diff --git a/talk.tex b/talk.tex index 73cc374..03f2313 100644 --- a/talk.tex +++ b/talk.tex @@ -50,19 +50,15 @@ % differences at sym point? % improvement at the symmetric point % example -\begin{frame} - \frametitle{What is this all about?} - \begin{itemize} - \item working with exp. Wilson-clover fermions - \item massive $\Rightarrow$ at $N_{\rm f}=3$ symmetric point - \end{itemize} -\end{frame} \begin{frame} \frametitle{Relevance for further improvement and physics} \begin{itemize} - \item needed for improv. determination of the PCAC quark-mass - \item decay constants - \item masses of mesons (e.g. $\chi_\mathrm{c1}$ or $D_\mathrm{1}^\ast$) + \item exp. Wilson-clover fermion framework + \item massive $\Rightarrow$ at $N_{\rm f}=3$ symmetric point + \vspace{.5cm} + \item needed for improv. quark current mass + \item decay constants & matrix elements + % \item masses of mesons (e.g. $\chi_\mathrm{c1}$ or $D_\mathrm{1}^\ast$) \pause \vspace{.5cm} \item improvement and renormalisation: @@ -77,9 +73,9 @@ \begin{frame} \frametitle{Determination of $\ca$} \begin{itemize} - \item in Schrödinger functional boundary conditions - \item similar in quenched \arxivtag{hep-lat/9609035}, $N_{\rm f} = 2$ \arxivtag{hep-lat/0503003} and std. Wilson-Clover $N_{\rm f} = 3$ \arxivtag{1502.04999} - \item from PCAC mass + \item Schrödinger functional boundary conditions + \item similar to quenched \arxivtag{hep-lat/9609035}, $N_{\rm f} = 2$ \arxivtag{hep-lat/0503003} and std. Wilson-Clover $N_{\rm f} = 3$ \arxivtag{1502.04999} + \item derive from PCAC mass \end{itemize} \vspace{.5cm} $$m_{\rm PCAC} = \frac{\partial_0 f_{\rm A}}{2f_{\rm P}} + \ca \frac{\partial^2_0 f_{\rm P}}{2f_{\rm P}} = r + \ca s$$ @@ -89,7 +85,7 @@ \begin{frame} \frametitle{The wavefunction method} \begin{itemize} - \item mimic pionic sources on boundaries $\pi^{(0)}, \pi^{(1)}$ and require PCAC to hold + \item mimic pionic sources on boundaries $\pi^{(0)}, \pi^{(1)}$ and require PCAC relation to hold for both \begin{itemize} \item basis wavefunctions: $\omega_{\rm b1} = e^{-r/a_0}\;,\quad\omega_{\rm b2} = r~e^{-r/a_0}\;,\quad\omega_{\rm b3} = e^{-r/(2a_0)}$ @@ -113,7 +109,7 @@ \begin{frame} \frametitle{Ensembles} - \framesubtitle{$L\approx 3\,{\rm fm}$ Schrödinger-Functional ensembles, exp. Wilson-Clover fermions} + \framesubtitle{$T=L\approx 3\,{\rm fm}$ Schrödinger-Functional ensembles, exp. Wilson-Clover fermions} \begin{center} \begin{tabular}{cc|c|c|c|c} \toprule @@ -124,6 +120,7 @@ 40&3.90&0.1388562&0.1386148&0.1386030&0.080\\ 48&4.00&0.1384942&0.1384880&0.1382720&0.064\\ 56&4.10&0.1381410&0.1380000&0.1379450&0.055\\ + 96&4.37&---&---&---&0.035\\ \bottomrule \end{tabular} \end{center} @@ -147,7 +144,7 @@ % interpolations \begin{frame} \frametitle{Interpolation} - \framesubtitle{Hit symmetric and critical point exactly} + \framesubtitle{... to the symmetric and critical point} \begin{itemize} \item ensembles not exactly tuned \item able to interpolate to the desired points due to two or three values per $\beta$