removed unnecessary imports from tests

This commit is contained in:
Fabian Joswig 2021-10-15 14:13:06 +01:00
parent bb9790acd7
commit e46746e4ca
4 changed files with 12 additions and 22 deletions

View file

@ -1,16 +1,13 @@
import autograd.numpy as np
import os
import random
import string
import copy
import math
import scipy.optimize
from scipy.odr import ODR, Model, Data, RealData
from scipy.odr import ODR, Model, RealData
import pyerrors as pe
import pytest
np.random.seed(0)
def test_standard_fit():
dim = 10 + int(30 * np.random.rand())
x = np.arange(dim)
@ -69,7 +66,7 @@ def test_odr_fit():
data = RealData([o.value for o in ox], [o.value for o in oy], sx=[o.dvalue for o in ox], sy=[o.dvalue for o in oy])
model = Model(func)
odr = ODR(data, model, [0,0], partol=np.finfo(np.float64).eps)
odr = ODR(data, model, [0, 0], partol=np.finfo(np.float64).eps)
odr.set_job(fit_type=0, deriv=1)
output = odr.run()
@ -79,8 +76,8 @@ def test_odr_fit():
for i in range(2):
beta[i].gamma_method(e_tag=5, S=1.0)
assert math.isclose(beta[i].value, output.beta[i], rel_tol=1e-5)
assert math.isclose(output.cov_beta[i,i], beta[i].dvalue**2, rel_tol=2.5e-1), str(output.cov_beta[i,i]) + ' ' + str(beta[i].dvalue**2)
assert math.isclose(pe.covariance(beta[0], beta[1]), output.cov_beta[0,1], rel_tol=2.5e-1)
assert math.isclose(output.cov_beta[i, i], beta[i].dvalue ** 2, rel_tol=2.5e-1), str(output.cov_beta[i, i]) + ' ' + str(beta[i].dvalue ** 2)
assert math.isclose(pe.covariance(beta[0], beta[1]), output.cov_beta[0, 1], rel_tol=2.5e-1)
pe.Obs.e_tag_global = 0
@ -94,7 +91,7 @@ def test_odr_derivatives():
loc_xvalue = n + np.random.normal(0.0, x_err)
x.append(pe.pseudo_Obs(loc_xvalue, x_err, str(n)))
y.append(pe.pseudo_Obs((lambda x: x ** 2 - 1)(loc_xvalue) +
np.random.normal(0.0, y_err), y_err, str(n)))
np.random.normal(0.0, y_err), y_err, str(n)))
def func(a, x):
return a[0] + a[1] * x ** 2
@ -103,4 +100,4 @@ def test_odr_derivatives():
tfit = pe.fits.fit_general(x, y, func, base_step=0.1, step_ratio=1.1, num_steps=20)
assert np.abs(np.max(np.array(list(fit1[1].deltas.values()))
- np.array(list(tfit[1].deltas.values())))) < 10e-8
- np.array(list(tfit[1].deltas.values())))) < 10e-8

View file

@ -1,18 +1,11 @@
import sys
sys.path.append('..')
import autograd.numpy as np
import os
import random
import math
import string
import copy
import scipy.optimize
from scipy.odr import ODR, Model, Data, RealData
import pyerrors as pe
import pytest
np.random.seed(0)
def test_matrix_functions():
dim = 3 + int(4 * np.random.rand())
print(dim)
@ -55,4 +48,3 @@ def test_matrix_functions():
tmp[j].gamma_method()
assert math.isclose(tmp[j].value, 0.0, abs_tol=1e-9), 'value ' + str(i) + ',' + str(j)
assert math.isclose(tmp[j].dvalue, 0.0, abs_tol=1e-9), 'dvalue ' + str(i) + ',' + str(j)

View file

@ -8,6 +8,7 @@ import pytest
np.random.seed(0)
def test_dump():
value = np.random.normal(5, 10)
dvalue = np.abs(np.random.normal(0, 1))
@ -38,8 +39,8 @@ def test_function_overloading():
lambda x: np.sinh(x[0]), lambda x: np.cosh(x[0]), lambda x: np.tanh(x[0])]
for i, f in enumerate(fs):
t1 = f([a,b])
t2 = pe.derived_observable(f, [a,b])
t1 = f([a, b])
t2 = pe.derived_observable(f, [a, b])
c = t2 - t1
assert c.value == 0.0, str(i)
assert np.all(np.abs(c.deltas['e1']) < 1e-14), str(i)

View file

@ -4,6 +4,7 @@ import pytest
np.random.seed(0)
def test_root_linear():
def root_function(x, d):
@ -16,4 +17,3 @@ def test_root_linear():
assert np.isclose(my_root.value, value)
difference = my_obs - my_root
assert all(np.isclose(0.0, difference.deltas['t']))