pyerrors/tests/test_linalg.py

51 lines
1.8 KiB
Python
Raw Normal View History

2021-10-12 13:57:41 +01:00
import autograd.numpy as np
import math
import pyerrors as pe
import pytest
2021-10-15 13:05:00 +01:00
np.random.seed(0)
2021-10-15 14:13:06 +01:00
2021-10-12 13:57:41 +01:00
def test_matrix_functions():
dim = 3 + int(4 * np.random.rand())
print(dim)
matrix = []
for i in range(dim):
row = []
for j in range(dim):
row.append(pe.pseudo_Obs(np.random.rand(), 0.2 + 0.1 * np.random.rand(), 'e1'))
matrix.append(row)
matrix = np.array(matrix) @ np.identity(dim)
# Check inverse of matrix
inv = pe.linalg.mat_mat_op(np.linalg.inv, matrix)
check_inv = matrix @ inv
for (i, j), entry in np.ndenumerate(check_inv):
entry.gamma_method()
if(i == j):
assert math.isclose(entry.value, 1.0, abs_tol=1e-9), 'value ' + str(i) + ',' + str(j) + ' ' + str(entry.value)
else:
assert math.isclose(entry.value, 0.0, abs_tol=1e-9), 'value ' + str(i) + ',' + str(j) + ' ' + str(entry.value)
assert math.isclose(entry.dvalue, 0.0, abs_tol=1e-9), 'dvalue ' + str(i) + ',' + str(j) + ' ' + str(entry.dvalue)
# Check Cholesky decomposition
sym = np.dot(matrix, matrix.T)
cholesky = pe.linalg.mat_mat_op(np.linalg.cholesky, sym)
check = cholesky @ cholesky.T
for (i, j), entry in np.ndenumerate(check):
diff = entry - sym[i, j]
diff.gamma_method()
assert math.isclose(diff.value, 0.0, abs_tol=1e-9), 'value ' + str(i) + ',' + str(j)
assert math.isclose(diff.dvalue, 0.0, abs_tol=1e-9), 'dvalue ' + str(i) + ',' + str(j)
# Check eigh
e, v = pe.linalg.eigh(sym)
for i in range(dim):
tmp = sym @ v[:, i] - v[:, i] * e[i]
for j in range(dim):
tmp[j].gamma_method()
assert math.isclose(tmp[j].value, 0.0, abs_tol=1e-9), 'value ' + str(i) + ',' + str(j)
assert math.isclose(tmp[j].dvalue, 0.0, abs_tol=1e-9), 'dvalue ' + str(i) + ',' + str(j)