221 lines
8.1 KiB
TeX
221 lines
8.1 KiB
TeX
% !TeX program = lualatex
|
|
\documentclass[aspectratio=169]{beamer}
|
|
\input{einstellungen.tex}
|
|
% \usepackage[backend=bibtex]{biblatex} %lualatex, biber
|
|
\usepackage{multimedia}
|
|
\usepackage{tcolorbox}
|
|
\usepackage{multicol}
|
|
\usepackage{tikz} % I added this
|
|
\usetikzlibrary{patterns} % I added this
|
|
\usetikzlibrary{calc} % I added this
|
|
\usepackage{mathtools} % I added this
|
|
\usepackage{tcolorbox} % I added this
|
|
\usepackage{vwcol} % I added this
|
|
\usepackage{wrapfig} % I added this
|
|
\usepackage{booktabs} % Top and bottom rules for table,I added this
|
|
\usepackage{animate} % added this for gifs
|
|
\usepackage{dsfont}
|
|
\usepackage{simplewick} %added this
|
|
\usepackage[makeroom]{cancel}
|
|
\definecolor{Darkgreen}{rgb}{0,0.5,0}
|
|
\newcommand{\halflinewidth}{.48\linewidth}
|
|
\newcommand{\fulllinewidth}{.95\linewidth}
|
|
\usepackage{macros} % used commands defined for rm paper
|
|
\newcommand*{\arxivtag}[1]{{\color{pantone315}\texttt{[#1]}}}
|
|
\newcommand{\openlat}{OpenLat}
|
|
|
|
|
|
\title[$A_\mu^a$ impr. for msl. \& mass. quarks]{Non-singlet axial current improvement for massless and massive sea quarks}
|
|
\author[Justus Kuhlmann]{\textbf{Justus Kuhlmann}\\ Patrick Fritzsch, Jochen Heitger}
|
|
|
|
% \institute wird von der Vorlage nicht direkt verwendet
|
|
\institute{Institut für theoretische Physik}
|
|
|
|
\date{\today}
|
|
\keywords{Münster}
|
|
|
|
\newcommand{\customcite}[1]{{\color{fu-blue}\citename{#1}{author}}, \citefield{#1}{journaltitle}, {\color{pantone315}\citeyear{#1}}}
|
|
\begin{document}
|
|
|
|
\begin{frame}[plain]
|
|
\maketitle
|
|
\end{frame}
|
|
|
|
% Relevance of the AV-current
|
|
% Relevance in renormalisation adn improvement of other currents
|
|
% so far only in chi lim
|
|
% not exactly given with the ensembles at hand
|
|
% also: we have ensembles close to the symmetric point
|
|
% openLAT so far at sym point
|
|
% differences at sym point?
|
|
% improvement at the symmetric point
|
|
% example
|
|
\begin{frame}
|
|
\frametitle{Relevance for further improvement and physics}
|
|
\begin{itemize}
|
|
\item exp. Wilson-clover fermion framework
|
|
\item massive $\widehat{=}$ at $N_{\rm f}=3$ symmetric point
|
|
\pause
|
|
\vspace{.5cm}
|
|
\item needed for improv. quark current mass
|
|
\item decay constants \& matrix elements
|
|
% \item masses of mesons (e.g. $\chi_\mathrm{c1}$ or $D_\mathrm{1}^\ast$)
|
|
\pause
|
|
\vspace{.5cm}
|
|
\item improvement and renormalisation:
|
|
\begin{itemize}
|
|
\item $\cv$, $c_{\rm T}$, $\za$
|
|
\item no $\ca$ $\Rightarrow$ no improvement of other channels
|
|
\end{itemize}
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
|
|
\begin{frame}
|
|
\frametitle{Determination of $\ca$}
|
|
\begin{itemize}
|
|
\item Schrödinger functional boundary conditions
|
|
\item similar to quenched \arxivtag{hep-lat/9609035}, $N_{\rm f} = 2$ \arxivtag{hep-lat/0503003} and std. Wilson-Clover $N_{\rm f} = 3$ \arxivtag{1502.04999}
|
|
\item derive from PCAC mass
|
|
\end{itemize}
|
|
\vspace{.5cm}
|
|
$$m_{\rm PCAC} = \frac{\partial_0 f_{\rm A}}{2f_{\rm P}} + \ca~a\frac{\partial^2_0 f_{\rm P}}{2f_{\rm P}} = r + \ca~as$$
|
|
$$m_{\rm PCAC}^{(0)} = m_{\rm PCAC}^{(1)}\quad\Leftrightarrow\quad\ca = - \frac{r^{(1)} - r^{(0)}}{s^{(1)} - s^{(0)}}$$
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{The wavefunction method}
|
|
\begin{itemize}
|
|
\item mimic pionic sources on boundaries $\pi^{(0)}, \pi^{(1)}$ and require PCAC relation to hold for both
|
|
\begin{itemize}
|
|
\item basis wavefunctions:
|
|
$\omega_{\rm b1} = e^{-r/a_0}\;,\quad\omega_{\rm b2} = r~e^{-r/a_0}\;,\quad\omega_{\rm b3} = e^{-r/(2a_0)}$
|
|
\item also include $\omega_{\rm b4} = {\rm cons.}\;,\quad\omega_{\rm b5} = -r^2~e^{-r/a_0}$
|
|
\quad with $r=|\vec{y}-\vec{x}|$
|
|
\end{itemize}
|
|
\pause
|
|
\item eigenvectors of boundary-to-boundary corr. func. $(F_1)_{i,j} = -\langle O(\omega_{{\rm b}i}) O'(\omega_{{\rm b}j})\rangle$
|
|
\vspace{.5cm}
|
|
\pause
|
|
\item diagonalise $(F_1)_{i,j}$ \& project $f_{\rm A}(x_0)$ and $f_{\rm P}(x_0)$ onto the eigenstates
|
|
% Question: do we include all wavefunctions or just some?
|
|
% How does this interplay with the states that we achieve?
|
|
% Which is the optimal wf combination?
|
|
% \item also: where on the lattice do we define $c_{\rm A}$?
|
|
\vspace{.5cm}
|
|
\pause
|
|
\item evaluate $c_{\rm A}(x_0)$ with these source terms
|
|
\item later: choice of $x_0$ and wavefunction basis is part of the improvement condition
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
|
|
\begin{frame}
|
|
\frametitle{Ensembles}
|
|
\framesubtitle{$T=L\approx 3\,{\rm fm}$ Schrödinger-Functional ensembles, exp. Wilson-Clover fermions}
|
|
\begin{center}
|
|
\begin{tabular}{cc|c|c|c|c}
|
|
\toprule
|
|
$L/a$ & $\beta$ & $\kappa_{1}\approx\kappa_{\rm cr}$ & $\kappa_{2}$ & $\kappa_{3}\approx\kappa_{\rm sym}$&$a$\\
|
|
\midrule
|
|
24&3.685&0.1396980&0.1395500&0.1394400&0.120\\
|
|
32&3.80&0.1392500&---&0.1389630&0.095\\
|
|
40&3.90&0.1388562&0.1386148&0.1386030&0.080\\
|
|
48&4.00&0.1384942&0.1384880&0.1382720&0.064\\
|
|
56&4.10&0.1381410&0.1380000&0.1379450&0.055\\
|
|
96&4.37&---&---&---&0.035\\
|
|
\bottomrule
|
|
\end{tabular}
|
|
\end{center}
|
|
\begin{itemize}
|
|
\item interested in 2 LCPs: chiral and $N_{\rm f}=3$ sym. point
|
|
\item matching sym. point of \openlat~\arxivtag{2201.03874}
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Improvement of the axial-vector current}
|
|
\framesubtitle{$\ca$ estimators}
|
|
\begin{tabular}{cc}
|
|
Critical point ensembles&Symmetric point ensembles\\
|
|
\includegraphics[width=\halflinewidth]{plots/plateaus_chi_0.2_0.3_0124_ee_ee_total_quad.pdf}&
|
|
\includegraphics[width=\halflinewidth]{plots/plateaus_sym_0.2_0.3_0124_ee_ee_total_quad.pdf}
|
|
\end{tabular}
|
|
% systematic errors, to capture "non-plateauness"
|
|
\end{frame}
|
|
|
|
% interpolations
|
|
\begin{frame}
|
|
\frametitle{Interpolation}
|
|
\framesubtitle{... to the symmetric and critical point}
|
|
\begin{itemize}
|
|
\item ensembles not exactly tuned
|
|
\item able to interpolate to the desired points due to 2 or 3 ensembles per $\beta$
|
|
\item determine points of interest as in \openlat~ensembles \arxivtag{2201.03874}
|
|
\item define: $$\Phi^{\rm SF}_4 = \frac{3}{2}\,8t_0\,|m_{\rm eff}|\,m_{\rm eff}
|
|
\quad \Rightarrow \quad \Phi^{\rm SF}_4\bigm\lvert_{m_{0,{\rm cr}}} = 0\,,\;\Phi^{\rm SF}_4\bigm\lvert_{m_{0,{\rm sym}}} = 1.115$$
|
|
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Improvement of the axial-vector current}
|
|
\framesubtitle{Finding the symmetric and chiral point}
|
|
\begin{tabular}{cc}
|
|
\includegraphics[width=\halflinewidth]{plots/fix_sym_b3.9.pdf}&
|
|
\includegraphics[width=\halflinewidth]{plots/fix_sym_b4.pdf}
|
|
\end{tabular}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Improvement of the axial-vector current}
|
|
\framesubtitle{Interpolations in $c_{\rm A}$}
|
|
\begin{tabular}{cc}
|
|
\includegraphics[width=\halflinewidth]{plots/ca2sym_b3.9.pdf}&
|
|
\includegraphics[width=\halflinewidth]{plots/ca2sym_b4.pdf}
|
|
\end{tabular}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Improvement of the axial-vector current}
|
|
\framesubtitle{Final interpolations in $g_0^2$}
|
|
\begin{tabular}{cc}
|
|
\includegraphics[width=\halflinewidth]{plots/g0sq_chi.pdf}&
|
|
\includegraphics[width=\halflinewidth]{plots/g0sq_sym.pdf}
|
|
\end{tabular}
|
|
\end{frame}
|
|
|
|
% first study for difference:
|
|
\begin{frame}
|
|
\frametitle{First scaling test of improvement}
|
|
\framesubtitle{Construction}
|
|
\begin{itemize}
|
|
\item Example: construct a non-trivial observable, for which renormalisation drops out
|
|
$$\frac{A_{\rm R}^{+-}}{A_{\rm R}^{ll}} = \frac{Z_{\rm A}}{Z_{\rm A}} \frac{(1+ b_{\rm A} (m_{{\rm q},+-})}{(1+ b_{\rm A} m_{{\rm q},ll})} \frac{(1+\bar{b}_{\rm A}Tr[M_{\rm q}])}{(1+ \bar{b}_{\rm A}Tr[M_{\rm q}])} \frac{A^{+-}}{A^{ll}}$$
|
|
\quad with $m_{{\rm q}, ij} = (m_{{\rm q}, i} + m_{{\rm q}, j})/2$
|
|
\item fulfilled by $m_{{\rm q}, \pm}=m_{{\rm q}, l}\pm \Delta$
|
|
\item symmetric point \openlat~ensembles
|
|
\item $\ca = 0$ vs $\ca(g_0^2)|_{\rm chi}$ vs $\ca(g_0^2)|_{\rm sym}$
|
|
\end{itemize}
|
|
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{First study of improvement}
|
|
\framesubtitle{Results}
|
|
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Outlook}
|
|
\begin{itemize}
|
|
\item finish $\zv$, $\bV$ and $\bar{b}_{\rm V}$ through SF
|
|
\item further improvement and renormalisation currently in the works:
|
|
\begin{itemize}
|
|
\item vector and tensor current improvement ($c_{\rm V}$, $c_{\rm T}$)
|
|
\item current quark mass renormalisation ($b_{\rm A}-b_{\rm P}$, $b_m$, $Z$)
|
|
\item determination of $Z_{\rm A}$, $Z_{\rm V}$, $Z_{\rm S}/Z_{\rm P}$ through $\chi$SF
|
|
\end{itemize}
|
|
\end{itemize}
|
|
\end{frame}
|
|
\end{document}
|