diff --git a/plt_update.sh b/plt_update.sh index 6de0a92..5600b40 100644 --- a/plt_update.sh +++ b/plt_update.sh @@ -3,4 +3,5 @@ rm plots/* cp ../../research_env2/cA_analysis/plot_vault/overview/plateaus_{chi,sym}_0.2_0.3_0124_ee_ee_total_quad.pdf plots cp ../../research_env2/cA_analysis/plot_vault/interpolations/fix_sym_b{3.9,4}.pdf plots cp ../../research_env2/cA_analysis/plot_vault/interpolations/ca2sym_b{3.9,4}.pdf plots -cp ../../research_env2/cA_analysis/plot_vault/interpolations/g0sq_{chi,sym}.pdf plots \ No newline at end of file +cp ../../research_env2/cA_analysis/plot_vault/interpolations/g0sq_{chi,sym}.pdf plots +cp ../../research_env2/charmonium_analysis/plot_vault/decay_constants/test_f_part_imp.pdf plots \ No newline at end of file diff --git a/talk.tex b/talk.tex index c5afee4..9cc7d7f 100644 --- a/talk.tex +++ b/talk.tex @@ -83,6 +83,7 @@ $$m_{\rm PCAC}^{(0)} = m_{\rm PCAC}^{(1)}\quad\Leftrightarrow\quad\ca = - \frac{r^{(1)} - r^{(0)}}{s^{(1)} - s^{(0)}}$$ \begin{itemize} \item states (0) and (1) are the PS ground and first excited state in our setup + \item PCAC relation holds for both \end{itemize} \end{frame} @@ -107,7 +108,7 @@ % \item also: where on the lattice do we define $c_{\rm A}$? \vspace{.5cm} \pause - \item evaluate $c_{\rm A}(x_0)$ with these source terms + \item evaluate $c_{\rm A}(x_0)$ with projected correlation functions \item later: choice of $x_0$ and wavefunction basis is part of the improvement condition \end{itemize} \end{frame} @@ -119,7 +120,7 @@ \begin{center} \begin{tabular}{cc|c|c|c|c} \toprule - $L/a$ & $\beta$ & $\kappa_{1}\approx\kappa_{\rm cr}$ & $\kappa_{2}$ & $\kappa_{3}\approx\kappa_{\rm sym}$&$\approx a$\\ + $L/a$ & $\beta$ & $\kappa_{1}\approx\kappa_{\rm cr}$ & $\kappa_{2}$ & $\kappa_{3}\approx\kappa_{\rm sym}$&$\approx a\;{\rm [fm]}$\\ \midrule 24&3.685&0.1396980&0.1395500&0.1394400&0.120\\ 32&3.80&0.1392500&---&0.1389630&0.095\\ @@ -195,7 +196,7 @@ \item Example: Calculate $f_\pi/K$ with stabilised Wilson fermions \item symmetric point \openlat~ensembles \item improve with $\ca = 0$ vs $\ca(g_0^2)|_{\rm chi}$ vs $\ca(g_0^2)|_{\rm sym}$ - $$f_{\rm A}^{RI} = Z_{\rm A} (1+b_{\rm A} m_{\rm q}+\bar{b}_{\rm A} \Tr[M_{\rm q}])\frac{\sqrt{2} \mathcal{A}_{\rm A_0P}}{\sqrt{\mathcal{A}_{\rm PP} m_\pi}}$$ + $$f_{\rm A}^{\rm RI} = Z_{\rm A} (1+b_{\rm A} am_{\rm q}+\bar{b}_{\rm A} a\Tr[M_{\rm q}])\frac{\sqrt{2} \mathcal{A}_{\rm A_0P}}{\sqrt{\mathcal{A}_{\rm PP} m_\pi}}$$ \item renormalisation: $Z_{\rm A}$ preliminary, $b_{\rm A}$ from pert. theory, $\bar{b}_{\rm A}$ neglected \end{itemize} \end{frame} @@ -203,7 +204,7 @@ \begin{frame} \frametitle{First study of improvement} \framesubtitle{Results} - %\includegraphics{plots/test_f.pdf} + \includegraphics{plots/test_f_part_imp.pdf} \end{frame} \begin{frame}