1, 10)], ['ens2'], idl=[range(1, 11)])) irregular_matrix = np.array(irregular_array).reshape((dim, dim)) * pe.cov_Obs(1.0, 0.002, 'cov') * pe.pseudo_Obs(1.0, 0.002, 'ens2|r23') invertible_irregular_matrix = np.identity(dim) + irregular_matrix @ irregular_matrix.T diff --git a/tests/obs_test.py b/tests/obs_test.py index 72da2dfd..53d5a9f2 100644 --- a/tests/obs_test.py +++ b/tests/obs_test.py @@ -333,7 +333,7 @@ def test_derived_observables(): def test_multi_ens(): names = ['A0', 'A1|r001', 'A1|r002'] - test_obs = pe.Obs([np.random.rand(50), np.random.rand(50), np.random.rand(50)], names) + test_obs = pe.Obs([np.random.rand(50)], names[:1]) + pe.Obs([np.random.rand(50), np.random.rand(50)], names[1:]) assert test_obs.e_names == ['A0', 'A1'] assert test_obs.e_content['A0'] == ['A0'] assert test_obs.e_content['A1'] == ['A1|r001', 'A1|r002'] @@ -345,6 +345,9 @@ def test_multi_ens(): ensembles.append(str(i)) assert my_sum.e_names == sorted(ensembles) + with pytest.raises(ValueError): + test_obs = pe.Obs([np.random.rand(50), np.random.rand(50), np.random.rand(50)], names) + def test_multi_ens2(): names = ['ens', 'e', 'en', 'e|r010', 'E|er', 'ens|', 'Ens|34', 'ens|r548984654ez4e3t34terh'] @@ -499,18 +502,25 @@ def test_reweighting(): with pytest.raises(ValueError): pe.reweight(my_irregular_obs, [my_obs]) + my_merged_obs = my_obs + pe.Obs([np.random.rand(1000)], ['q']) + with pytest.raises(ValueError): + pe.reweight(my_merged_obs, [my_merged_obs]) + def test_merge_obs(): - my_obs1 = pe.Obs([np.random.rand(100)], ['t']) - my_obs2 = pe.Obs([np.random.rand(100)], ['q'], idl=[range(1, 200, 2)]) + my_obs1 = pe.Obs([np.random.normal(1, .1, 100)], ['t|1']) + my_obs2 = pe.Obs([np.random.normal(1, .1, 100)], ['t|2'], idl=[range(1, 200, 2)]) merged = pe.merge_obs([my_obs1, my_obs2]) - diff = merged - my_obs2 - my_obs1 - assert diff == -(my_obs1.value + my_obs2.value) / 2 + diff = merged - (my_obs2 + my_obs1) / 2 + assert np.isclose(0, diff.value, atol=1e-16) with pytest.raises(ValueError): pe.merge_obs([my_obs1, my_obs1]) my_covobs = pe.cov_Obs(1.0, 0.003, 'cov') with pytest.raises(ValueError): pe.merge_obs([my_obs1, my_covobs]) + my_obs3 = pe.Obs([np.random.rand(100)], ['q|2'], idl=[range(1, 200, 2)]) + with pytest.raises(ValueError): + pe.merge_obs([my_obs1, my_obs3]) @@ -543,6 +553,9 @@ def test_correlate(): my_obs6 = pe.Obs([np.random.rand(100)], ['t'], idl=[range(5, 505, 5)]) corr3 = pe.correlate(my_obs5, my_obs6) assert my_obs5.idl == corr3.idl + my_obs7 = pe.Obs([np.random.rand(99)], ['q']) + with pytest.raises(ValueError): + pe.correlate(my_obs1, my_obs7) my_new_obs = pe.Obs([np.random.rand(100)], ['q3']) with pytest.raises(ValueError): @@ -682,14 +695,14 @@ def test_gamma_method_irregular(): assert (a.dvalue - 5 * a.ddvalue < expe and expe < a.dvalue + 5 * a.ddvalue) arr2 = np.random.normal(1, .2, size=N) - afull = pe.Obs([arr, arr2], ['a1', 'a2']) + afull = pe.Obs([arr], ['a1']) + pe.Obs([arr2], ['a2']) configs = np.ones_like(arr2) for i in np.random.uniform(0, len(arr2), size=int(.8*N)): configs[int(i)] = 0 zero_arr2 = [arr2[i] for i in range(len(arr2)) if not configs[i] == 0] idx2 = [i + 1 for i in range(len(configs)) if configs[i] == 1] - a = pe.Obs([zero_arr, zero_arr2], ['a1', 'a2'], idl=[idx, idx2]) + a = pe.Obs([zero_arr], ['a1'], idl=[idx]) + pe.Obs([zero_arr2], ['a2'], idl=[idx2]) afull.gamma_method() a.gamma_method() @@ -1023,7 +1036,7 @@ def test_correlation_intersection_of_idls(): def test_covariance_non_identical_objects(): - obs1 = pe.Obs([np.random.normal(1.0, 0.1, 1000), np.random.normal(1.0, 0.1, 1000), np.random.normal(1.0, 0.1, 732)], ["ens|r1", "ens|r2", "ens2"]) + obs1 = pe.Obs([np.random.normal(1.0, 0.1, 1000), np.random.normal(1.0, 0.1, 1000)], ["ens|r1", "ens|r2"]) + pe.Obs([np.random.normal(1.0, 0.1, 732)], ['ens2']) obs1.gamma_method() obs2 = obs1 + 1e-18 obs2.gamma_method() @@ -1107,6 +1120,9 @@ def test_reweight_method(): obs1 = pe.pseudo_Obs(0.2, 0.01, 'test') rw = pe.pseudo_Obs(0.999, 0.001, 'test') assert obs1.reweight(rw) == pe.reweight(rw, [obs1])[0] + rw2 = pe.pseudo_Obs(0.999, 0.001, 'test2') + with pytest.raises(ValueError): + obs1.reweight(rw2) def test_jackknife():