1
0
Fork 0
This repository has been archived on 2024-08-16. You can view files and clone it, but cannot push or open issues or pull requests.
talk-lattice2024/talk.tex
2024-07-30 23:00:04 +02:00

222 lines
8.1 KiB
TeX

% !TeX program = lualatex
\documentclass[aspectratio=169]{beamer}
\input{einstellungen.tex}
% \usepackage[backend=bibtex]{biblatex} %lualatex, biber
\usepackage{multimedia}
\usepackage{tcolorbox}
\usepackage{multicol}
\usepackage{tikz} % I added this
\usetikzlibrary{patterns} % I added this
\usetikzlibrary{calc} % I added this
\usepackage{mathtools} % I added this
\usepackage{tcolorbox} % I added this
\usepackage{vwcol} % I added this
\usepackage{wrapfig} % I added this
\usepackage{booktabs} % Top and bottom rules for table,I added this
\usepackage{animate} % added this for gifs
\usepackage{dsfont}
\usepackage{simplewick} %added this
\usepackage[makeroom]{cancel}
\definecolor{Darkgreen}{rgb}{0,0.5,0}
\newcommand{\halflinewidth}{.48\linewidth}
\newcommand{\fulllinewidth}{.95\linewidth}
\usepackage{macros} % used commands defined for rm paper
\newcommand*{\arxivtag}[1]{{\color{pantone315}\texttt{[#1]}}}
\newcommand{\openlat}{OpenLat}
\title[$A_\mu^a$ impr. for msl. \& mass. quarks]{Non-singlet axial current improvement for massless and massive sea quarks}
\author[Justus Kuhlmann]{\textbf{Justus Kuhlmann}\\ Patrick Fritzsch, Jochen Heitger}
% \institute wird von der Vorlage nicht direkt verwendet
\institute{Institut für theoretische Physik}
\date{\today}
\keywords{Münster}
\newcommand{\customcite}[1]{{\color{fu-blue}\citename{#1}{author}}, \citefield{#1}{journaltitle}, {\color{pantone315}\citeyear{#1}}}
\begin{document}
\begin{frame}[plain]
\maketitle
\end{frame}
% Relevance of the AV-current
% Relevance in renormalisation adn improvement of other currents
% so far only in chi lim
% not exactly given with the ensembles at hand
% also: we have ensembles close to the symmetric point
% openLAT so far at sym point
% differences at sym point?
% improvement at the symmetric point
% example
\begin{frame}
\frametitle{Relevance for further improvement and physics}
\begin{itemize}
\item exp. Wilson-clover fermion framework
\item massive $\widehat{=}$ at $N_{\rm f}=3$ symmetric point
\pause
\vspace{.5cm}
\item needed for improv. quark current mass
\item decay constants \& matrix elements
% \item masses of mesons (e.g. $\chi_\mathrm{c1}$ or $D_\mathrm{1}^\ast$)
\pause
\vspace{.5cm}
\item improvement and renormalisation:
\begin{itemize}
\item $\cv$, $c_{\rm T}$, $\za$
\item no $\ca$ $\Rightarrow$ no improvement of other channels
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Determination of $\ca$}
\begin{itemize}
\item Schrödinger functional boundary conditions
\item similar to quenched \arxivtag{hep-lat/9609035}, $N_{\rm f} = 2$ \arxivtag{hep-lat/0503003} and std. Wilson-Clover $N_{\rm f} = 3$ \arxivtag{1502.04999, hep-lat/0703006}
\item derive from PCAC mass
\end{itemize}
\vspace{.5cm}
$$m_{\rm PCAC} = \frac{\partial_0 f_{\rm A}}{2f_{\rm P}} + \ca~a\frac{\partial^2_0 f_{\rm P}}{2f_{\rm P}} = r + \ca~as$$
$$m_{\rm PCAC}^{(0)} = m_{\rm PCAC}^{(1)}\quad\Leftrightarrow\quad\ca = - \frac{r^{(1)} - r^{(0)}}{s^{(1)} - s^{(0)}}$$
\begin{itemize}
\item states (0) and (1) are the PS ground and first excited state in our setup
\item PCAC relation holds for both
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{The wavefunction method}
\begin{itemize}
\item construct pseudoscalar states
\begin{itemize}
\item H-like basis wavefunctions:
$\omega_{1} = e^{-r/a_0}\;,\quad\omega_{2} = r~e^{-r/a_0}\;,\quad\omega_{3} = e^{-r/(2a_0)}$
\item also include $\omega_{4} = {\rm cons.}\;,\quad\omega_{5} = -r^2~e^{-r/a_0}$
\quad with $r=|\vec{y}-\vec{x}|$
\end{itemize}
\pause
\item diagonalise boundary-to-boundary corr. func. $(F_1)_{i,j} = -\langle O(\omega_{{\rm b}i}) O'(\omega_{{\rm b}j})\rangle$
\vspace{.5cm}
\pause
\item employ eigenvectors of $(F_1)_{i,j}$ to project $f_{\rm A}(x_0)$ and $f_{\rm P}(x_0)$ onto the eigenstates
% Question: do we include all wavefunctions or just some?
% How does this interplay with the states that we achieve?
% Which is the optimal wf combination?
% \item also: where on the lattice do we define $c_{\rm A}$?
\vspace{.5cm}
\pause
\item evaluate $c_{\rm A}(x_0)$ with projected correlation functions
\item later: choice of $x_0$ and wavefunction basis is part of the improvement condition
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Ensembles}
\framesubtitle{$T=L\approx 3\,{\rm fm}$ Schrödinger-Functional ensembles, exp. Wilson-Clover fermions}
\begin{center}
\begin{tabular}{cc|c|c|c|c}
\toprule
$L/a$ & $\beta$ & $\kappa_{1}\approx\kappa_{\rm cr}$ & $\kappa_{2}$ & $\kappa_{3}\approx\kappa_{\rm sym}$&$\approx a\;{\rm [fm]}$\\
\midrule
24&3.685&0.1396980&0.1395500&0.1394400&0.120\\
32&3.80&0.1392500&---&0.1389630&0.095\\
40&3.90&0.1388562&0.1386148&0.1386030&0.080\\
48&4.00&0.1384942&0.1384880&0.1382720&0.064\\
56&4.10&0.1381410&0.1380000&0.1379450&0.055\\
96&4.37&---&---&---&0.035\\
\bottomrule
\end{tabular}
\end{center}
\begin{itemize}
\item interested in 2 LCPs: chiral and $N_{\rm f}=3$ sym. point
\item matching sym. point of \openlat~\arxivtag{2201.03874}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Improvement of the axial-vector current}
\framesubtitle{$\ca$ estimators}
\begin{tabular}{cc}
Critical point ensembles&Symmetric point ensembles\\
\includegraphics[width=\halflinewidth]{plots/plateaus_chi_0.2_0.3_0124_ee_ee_total_quad.pdf}&
\includegraphics[width=\halflinewidth]{plots/plateaus_sym_0.2_0.3_0124_ee_ee_total_quad.pdf}
\end{tabular}
% systematic errors, to capture "non-plateauness"
\end{frame}
% interpolations
\begin{frame}
\frametitle{Interpolation}
\framesubtitle{... to the symmetric and critical point}
\begin{itemize}
\item ensembles not exactly tuned
\item able to interpolate to the desired points due to 2 or 3 ensembles per $\beta$
\item determine points of interest as in \openlat~ensembles \arxivtag{2201.03874}
\item define: $$\Phi^{\rm SF}_4 = \frac{3}{2}\,8t_0\,|m_{\rm eff}|\,m_{\rm eff}
\quad \Rightarrow \quad \Phi^{\rm SF}_4\bigm\lvert_{m_{0,{\rm cr}}} = 0\,,\;\Phi^{\rm SF}_4\bigm\lvert_{m_{0,{\rm sym}}} = 1.115$$
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Improvement of the axial-vector current}
\framesubtitle{Finding the symmetric and chiral point}
\begin{tabular}{cc}
\includegraphics[width=\halflinewidth]{plots/fix_sym_b3.9.pdf}&
\includegraphics[width=\halflinewidth]{plots/fix_sym_b4.pdf}
\end{tabular}
\end{frame}
\begin{frame}
\frametitle{Improvement of the axial-vector current}
\framesubtitle{Interpolations in $c_{\rm A}$}
\begin{tabular}{cc}
\includegraphics[width=\halflinewidth]{plots/ca2sym_b3.9.pdf}&
\includegraphics[width=\halflinewidth]{plots/ca2sym_b4.pdf}
\end{tabular}
\end{frame}
\begin{frame}
\frametitle{Improvement of the axial-vector current}
\framesubtitle{Final interpolations in $g_0^2$}
\begin{tabular}{cc}
\includegraphics[width=\halflinewidth]{plots/g0sq_chi.pdf}&
\includegraphics[width=\halflinewidth]{plots/g0sq_sym.pdf}
\end{tabular}
\end{frame}
% first study for difference:
\begin{frame}
\frametitle{First scaling test of improvement}
\begin{itemize}
\item Example: Calculate $f_\pi/K$ with stabilised Wilson fermions
\item symmetric point \openlat~ensembles
\item improve with $\ca = 0$ vs $\ca(g_0^2)|_{\rm chi}$ vs $\ca(g_0^2)|_{\rm sym}$
$$f_{\rm A}^{\rm RI} = Z_{\rm A} (1+b_{\rm A} am_{\rm q}+\bar{b}_{\rm A} a\Tr[M_{\rm q}])\frac{\sqrt{2} \mathcal{A}_{\rm A_0P}}{\sqrt{\mathcal{A}_{\rm PP} m_\pi}}$$
\item renormalisation: $Z_{\rm A}$ preliminary, $b_{\rm A}$ from pert. theory, $\bar{b}_{\rm A}$ neglected
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{First study of improvement}
\framesubtitle{Results}
\includegraphics{plots/test_f_part_ZA_chi_imp.pdf}
\end{frame}
\begin{frame}
\frametitle{Outlook}
\begin{itemize}
\item finish $\zv$, $\bV$ and $\bar{b}_{\rm V}$ through SF
\item further improvement and renormalisation currently in the works:
\begin{itemize}
\item vector and tensor current improvement ($c_{\rm V}$, $c_{\rm T}$)
\item current quark mass renormalisation ($b_{\rm A}-b_{\rm P}$, $b_m$, $Z$)
\item determination of $Z_{\rm A}$, $Z_{\rm V}$, $Z_{\rm S}/Z_{\rm P}$ through $\chi$SF
\end{itemize}
\end{itemize}
\end{frame}
\end{document}