pyerrors/pyerrors/obs.py
Fabian Joswig 30bfb55981
[Feat] Provide derivatives for pow (#246)
* [Feat] Provide manual derivatives for __pow__

* [Feat] Also applied changes to rpow

* [Test] Another pow test added.
2024-11-26 17:52:27 +01:00

1857 lines
75 KiB
Python

import warnings
import hashlib
import pickle
import numpy as np
import autograd.numpy as anp # Thinly-wrapped numpy
import scipy
from autograd import jacobian
import matplotlib.pyplot as plt
from scipy.stats import skew, skewtest, kurtosis, kurtosistest
import numdifftools as nd
from itertools import groupby
from .covobs import Covobs
# Improve print output of numpy.ndarrays containing Obs objects.
np.set_printoptions(formatter={'object': lambda x: str(x)})
class Obs:
"""Class for a general observable.
Instances of Obs are the basic objects of a pyerrors error analysis.
They are initialized with a list which contains arrays of samples for
different ensembles/replica and another list of same length which contains
the names of the ensembles/replica. Mathematical operations can be
performed on instances. The result is another instance of Obs. The error of
an instance can be computed with the gamma_method. Also contains additional
methods for output and visualization of the error calculation.
Attributes
----------
S_global : float
Standard value for S (default 2.0)
S_dict : dict
Dictionary for S values. If an entry for a given ensemble
exists this overwrites the standard value for that ensemble.
tau_exp_global : float
Standard value for tau_exp (default 0.0)
tau_exp_dict : dict
Dictionary for tau_exp values. If an entry for a given ensemble exists
this overwrites the standard value for that ensemble.
N_sigma_global : float
Standard value for N_sigma (default 1.0)
N_sigma_dict : dict
Dictionary for N_sigma values. If an entry for a given ensemble exists
this overwrites the standard value for that ensemble.
"""
__slots__ = ['names', 'shape', 'r_values', 'deltas', 'N', '_value', '_dvalue',
'ddvalue', 'reweighted', 'S', 'tau_exp', 'N_sigma',
'e_dvalue', 'e_ddvalue', 'e_tauint', 'e_dtauint',
'e_windowsize', 'e_rho', 'e_drho', 'e_n_tauint', 'e_n_dtauint',
'idl', 'tag', '_covobs', '__dict__']
S_global = 2.0
S_dict = {}
tau_exp_global = 0.0
tau_exp_dict = {}
N_sigma_global = 1.0
N_sigma_dict = {}
def __init__(self, samples, names, idl=None, **kwargs):
""" Initialize Obs object.
Parameters
----------
samples : list
list of numpy arrays containing the Monte Carlo samples
names : list
list of strings labeling the individual samples
idl : list, optional
list of ranges or lists on which the samples are defined
"""
if kwargs.get("means") is None and len(samples):
if len(samples) != len(names):
raise ValueError('Length of samples and names incompatible.')
if idl is not None:
if len(idl) != len(names):
raise ValueError('Length of idl incompatible with samples and names.')
name_length = len(names)
if name_length > 1:
if name_length != len(set(names)):
raise ValueError('Names are not unique.')
if not all(isinstance(x, str) for x in names):
raise TypeError('All names have to be strings.')
else:
if not isinstance(names[0], str):
raise TypeError('All names have to be strings.')
if min(len(x) for x in samples) <= 4:
raise ValueError('Samples have to have at least 5 entries.')
self.names = sorted(names)
self.shape = {}
self.r_values = {}
self.deltas = {}
self._covobs = {}
self._value = 0
self.N = 0
self.idl = {}
if idl is not None:
for name, idx in sorted(zip(names, idl)):
if isinstance(idx, range):
self.idl[name] = idx
elif isinstance(idx, (list, np.ndarray)):
dc = np.unique(np.diff(idx))
if np.any(dc < 0):
raise ValueError("Unsorted idx for idl[%s] at position %s" % (name, ' '.join(['%s' % (pos + 1) for pos in np.where(np.diff(idx) < 0)[0]])))
elif np.any(dc == 0):
raise ValueError("Duplicate entries in idx for idl[%s] at position %s" % (name, ' '.join(['%s' % (pos + 1) for pos in np.where(np.diff(idx) == 0)[0]])))
if len(dc) == 1:
self.idl[name] = range(idx[0], idx[-1] + dc[0], dc[0])
else:
self.idl[name] = list(idx)
else:
raise TypeError('incompatible type for idl[%s].' % (name))
else:
for name, sample in sorted(zip(names, samples)):
self.idl[name] = range(1, len(sample) + 1)
if kwargs.get("means") is not None:
for name, sample, mean in sorted(zip(names, samples, kwargs.get("means"))):
self.shape[name] = len(self.idl[name])
self.N += self.shape[name]
self.r_values[name] = mean
self.deltas[name] = sample
else:
for name, sample in sorted(zip(names, samples)):
self.shape[name] = len(self.idl[name])
self.N += self.shape[name]
if len(sample) != self.shape[name]:
raise ValueError('Incompatible samples and idx for %s: %d vs. %d' % (name, len(sample), self.shape[name]))
self.r_values[name] = np.mean(sample)
self.deltas[name] = sample - self.r_values[name]
self._value += self.shape[name] * self.r_values[name]
self._value /= self.N
self._dvalue = 0.0
self.ddvalue = 0.0
self.reweighted = False
self.tag = None
@property
def value(self):
return self._value
@property
def dvalue(self):
return self._dvalue
@property
def e_names(self):
return sorted(set([o.split('|')[0] for o in self.names]))
@property
def cov_names(self):
return sorted(set([o for o in self.covobs.keys()]))
@property
def mc_names(self):
return sorted(set([o.split('|')[0] for o in self.names if o not in self.cov_names]))
@property
def e_content(self):
res = {}
for e, e_name in enumerate(self.e_names):
res[e_name] = sorted(filter(lambda x: x.startswith(e_name + '|'), self.names))
if e_name in self.names:
res[e_name].append(e_name)
return res
@property
def covobs(self):
return self._covobs
def gamma_method(self, **kwargs):
"""Estimate the error and related properties of the Obs.
Parameters
----------
S : float
specifies a custom value for the parameter S (default 2.0).
If set to 0 it is assumed that the data exhibits no
autocorrelation. In this case the error estimates coincides
with the sample standard error.
tau_exp : float
positive value triggers the critical slowing down analysis
(default 0.0).
N_sigma : float
number of standard deviations from zero until the tail is
attached to the autocorrelation function (default 1).
fft : bool
determines whether the fft algorithm is used for the computation
of the autocorrelation function (default True)
"""
e_content = self.e_content
self.e_dvalue = {}
self.e_ddvalue = {}
self.e_tauint = {}
self.e_dtauint = {}
self.e_windowsize = {}
self.e_n_tauint = {}
self.e_n_dtauint = {}
e_gamma = {}
self.e_rho = {}
self.e_drho = {}
self._dvalue = 0
self.ddvalue = 0
self.S = {}
self.tau_exp = {}
self.N_sigma = {}
if kwargs.get('fft') is False:
fft = False
else:
fft = True
def _parse_kwarg(kwarg_name):
if kwarg_name in kwargs:
tmp = kwargs.get(kwarg_name)
if isinstance(tmp, (int, float)):
if tmp < 0:
raise Exception(kwarg_name + ' has to be larger or equal to 0.')
for e, e_name in enumerate(self.e_names):
getattr(self, kwarg_name)[e_name] = tmp
else:
raise TypeError(kwarg_name + ' is not in proper format.')
else:
for e, e_name in enumerate(self.e_names):
if e_name in getattr(Obs, kwarg_name + '_dict'):
getattr(self, kwarg_name)[e_name] = getattr(Obs, kwarg_name + '_dict')[e_name]
else:
getattr(self, kwarg_name)[e_name] = getattr(Obs, kwarg_name + '_global')
_parse_kwarg('S')
_parse_kwarg('tau_exp')
_parse_kwarg('N_sigma')
for e, e_name in enumerate(self.mc_names):
gapsize = _determine_gap(self, e_content, e_name)
r_length = []
for r_name in e_content[e_name]:
if isinstance(self.idl[r_name], range):
r_length.append(len(self.idl[r_name]) * self.idl[r_name].step // gapsize)
else:
r_length.append((self.idl[r_name][-1] - self.idl[r_name][0] + 1) // gapsize)
e_N = np.sum([self.shape[r_name] for r_name in e_content[e_name]])
w_max = max(r_length) // 2
e_gamma[e_name] = np.zeros(w_max)
self.e_rho[e_name] = np.zeros(w_max)
self.e_drho[e_name] = np.zeros(w_max)
for r_name in e_content[e_name]:
e_gamma[e_name] += self._calc_gamma(self.deltas[r_name], self.idl[r_name], self.shape[r_name], w_max, fft, gapsize)
gamma_div = np.zeros(w_max)
for r_name in e_content[e_name]:
gamma_div += self._calc_gamma(np.ones((self.shape[r_name])), self.idl[r_name], self.shape[r_name], w_max, fft, gapsize)
gamma_div[gamma_div < 1] = 1.0
e_gamma[e_name] /= gamma_div[:w_max]
if np.abs(e_gamma[e_name][0]) < 10 * np.finfo(float).tiny: # Prevent division by zero
self.e_tauint[e_name] = 0.5
self.e_dtauint[e_name] = 0.0
self.e_dvalue[e_name] = 0.0
self.e_ddvalue[e_name] = 0.0
self.e_windowsize[e_name] = 0
continue
self.e_rho[e_name] = e_gamma[e_name][:w_max] / e_gamma[e_name][0]
self.e_n_tauint[e_name] = np.cumsum(np.concatenate(([0.5], self.e_rho[e_name][1:])))
# Make sure no entry of tauint is smaller than 0.5
self.e_n_tauint[e_name][self.e_n_tauint[e_name] <= 0.5] = 0.5 + np.finfo(np.float64).eps
# hep-lat/0306017 eq. (42)
self.e_n_dtauint[e_name] = self.e_n_tauint[e_name] * 2 * np.sqrt(np.abs(np.arange(w_max) + 0.5 - self.e_n_tauint[e_name]) / e_N)
self.e_n_dtauint[e_name][0] = 0.0
def _compute_drho(i):
tmp = (self.e_rho[e_name][i + 1:w_max]
+ np.concatenate([self.e_rho[e_name][i - 1:None if i - (w_max - 1) // 2 <= 0 else (2 * i - (2 * w_max) // 2):-1],
self.e_rho[e_name][1:max(1, w_max - 2 * i)]])
- 2 * self.e_rho[e_name][i] * self.e_rho[e_name][1:w_max - i])
self.e_drho[e_name][i] = np.sqrt(np.sum(tmp ** 2) / e_N)
if self.tau_exp[e_name] > 0:
_compute_drho(1)
texp = self.tau_exp[e_name]
# Critical slowing down analysis
if w_max // 2 <= 1:
raise Exception("Need at least 8 samples for tau_exp error analysis")
for n in range(1, w_max // 2):
_compute_drho(n + 1)
if (self.e_rho[e_name][n] - self.N_sigma[e_name] * self.e_drho[e_name][n]) < 0 or n >= w_max // 2 - 2:
# Bias correction hep-lat/0306017 eq. (49) included
self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n + 1) / e_N) / (1 + 1 / e_N) + texp * np.abs(self.e_rho[e_name][n + 1]) # The absolute makes sure, that the tail contribution is always positive
self.e_dtauint[e_name] = np.sqrt(self.e_n_dtauint[e_name][n] ** 2 + texp ** 2 * self.e_drho[e_name][n + 1] ** 2)
# Error of tau_exp neglected so far, missing term: self.e_rho[e_name][n + 1] ** 2 * d_tau_exp ** 2
self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N)
self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n + 0.5) / e_N)
self.e_windowsize[e_name] = n
break
else:
if self.S[e_name] == 0.0:
self.e_tauint[e_name] = 0.5
self.e_dtauint[e_name] = 0.0
self.e_dvalue[e_name] = np.sqrt(e_gamma[e_name][0] / (e_N - 1))
self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt(0.5 / e_N)
self.e_windowsize[e_name] = 0
else:
# Standard automatic windowing procedure
tau = self.S[e_name] / np.log((2 * self.e_n_tauint[e_name][1:] + 1) / (2 * self.e_n_tauint[e_name][1:] - 1))
g_w = np.exp(- np.arange(1, len(tau) + 1) / tau) - tau / np.sqrt(np.arange(1, len(tau) + 1) * e_N)
for n in range(1, w_max):
if g_w[n - 1] < 0 or n >= w_max - 1:
_compute_drho(n)
self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n + 1) / e_N) / (1 + 1 / e_N) # Bias correction hep-lat/0306017 eq. (49)
self.e_dtauint[e_name] = self.e_n_dtauint[e_name][n]
self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N)
self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n + 0.5) / e_N)
self.e_windowsize[e_name] = n
break
self._dvalue += self.e_dvalue[e_name] ** 2
self.ddvalue += (self.e_dvalue[e_name] * self.e_ddvalue[e_name]) ** 2
for e_name in self.cov_names:
self.e_dvalue[e_name] = np.sqrt(self.covobs[e_name].errsq())
self.e_ddvalue[e_name] = 0
self._dvalue += self.e_dvalue[e_name]**2
self._dvalue = np.sqrt(self._dvalue)
if self._dvalue == 0.0:
self.ddvalue = 0.0
else:
self.ddvalue = np.sqrt(self.ddvalue) / self._dvalue
return
gm = gamma_method
def _calc_gamma(self, deltas, idx, shape, w_max, fft, gapsize):
"""Calculate Gamma_{AA} from the deltas, which are defined on idx.
idx is assumed to be a contiguous range (possibly with a stepsize != 1)
Parameters
----------
deltas : list
List of fluctuations
idx : list
List or range of configurations on which the deltas are defined.
shape : int
Number of configurations in idx.
w_max : int
Upper bound for the summation window.
fft : bool
determines whether the fft algorithm is used for the computation
of the autocorrelation function.
gapsize : int
The target distance between two configurations. If longer distances
are found in idx, the data is expanded.
"""
gamma = np.zeros(w_max)
deltas = _expand_deltas(deltas, idx, shape, gapsize)
new_shape = len(deltas)
if fft:
max_gamma = min(new_shape, w_max)
# The padding for the fft has to be even
padding = new_shape + max_gamma + (new_shape + max_gamma) % 2
gamma[:max_gamma] += np.fft.irfft(np.abs(np.fft.rfft(deltas, padding)) ** 2)[:max_gamma]
else:
for n in range(w_max):
if new_shape - n >= 0:
gamma[n] += deltas[0:new_shape - n].dot(deltas[n:new_shape])
return gamma
def details(self, ens_content=True):
"""Output detailed properties of the Obs.
Parameters
----------
ens_content : bool
print details about the ensembles and replica if true.
"""
if self.tag is not None:
print("Description:", self.tag)
if not hasattr(self, 'e_dvalue'):
print('Result\t %3.8e' % (self.value))
else:
if self.value == 0.0:
percentage = np.nan
else:
percentage = np.abs(self._dvalue / self.value) * 100
print('Result\t %3.8e +/- %3.8e +/- %3.8e (%3.3f%%)' % (self.value, self._dvalue, self.ddvalue, percentage))
if len(self.e_names) > 1:
print(' Ensemble errors:')
e_content = self.e_content
for e_name in self.mc_names:
gap = _determine_gap(self, e_content, e_name)
if len(self.e_names) > 1:
print('', e_name, '\t %3.6e +/- %3.6e' % (self.e_dvalue[e_name], self.e_ddvalue[e_name]))
tau_string = " \N{GREEK SMALL LETTER TAU}_int\t " + _format_uncertainty(self.e_tauint[e_name], self.e_dtauint[e_name])
tau_string += f" in units of {gap} config"
if gap > 1:
tau_string += "s"
if self.tau_exp[e_name] > 0:
tau_string = f"{tau_string: <45}" + '\t(\N{GREEK SMALL LETTER TAU}_exp=%3.2f, N_\N{GREEK SMALL LETTER SIGMA}=%1.0i)' % (self.tau_exp[e_name], self.N_sigma[e_name])
else:
tau_string = f"{tau_string: <45}" + '\t(S=%3.2f)' % (self.S[e_name])
print(tau_string)
for e_name in self.cov_names:
print('', e_name, '\t %3.8e' % (self.e_dvalue[e_name]))
if ens_content is True:
if len(self.e_names) == 1:
print(self.N, 'samples in', len(self.e_names), 'ensemble:')
else:
print(self.N, 'samples in', len(self.e_names), 'ensembles:')
my_string_list = []
for key, value in sorted(self.e_content.items()):
if key not in self.covobs:
my_string = ' ' + "\u00B7 Ensemble '" + key + "' "
if len(value) == 1:
my_string += f': {self.shape[value[0]]} configurations'
if isinstance(self.idl[value[0]], range):
my_string += f' (from {self.idl[value[0]].start} to {self.idl[value[0]][-1]}' + int(self.idl[value[0]].step != 1) * f' in steps of {self.idl[value[0]].step}' + ')'
else:
my_string += f' (irregular range from {self.idl[value[0]][0]} to {self.idl[value[0]][-1]})'
else:
sublist = []
for v in value:
my_substring = ' ' + "\u00B7 Replicum '" + v[len(key) + 1:] + "' "
my_substring += f': {self.shape[v]} configurations'
if isinstance(self.idl[v], range):
my_substring += f' (from {self.idl[v].start} to {self.idl[v][-1]}' + int(self.idl[v].step != 1) * f' in steps of {self.idl[v].step}' + ')'
else:
my_substring += f' (irregular range from {self.idl[v][0]} to {self.idl[v][-1]})'
sublist.append(my_substring)
my_string += '\n' + '\n'.join(sublist)
else:
my_string = ' ' + "\u00B7 Covobs '" + key + "' "
my_string_list.append(my_string)
print('\n'.join(my_string_list))
def reweight(self, weight):
"""Reweight the obs with given rewighting factors.
Parameters
----------
weight : Obs
Reweighting factor. An Observable that has to be defined on a superset of the
configurations in obs[i].idl for all i.
all_configs : bool
if True, the reweighted observables are normalized by the average of
the reweighting factor on all configurations in weight.idl and not
on the configurations in obs[i].idl. Default False.
"""
return reweight(weight, [self])[0]
def is_zero_within_error(self, sigma=1):
"""Checks whether the observable is zero within 'sigma' standard errors.
Parameters
----------
sigma : int
Number of standard errors used for the check.
Works only properly when the gamma method was run.
"""
return self.is_zero() or np.abs(self.value) <= sigma * self._dvalue
def is_zero(self, atol=1e-10):
"""Checks whether the observable is zero within a given tolerance.
Parameters
----------
atol : float
Absolute tolerance (for details see numpy documentation).
"""
return np.isclose(0.0, self.value, 1e-14, atol) and all(np.allclose(0.0, delta, 1e-14, atol) for delta in self.deltas.values()) and all(np.allclose(0.0, delta.errsq(), 1e-14, atol) for delta in self.covobs.values())
def plot_tauint(self, save=None):
"""Plot integrated autocorrelation time for each ensemble.
Parameters
----------
save : str
saves the figure to a file named 'save' if.
"""
if not hasattr(self, 'e_dvalue'):
raise Exception('Run the gamma method first.')
for e, e_name in enumerate(self.mc_names):
fig = plt.figure()
plt.xlabel(r'$W$')
plt.ylabel(r'$\tau_\mathrm{int}$')
length = int(len(self.e_n_tauint[e_name]))
if self.tau_exp[e_name] > 0:
base = self.e_n_tauint[e_name][self.e_windowsize[e_name]]
x_help = np.arange(2 * self.tau_exp[e_name])
y_help = (x_help + 1) * np.abs(self.e_rho[e_name][self.e_windowsize[e_name] + 1]) * (1 - x_help / (2 * (2 * self.tau_exp[e_name] - 1))) + base
x_arr = np.arange(self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name])
plt.plot(x_arr, y_help, 'C' + str(e), linewidth=1, ls='--', marker=',')
plt.errorbar([self.e_windowsize[e_name] + 2 * self.tau_exp[e_name]], [self.e_tauint[e_name]],
yerr=[self.e_dtauint[e_name]], fmt='C' + str(e), linewidth=1, capsize=2, marker='o', mfc=plt.rcParams['axes.facecolor'])
xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5
label = e_name + r', $\tau_\mathrm{exp}$=' + str(np.around(self.tau_exp[e_name], decimals=2))
else:
label = e_name + ', S=' + str(np.around(self.S[e_name], decimals=2))
xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5)
plt.errorbar(np.arange(length)[:int(xmax) + 1], self.e_n_tauint[e_name][:int(xmax) + 1], yerr=self.e_n_dtauint[e_name][:int(xmax) + 1], linewidth=1, capsize=2, label=label)
plt.axvline(x=self.e_windowsize[e_name], color='C' + str(e), alpha=0.5, marker=',', ls='--')
plt.legend()
plt.xlim(-0.5, xmax)
ylim = plt.ylim()
plt.ylim(bottom=0.0, top=max(1.0, ylim[1]))
plt.draw()
if save:
fig.savefig(save + "_" + str(e))
def plot_rho(self, save=None):
"""Plot normalized autocorrelation function time for each ensemble.
Parameters
----------
save : str
saves the figure to a file named 'save' if.
"""
if not hasattr(self, 'e_dvalue'):
raise Exception('Run the gamma method first.')
for e, e_name in enumerate(self.mc_names):
fig = plt.figure()
plt.xlabel('W')
plt.ylabel('rho')
length = int(len(self.e_drho[e_name]))
plt.errorbar(np.arange(length), self.e_rho[e_name][:length], yerr=self.e_drho[e_name][:], linewidth=1, capsize=2)
plt.axvline(x=self.e_windowsize[e_name], color='r', alpha=0.25, ls='--', marker=',')
if self.tau_exp[e_name] > 0:
plt.plot([self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]],
[self.e_rho[e_name][self.e_windowsize[e_name] + 1], 0], 'k-', lw=1)
xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5
plt.title('Rho ' + e_name + r', tau\_exp=' + str(np.around(self.tau_exp[e_name], decimals=2)))
else:
xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5)
plt.title('Rho ' + e_name + ', S=' + str(np.around(self.S[e_name], decimals=2)))
plt.plot([-0.5, xmax], [0, 0], 'k--', lw=1)
plt.xlim(-0.5, xmax)
plt.draw()
if save:
fig.savefig(save + "_" + str(e))
def plot_rep_dist(self):
"""Plot replica distribution for each ensemble with more than one replicum."""
if not hasattr(self, 'e_dvalue'):
raise Exception('Run the gamma method first.')
for e, e_name in enumerate(self.mc_names):
if len(self.e_content[e_name]) == 1:
print('No replica distribution for a single replicum (', e_name, ')')
continue
r_length = []
sub_r_mean = 0
for r, r_name in enumerate(self.e_content[e_name]):
r_length.append(len(self.deltas[r_name]))
sub_r_mean += self.shape[r_name] * self.r_values[r_name]
e_N = np.sum(r_length)
sub_r_mean /= e_N
arr = np.zeros(len(self.e_content[e_name]))
for r, r_name in enumerate(self.e_content[e_name]):
arr[r] = (self.r_values[r_name] - sub_r_mean) / (self.e_dvalue[e_name] * np.sqrt(e_N / self.shape[r_name] - 1))
plt.hist(arr, rwidth=0.8, bins=len(self.e_content[e_name]))
plt.title('Replica distribution' + e_name + ' (mean=0, var=1)')
plt.draw()
def plot_history(self, expand=True):
"""Plot derived Monte Carlo history for each ensemble
Parameters
----------
expand : bool
show expanded history for irregular Monte Carlo chains (default: True).
"""
for e, e_name in enumerate(self.mc_names):
plt.figure()
r_length = []
tmp = []
tmp_expanded = []
for r, r_name in enumerate(self.e_content[e_name]):
tmp.append(self.deltas[r_name] + self.r_values[r_name])
if expand:
tmp_expanded.append(_expand_deltas(self.deltas[r_name], list(self.idl[r_name]), self.shape[r_name], 1) + self.r_values[r_name])
r_length.append(len(tmp_expanded[-1]))
else:
r_length.append(len(tmp[-1]))
e_N = np.sum(r_length)
x = np.arange(e_N)
y_test = np.concatenate(tmp, axis=0)
if expand:
y = np.concatenate(tmp_expanded, axis=0)
else:
y = y_test
plt.errorbar(x, y, fmt='.', markersize=3)
plt.xlim(-0.5, e_N - 0.5)
plt.title(e_name + f'\nskew: {skew(y_test):.3f} (p={skewtest(y_test).pvalue:.3f}), kurtosis: {kurtosis(y_test):.3f} (p={kurtosistest(y_test).pvalue:.3f})')
plt.draw()
def plot_piechart(self, save=None):
"""Plot piechart which shows the fractional contribution of each
ensemble to the error and returns a dictionary containing the fractions.
Parameters
----------
save : str
saves the figure to a file named 'save' if.
"""
if not hasattr(self, 'e_dvalue'):
raise Exception('Run the gamma method first.')
if np.isclose(0.0, self._dvalue, atol=1e-15):
raise Exception('Error is 0.0')
labels = self.e_names
sizes = [self.e_dvalue[name] ** 2 for name in labels] / self._dvalue ** 2
fig1, ax1 = plt.subplots()
ax1.pie(sizes, labels=labels, startangle=90, normalize=True)
ax1.axis('equal')
plt.draw()
if save:
fig1.savefig(save)
return dict(zip(labels, sizes))
def dump(self, filename, datatype="json.gz", description="", **kwargs):
"""Dump the Obs to a file 'name' of chosen format.
Parameters
----------
filename : str
name of the file to be saved.
datatype : str
Format of the exported file. Supported formats include
"json.gz" and "pickle"
description : str
Description for output file, only relevant for json.gz format.
path : str
specifies a custom path for the file (default '.')
"""
if 'path' in kwargs:
file_name = kwargs.get('path') + '/' + filename
else:
file_name = filename
if datatype == "json.gz":
from .input.json import dump_to_json
dump_to_json([self], file_name, description=description)
elif datatype == "pickle":
with open(file_name + '.p', 'wb') as fb:
pickle.dump(self, fb)
else:
raise Exception("Unknown datatype " + str(datatype))
def export_jackknife(self):
"""Export jackknife samples from the Obs
Returns
-------
numpy.ndarray
Returns a numpy array of length N + 1 where N is the number of samples
for the given ensemble and replicum. The zeroth entry of the array contains
the mean value of the Obs, entries 1 to N contain the N jackknife samples
derived from the Obs. The current implementation only works for observables
defined on exactly one ensemble and replicum. The derived jackknife samples
should agree with samples from a full jackknife analysis up to O(1/N).
"""
if len(self.names) != 1:
raise Exception("'export_jackknife' is only implemented for Obs defined on one ensemble and replicum.")
name = self.names[0]
full_data = self.deltas[name] + self.r_values[name]
n = full_data.size
mean = self.value
tmp_jacks = np.zeros(n + 1)
tmp_jacks[0] = mean
tmp_jacks[1:] = (n * mean - full_data) / (n - 1)
return tmp_jacks
def export_bootstrap(self, samples=500, random_numbers=None, save_rng=None):
"""Export bootstrap samples from the Obs
Parameters
----------
samples : int
Number of bootstrap samples to generate.
random_numbers : np.ndarray
Array of shape (samples, length) containing the random numbers to generate the bootstrap samples.
If not provided the bootstrap samples are generated bashed on the md5 hash of the enesmble name.
save_rng : str
Save the random numbers to a file if a path is specified.
Returns
-------
numpy.ndarray
Returns a numpy array of length N + 1 where N is the number of samples
for the given ensemble and replicum. The zeroth entry of the array contains
the mean value of the Obs, entries 1 to N contain the N import_bootstrap samples
derived from the Obs. The current implementation only works for observables
defined on exactly one ensemble and replicum. The derived bootstrap samples
should agree with samples from a full bootstrap analysis up to O(1/N).
"""
if len(self.names) != 1:
raise Exception("'export_boostrap' is only implemented for Obs defined on one ensemble and replicum.")
name = self.names[0]
length = self.N
if random_numbers is None:
seed = int(hashlib.md5(name.encode()).hexdigest(), 16) & 0xFFFFFFFF
rng = np.random.default_rng(seed)
random_numbers = rng.integers(0, length, size=(samples, length))
if save_rng is not None:
np.savetxt(save_rng, random_numbers, fmt='%i')
proj = np.vstack([np.bincount(o, minlength=length) for o in random_numbers]) / length
ret = np.zeros(samples + 1)
ret[0] = self.value
ret[1:] = proj @ (self.deltas[name] + self.r_values[name])
return ret
def __float__(self):
return float(self.value)
def __repr__(self):
return 'Obs[' + str(self) + ']'
def __str__(self):
return _format_uncertainty(self.value, self._dvalue)
def __format__(self, format_type):
if format_type == "":
significance = 2
else:
significance = int(float(format_type.replace("+", "").replace("-", "")))
my_str = _format_uncertainty(self.value, self._dvalue,
significance=significance)
for char in ["+", " "]:
if format_type.startswith(char):
if my_str[0] != "-":
my_str = char + my_str
return my_str
def __hash__(self):
hash_tuple = (np.array([self.value]).astype(np.float32).data.tobytes(),)
hash_tuple += tuple([o.astype(np.float32).data.tobytes() for o in self.deltas.values()])
hash_tuple += tuple([np.array([o.errsq()]).astype(np.float32).data.tobytes() for o in self.covobs.values()])
hash_tuple += tuple([o.encode() for o in self.names])
m = hashlib.md5()
[m.update(o) for o in hash_tuple]
return int(m.hexdigest(), 16) & 0xFFFFFFFF
# Overload comparisons
def __lt__(self, other):
return self.value < other
def __le__(self, other):
return self.value <= other
def __gt__(self, other):
return self.value > other
def __ge__(self, other):
return self.value >= other
def __eq__(self, other):
if other is None:
return False
return (self - other).is_zero()
# Overload math operations
def __add__(self, y):
if isinstance(y, Obs):
return derived_observable(lambda x, **kwargs: x[0] + x[1], [self, y], man_grad=[1, 1])
else:
if isinstance(y, np.ndarray):
return np.array([self + o for o in y])
elif isinstance(y, complex):
return CObs(self, 0) + y
elif y.__class__.__name__ in ['Corr', 'CObs']:
return NotImplemented
else:
return derived_observable(lambda x, **kwargs: x[0] + y, [self], man_grad=[1])
def __radd__(self, y):
return self + y
def __mul__(self, y):
if isinstance(y, Obs):
return derived_observable(lambda x, **kwargs: x[0] * x[1], [self, y], man_grad=[y.value, self.value])
else:
if isinstance(y, np.ndarray):
return np.array([self * o for o in y])
elif isinstance(y, complex):
return CObs(self * y.real, self * y.imag)
elif y.__class__.__name__ in ['Corr', 'CObs']:
return NotImplemented
else:
return derived_observable(lambda x, **kwargs: x[0] * y, [self], man_grad=[y])
def __rmul__(self, y):
return self * y
def __sub__(self, y):
if isinstance(y, Obs):
return derived_observable(lambda x, **kwargs: x[0] - x[1], [self, y], man_grad=[1, -1])
else:
if isinstance(y, np.ndarray):
return np.array([self - o for o in y])
elif y.__class__.__name__ in ['Corr', 'CObs']:
return NotImplemented
else:
return derived_observable(lambda x, **kwargs: x[0] - y, [self], man_grad=[1])
def __rsub__(self, y):
return -1 * (self - y)
def __pos__(self):
return self
def __neg__(self):
return -1 * self
def __truediv__(self, y):
if isinstance(y, Obs):
return derived_observable(lambda x, **kwargs: x[0] / x[1], [self, y], man_grad=[1 / y.value, - self.value / y.value ** 2])
else:
if isinstance(y, np.ndarray):
return np.array([self / o for o in y])
elif y.__class__.__name__ in ['Corr', 'CObs']:
return NotImplemented
else:
return derived_observable(lambda x, **kwargs: x[0] / y, [self], man_grad=[1 / y])
def __rtruediv__(self, y):
if isinstance(y, Obs):
return derived_observable(lambda x, **kwargs: x[0] / x[1], [y, self], man_grad=[1 / self.value, - y.value / self.value ** 2])
else:
if isinstance(y, np.ndarray):
return np.array([o / self for o in y])
elif y.__class__.__name__ in ['Corr', 'CObs']:
return NotImplemented
else:
return derived_observable(lambda x, **kwargs: y / x[0], [self], man_grad=[-y / self.value ** 2])
def __pow__(self, y):
if isinstance(y, Obs):
return derived_observable(lambda x, **kwargs: x[0] ** x[1], [self, y], man_grad=[y.value * self.value ** (y.value - 1), self.value ** y.value * np.log(self.value)])
else:
return derived_observable(lambda x, **kwargs: x[0] ** y, [self], man_grad=[y * self.value ** (y - 1)])
def __rpow__(self, y):
return derived_observable(lambda x, **kwargs: y ** x[0], [self], man_grad=[y ** self.value * np.log(y)])
def __abs__(self):
return derived_observable(lambda x: anp.abs(x[0]), [self])
# Overload numpy functions
def sqrt(self):
return derived_observable(lambda x, **kwargs: np.sqrt(x[0]), [self], man_grad=[1 / 2 / np.sqrt(self.value)])
def log(self):
return derived_observable(lambda x, **kwargs: np.log(x[0]), [self], man_grad=[1 / self.value])
def exp(self):
return derived_observable(lambda x, **kwargs: np.exp(x[0]), [self], man_grad=[np.exp(self.value)])
def sin(self):
return derived_observable(lambda x, **kwargs: np.sin(x[0]), [self], man_grad=[np.cos(self.value)])
def cos(self):
return derived_observable(lambda x, **kwargs: np.cos(x[0]), [self], man_grad=[-np.sin(self.value)])
def tan(self):
return derived_observable(lambda x, **kwargs: np.tan(x[0]), [self], man_grad=[1 / np.cos(self.value) ** 2])
def arcsin(self):
return derived_observable(lambda x: anp.arcsin(x[0]), [self])
def arccos(self):
return derived_observable(lambda x: anp.arccos(x[0]), [self])
def arctan(self):
return derived_observable(lambda x: anp.arctan(x[0]), [self])
def sinh(self):
return derived_observable(lambda x, **kwargs: np.sinh(x[0]), [self], man_grad=[np.cosh(self.value)])
def cosh(self):
return derived_observable(lambda x, **kwargs: np.cosh(x[0]), [self], man_grad=[np.sinh(self.value)])
def tanh(self):
return derived_observable(lambda x, **kwargs: np.tanh(x[0]), [self], man_grad=[1 / np.cosh(self.value) ** 2])
def arcsinh(self):
return derived_observable(lambda x: anp.arcsinh(x[0]), [self])
def arccosh(self):
return derived_observable(lambda x: anp.arccosh(x[0]), [self])
def arctanh(self):
return derived_observable(lambda x: anp.arctanh(x[0]), [self])
class CObs:
"""Class for a complex valued observable."""
__slots__ = ['_real', '_imag', 'tag']
def __init__(self, real, imag=0.0):
self._real = real
self._imag = imag
self.tag = None
@property
def real(self):
return self._real
@property
def imag(self):
return self._imag
def gamma_method(self, **kwargs):
"""Executes the gamma_method for the real and the imaginary part."""
if isinstance(self.real, Obs):
self.real.gamma_method(**kwargs)
if isinstance(self.imag, Obs):
self.imag.gamma_method(**kwargs)
def is_zero(self):
"""Checks whether both real and imaginary part are zero within machine precision."""
return self.real == 0.0 and self.imag == 0.0
def conjugate(self):
return CObs(self.real, -self.imag)
def __add__(self, other):
if isinstance(other, np.ndarray):
return other + self
elif hasattr(other, 'real') and hasattr(other, 'imag'):
return CObs(self.real + other.real,
self.imag + other.imag)
else:
return CObs(self.real + other, self.imag)
def __radd__(self, y):
return self + y
def __sub__(self, other):
if isinstance(other, np.ndarray):
return -1 * (other - self)
elif hasattr(other, 'real') and hasattr(other, 'imag'):
return CObs(self.real - other.real, self.imag - other.imag)
else:
return CObs(self.real - other, self.imag)
def __rsub__(self, other):
return -1 * (self - other)
def __mul__(self, other):
if isinstance(other, np.ndarray):
return other * self
elif hasattr(other, 'real') and hasattr(other, 'imag'):
if all(isinstance(i, Obs) for i in [self.real, self.imag, other.real, other.imag]):
return CObs(derived_observable(lambda x, **kwargs: x[0] * x[1] - x[2] * x[3],
[self.real, other.real, self.imag, other.imag],
man_grad=[other.real.value, self.real.value, -other.imag.value, -self.imag.value]),
derived_observable(lambda x, **kwargs: x[2] * x[1] + x[0] * x[3],
[self.real, other.real, self.imag, other.imag],
man_grad=[other.imag.value, self.imag.value, other.real.value, self.real.value]))
elif getattr(other, 'imag', 0) != 0:
return CObs(self.real * other.real - self.imag * other.imag,
self.imag * other.real + self.real * other.imag)
else:
return CObs(self.real * other.real, self.imag * other.real)
else:
return CObs(self.real * other, self.imag * other)
def __rmul__(self, other):
return self * other
def __truediv__(self, other):
if isinstance(other, np.ndarray):
return 1 / (other / self)
elif hasattr(other, 'real') and hasattr(other, 'imag'):
r = other.real ** 2 + other.imag ** 2
return CObs((self.real * other.real + self.imag * other.imag) / r, (self.imag * other.real - self.real * other.imag) / r)
else:
return CObs(self.real / other, self.imag / other)
def __rtruediv__(self, other):
r = self.real ** 2 + self.imag ** 2
if hasattr(other, 'real') and hasattr(other, 'imag'):
return CObs((self.real * other.real + self.imag * other.imag) / r, (self.real * other.imag - self.imag * other.real) / r)
else:
return CObs(self.real * other / r, -self.imag * other / r)
def __abs__(self):
return np.sqrt(self.real**2 + self.imag**2)
def __pos__(self):
return self
def __neg__(self):
return -1 * self
def __eq__(self, other):
return self.real == other.real and self.imag == other.imag
def __str__(self):
return '(' + str(self.real) + int(self.imag >= 0.0) * '+' + str(self.imag) + 'j)'
def __repr__(self):
return 'CObs[' + str(self) + ']'
def __format__(self, format_type):
if format_type == "":
significance = 2
format_type = "2"
else:
significance = int(float(format_type.replace("+", "").replace("-", "")))
return f"({self.real:{format_type}}{self.imag:+{significance}}j)"
def gamma_method(x, **kwargs):
"""Vectorized version of the gamma_method applicable to lists or arrays of Obs.
See docstring of pe.Obs.gamma_method for details.
"""
return np.vectorize(lambda o: o.gm(**kwargs))(x)
gm = gamma_method
def _format_uncertainty(value, dvalue, significance=2):
"""Creates a string of a value and its error in paranthesis notation, e.g., 13.02(45)"""
if dvalue == 0.0 or (not np.isfinite(dvalue)):
return str(value)
if not isinstance(significance, int):
raise TypeError("significance needs to be an integer.")
if significance < 1:
raise ValueError("significance needs to be larger than zero.")
fexp = np.floor(np.log10(dvalue))
if fexp < 0.0:
return '{:{form}}({:1.0f})'.format(value, dvalue * 10 ** (-fexp + significance - 1), form='.' + str(-int(fexp) + significance - 1) + 'f')
elif fexp == 0.0:
return f"{value:.{significance - 1}f}({dvalue:1.{significance - 1}f})"
else:
return f"{value:.{max(0, int(significance - fexp - 1))}f}({dvalue:2.{max(0, int(significance - fexp - 1))}f})"
def _expand_deltas(deltas, idx, shape, gapsize):
"""Expand deltas defined on idx to a regular range with spacing gapsize between two
configurations and where holes are filled by 0.
If idx is of type range, the deltas are not changed if the idx.step == gapsize.
Parameters
----------
deltas : list
List of fluctuations
idx : list
List or range of configs on which the deltas are defined, has to be sorted in ascending order.
shape : int
Number of configs in idx.
gapsize : int
The target distance between two configurations. If longer distances
are found in idx, the data is expanded.
"""
if isinstance(idx, range):
if (idx.step == gapsize):
return deltas
ret = np.zeros((idx[-1] - idx[0] + gapsize) // gapsize)
for i in range(shape):
ret[(idx[i] - idx[0]) // gapsize] = deltas[i]
return ret
def _merge_idx(idl):
"""Returns the union of all lists in idl as range or sorted list
Parameters
----------
idl : list
List of lists or ranges.
"""
if _check_lists_equal(idl):
return idl[0]
idunion = sorted(set().union(*idl))
# Check whether idunion can be expressed as range
idrange = range(idunion[0], idunion[-1] + 1, idunion[1] - idunion[0])
idtest = [list(idrange), idunion]
if _check_lists_equal(idtest):
return idrange
return idunion
def _intersection_idx(idl):
"""Returns the intersection of all lists in idl as range or sorted list
Parameters
----------
idl : list
List of lists or ranges.
"""
if _check_lists_equal(idl):
return idl[0]
idinter = sorted(set.intersection(*[set(o) for o in idl]))
# Check whether idinter can be expressed as range
try:
idrange = range(idinter[0], idinter[-1] + 1, idinter[1] - idinter[0])
idtest = [list(idrange), idinter]
if _check_lists_equal(idtest):
return idrange
except IndexError:
pass
return idinter
def _expand_deltas_for_merge(deltas, idx, shape, new_idx, scalefactor):
"""Expand deltas defined on idx to the list of configs that is defined by new_idx.
New, empty entries are filled by 0. If idx and new_idx are of type range, the smallest
common divisor of the step sizes is used as new step size.
Parameters
----------
deltas : list
List of fluctuations
idx : list
List or range of configs on which the deltas are defined.
Has to be a subset of new_idx and has to be sorted in ascending order.
shape : list
Number of configs in idx.
new_idx : list
List of configs that defines the new range, has to be sorted in ascending order.
scalefactor : float
An additional scaling factor that can be applied to scale the fluctuations,
e.g., when Obs with differing numbers of replica are merged.
"""
if type(idx) is range and type(new_idx) is range:
if idx == new_idx:
if scalefactor == 1:
return deltas
else:
return deltas * scalefactor
ret = np.zeros(new_idx[-1] - new_idx[0] + 1)
for i in range(shape):
ret[idx[i] - new_idx[0]] = deltas[i]
return np.array([ret[new_idx[i] - new_idx[0]] for i in range(len(new_idx))]) * len(new_idx) / len(idx) * scalefactor
def derived_observable(func, data, array_mode=False, **kwargs):
"""Construct a derived Obs according to func(data, **kwargs) using automatic differentiation.
Parameters
----------
func : object
arbitrary function of the form func(data, **kwargs). For the
automatic differentiation to work, all numpy functions have to have
the autograd wrapper (use 'import autograd.numpy as anp').
data : list
list of Obs, e.g. [obs1, obs2, obs3].
num_grad : bool
if True, numerical derivatives are used instead of autograd
(default False). To control the numerical differentiation the
kwargs of numdifftools.step_generators.MaxStepGenerator
can be used.
man_grad : list
manually supply a list or an array which contains the jacobian
of func. Use cautiously, supplying the wrong derivative will
not be intercepted.
Notes
-----
For simple mathematical operations it can be practical to use anonymous
functions. For the ratio of two observables one can e.g. use
new_obs = derived_observable(lambda x: x[0] / x[1], [obs1, obs2])
"""
data = np.asarray(data)
raveled_data = data.ravel()
# Workaround for matrix operations containing non Obs data
if not all(isinstance(x, Obs) for x in raveled_data):
for i in range(len(raveled_data)):
if isinstance(raveled_data[i], (int, float)):
raveled_data[i] = cov_Obs(raveled_data[i], 0.0, "###dummy_covobs###")
allcov = {}
for o in raveled_data:
for name in o.cov_names:
if name in allcov:
if not np.allclose(allcov[name], o.covobs[name].cov):
raise Exception('Inconsistent covariance matrices for %s!' % (name))
else:
allcov[name] = o.covobs[name].cov
n_obs = len(raveled_data)
new_names = sorted(set([y for x in [o.names for o in raveled_data] for y in x]))
new_cov_names = sorted(set([y for x in [o.cov_names for o in raveled_data] for y in x]))
new_sample_names = sorted(set(new_names) - set(new_cov_names))
reweighted = len(list(filter(lambda o: o.reweighted is True, raveled_data))) > 0
if data.ndim == 1:
values = np.array([o.value for o in data])
else:
values = np.vectorize(lambda x: x.value)(data)
new_values = func(values, **kwargs)
multi = int(isinstance(new_values, np.ndarray))
new_r_values = {}
new_idl_d = {}
for name in new_sample_names:
idl = []
tmp_values = np.zeros(n_obs)
for i, item in enumerate(raveled_data):
tmp_values[i] = item.r_values.get(name, item.value)
tmp_idl = item.idl.get(name)
if tmp_idl is not None:
idl.append(tmp_idl)
if multi > 0:
tmp_values = np.array(tmp_values).reshape(data.shape)
new_r_values[name] = func(tmp_values, **kwargs)
new_idl_d[name] = _merge_idx(idl)
def _compute_scalefactor_missing_rep(obs):
"""
Computes the scale factor that is to be multiplied with the deltas
in the case where Obs with different subsets of replica are merged.
Returns a dictionary with the scale factor for each Monte Carlo name.
Parameters
----------
obs : Obs
The observable corresponding to the deltas that are to be scaled
"""
scalef_d = {}
for mc_name in obs.mc_names:
mc_idl_d = [name for name in obs.idl if name.startswith(mc_name + '|')]
new_mc_idl_d = [name for name in new_idl_d if name.startswith(mc_name + '|')]
if len(mc_idl_d) > 0 and len(mc_idl_d) < len(new_mc_idl_d):
scalef_d[mc_name] = sum([len(new_idl_d[name]) for name in new_mc_idl_d]) / sum([len(new_idl_d[name]) for name in mc_idl_d])
return scalef_d
if 'man_grad' in kwargs:
deriv = np.asarray(kwargs.get('man_grad'))
if new_values.shape + data.shape != deriv.shape:
raise Exception('Manual derivative does not have correct shape.')
elif kwargs.get('num_grad') is True:
if multi > 0:
raise Exception('Multi mode currently not supported for numerical derivative')
options = {
'base_step': 0.1,
'step_ratio': 2.5}
for key in options.keys():
kwarg = kwargs.get(key)
if kwarg is not None:
options[key] = kwarg
tmp_df = nd.Gradient(func, order=4, **{k: v for k, v in options.items() if v is not None})(values, **kwargs)
if tmp_df.size == 1:
deriv = np.array([tmp_df.real])
else:
deriv = tmp_df.real
else:
deriv = jacobian(func)(values, **kwargs)
final_result = np.zeros(new_values.shape, dtype=object)
if array_mode is True:
class _Zero_grad():
def __init__(self, N):
self.grad = np.zeros((N, 1))
new_covobs_lengths = dict(set([y for x in [[(n, o.covobs[n].N) for n in o.cov_names] for o in raveled_data] for y in x]))
d_extracted = {}
g_extracted = {}
for name in new_sample_names:
d_extracted[name] = []
ens_length = len(new_idl_d[name])
for i_dat, dat in enumerate(data):
d_extracted[name].append(np.array([_expand_deltas_for_merge(o.deltas.get(name, np.zeros(ens_length)), o.idl.get(name, new_idl_d[name]), o.shape.get(name, ens_length), new_idl_d[name], _compute_scalefactor_missing_rep(o).get(name.split('|')[0], 1)) for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (ens_length, )))
for name in new_cov_names:
g_extracted[name] = []
zero_grad = _Zero_grad(new_covobs_lengths[name])
for i_dat, dat in enumerate(data):
g_extracted[name].append(np.array([o.covobs.get(name, zero_grad).grad for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (new_covobs_lengths[name], 1)))
for i_val, new_val in np.ndenumerate(new_values):
new_deltas = {}
new_grad = {}
if array_mode is True:
for name in new_sample_names:
ens_length = d_extracted[name][0].shape[-1]
new_deltas[name] = np.zeros(ens_length)
for i_dat, dat in enumerate(d_extracted[name]):
new_deltas[name] += np.tensordot(deriv[i_val + (i_dat, )], dat)
for name in new_cov_names:
new_grad[name] = 0
for i_dat, dat in enumerate(g_extracted[name]):
new_grad[name] += np.tensordot(deriv[i_val + (i_dat, )], dat)
else:
for j_obs, obs in np.ndenumerate(data):
scalef_d = _compute_scalefactor_missing_rep(obs)
for name in obs.names:
if name in obs.cov_names:
new_grad[name] = new_grad.get(name, 0) + deriv[i_val + j_obs] * obs.covobs[name].grad
else:
new_deltas[name] = new_deltas.get(name, 0) + deriv[i_val + j_obs] * _expand_deltas_for_merge(obs.deltas[name], obs.idl[name], obs.shape[name], new_idl_d[name], scalef_d.get(name.split('|')[0], 1))
new_covobs = {name: Covobs(0, allcov[name], name, grad=new_grad[name]) for name in new_grad}
if not set(new_covobs.keys()).isdisjoint(new_deltas.keys()):
raise Exception('The same name has been used for deltas and covobs!')
new_samples = []
new_means = []
new_idl = []
new_names_obs = []
for name in new_names:
if name not in new_covobs:
new_samples.append(new_deltas[name])
new_idl.append(new_idl_d[name])
new_means.append(new_r_values[name][i_val])
new_names_obs.append(name)
final_result[i_val] = Obs(new_samples, new_names_obs, means=new_means, idl=new_idl)
for name in new_covobs:
final_result[i_val].names.append(name)
final_result[i_val]._covobs = new_covobs
final_result[i_val]._value = new_val
final_result[i_val].reweighted = reweighted
if multi == 0:
final_result = final_result.item()
return final_result
def _reduce_deltas(deltas, idx_old, idx_new):
"""Extract deltas defined on idx_old on all configs of idx_new.
Assumes, that idx_old and idx_new are correctly defined idl, i.e., they
are ordered in an ascending order.
Parameters
----------
deltas : list
List of fluctuations
idx_old : list
List or range of configs on which the deltas are defined
idx_new : list
List of configs for which we want to extract the deltas.
Has to be a subset of idx_old.
"""
if not len(deltas) == len(idx_old):
raise Exception('Length of deltas and idx_old have to be the same: %d != %d' % (len(deltas), len(idx_old)))
if type(idx_old) is range and type(idx_new) is range:
if idx_old == idx_new:
return deltas
if _check_lists_equal([idx_old, idx_new]):
return deltas
indices = np.intersect1d(idx_old, idx_new, assume_unique=True, return_indices=True)[1]
if len(indices) < len(idx_new):
raise Exception('Error in _reduce_deltas: Config of idx_new not in idx_old')
return np.array(deltas)[indices]
def reweight(weight, obs, **kwargs):
"""Reweight a list of observables.
Parameters
----------
weight : Obs
Reweighting factor. An Observable that has to be defined on a superset of the
configurations in obs[i].idl for all i.
obs : list
list of Obs, e.g. [obs1, obs2, obs3].
all_configs : bool
if True, the reweighted observables are normalized by the average of
the reweighting factor on all configurations in weight.idl and not
on the configurations in obs[i].idl. Default False.
"""
result = []
for i in range(len(obs)):
if len(obs[i].cov_names):
raise Exception('Error: Not possible to reweight an Obs that contains covobs!')
if not set(obs[i].names).issubset(weight.names):
raise Exception('Error: Ensembles do not fit')
for name in obs[i].names:
if not set(obs[i].idl[name]).issubset(weight.idl[name]):
raise Exception('obs[%d] has to be defined on a subset of the configs in weight.idl[%s]!' % (i, name))
new_samples = []
w_deltas = {}
for name in sorted(obs[i].names):
w_deltas[name] = _reduce_deltas(weight.deltas[name], weight.idl[name], obs[i].idl[name])
new_samples.append((w_deltas[name] + weight.r_values[name]) * (obs[i].deltas[name] + obs[i].r_values[name]))
tmp_obs = Obs(new_samples, sorted(obs[i].names), idl=[obs[i].idl[name] for name in sorted(obs[i].names)])
if kwargs.get('all_configs'):
new_weight = weight
else:
new_weight = Obs([w_deltas[name] + weight.r_values[name] for name in sorted(obs[i].names)], sorted(obs[i].names), idl=[obs[i].idl[name] for name in sorted(obs[i].names)])
result.append(tmp_obs / new_weight)
result[-1].reweighted = True
return result
def correlate(obs_a, obs_b):
"""Correlate two observables.
Parameters
----------
obs_a : Obs
First observable
obs_b : Obs
Second observable
Notes
-----
Keep in mind to only correlate primary observables which have not been reweighted
yet. The reweighting has to be applied after correlating the observables.
Currently only works if ensembles are identical (this is not strictly necessary).
"""
if sorted(obs_a.names) != sorted(obs_b.names):
raise Exception(f"Ensembles do not fit {set(sorted(obs_a.names)) ^ set(sorted(obs_b.names))}")
if len(obs_a.cov_names) or len(obs_b.cov_names):
raise Exception('Error: Not possible to correlate Obs that contain covobs!')
for name in obs_a.names:
if obs_a.shape[name] != obs_b.shape[name]:
raise Exception('Shapes of ensemble', name, 'do not fit')
if obs_a.idl[name] != obs_b.idl[name]:
raise Exception('idl of ensemble', name, 'do not fit')
if obs_a.reweighted is True:
warnings.warn("The first observable is already reweighted.", RuntimeWarning)
if obs_b.reweighted is True:
warnings.warn("The second observable is already reweighted.", RuntimeWarning)
new_samples = []
new_idl = []
for name in sorted(obs_a.names):
new_samples.append((obs_a.deltas[name] + obs_a.r_values[name]) * (obs_b.deltas[name] + obs_b.r_values[name]))
new_idl.append(obs_a.idl[name])
o = Obs(new_samples, sorted(obs_a.names), idl=new_idl)
o.reweighted = obs_a.reweighted or obs_b.reweighted
return o
def covariance(obs, visualize=False, correlation=False, smooth=None, **kwargs):
r'''Calculates the error covariance matrix of a set of observables.
WARNING: This function should be used with care, especially for observables with support on multiple
ensembles with differing autocorrelations. See the notes below for details.
The gamma method has to be applied first to all observables.
Parameters
----------
obs : list or numpy.ndarray
List or one dimensional array of Obs
visualize : bool
If True plots the corresponding normalized correlation matrix (default False).
correlation : bool
If True the correlation matrix instead of the error covariance matrix is returned (default False).
smooth : None or int
If smooth is an integer 'E' between 2 and the dimension of the matrix minus 1 the eigenvalue
smoothing procedure of hep-lat/9412087 is applied to the correlation matrix which leaves the
largest E eigenvalues essentially unchanged and smoothes the smaller eigenvalues to avoid extremely
small ones.
Notes
-----
The error covariance is defined such that it agrees with the squared standard error for two identical observables
$$\operatorname{cov}(a,a)=\sum_{s=1}^N\delta_a^s\delta_a^s/N^2=\Gamma_{aa}(0)/N=\operatorname{var}(a)/N=\sigma_a^2$$
in the absence of autocorrelation.
The error covariance is estimated by calculating the correlation matrix assuming no autocorrelation and then rescaling the correlation matrix by the full errors including the previous gamma method estimate for the autocorrelation of the observables. The covariance at windowsize 0 is guaranteed to be positive semi-definite
$$\sum_{i,j}v_i\Gamma_{ij}(0)v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i,j}v_i\delta_i^s\delta_j^s v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i}|v_i\delta_i^s|^2\geq 0\,,$$ for every $v\in\mathbb{R}^M$, while such an identity does not hold for larger windows/lags.
For observables defined on a single ensemble our approximation is equivalent to assuming that the integrated autocorrelation time of an off-diagonal element is equal to the geometric mean of the integrated autocorrelation times of the corresponding diagonal elements.
$$\tau_{\mathrm{int}, ij}=\sqrt{\tau_{\mathrm{int}, i}\times \tau_{\mathrm{int}, j}}$$
This construction ensures that the estimated covariance matrix is positive semi-definite (up to numerical rounding errors).
'''
length = len(obs)
max_samples = np.max([o.N for o in obs])
if max_samples <= length and not [item for sublist in [o.cov_names for o in obs] for item in sublist]:
warnings.warn(f"The dimension of the covariance matrix ({length}) is larger or equal to the number of samples ({max_samples}). This will result in a rank deficient matrix.", RuntimeWarning)
cov = np.zeros((length, length))
for i in range(length):
for j in range(i, length):
cov[i, j] = _covariance_element(obs[i], obs[j])
cov = cov + cov.T - np.diag(np.diag(cov))
corr = np.diag(1 / np.sqrt(np.diag(cov))) @ cov @ np.diag(1 / np.sqrt(np.diag(cov)))
if isinstance(smooth, int):
corr = _smooth_eigenvalues(corr, smooth)
if visualize:
plt.matshow(corr, vmin=-1, vmax=1)
plt.set_cmap('RdBu')
plt.colorbar()
plt.draw()
if correlation is True:
return corr
errors = [o.dvalue for o in obs]
cov = np.diag(errors) @ corr @ np.diag(errors)
eigenvalues = np.linalg.eigh(cov)[0]
if not np.all(eigenvalues >= 0):
warnings.warn("Covariance matrix is not positive semi-definite (Eigenvalues: " + str(eigenvalues) + ")", RuntimeWarning)
return cov
def invert_corr_cov_cholesky(corr, inverrdiag):
"""Constructs a lower triangular matrix `chol` via the Cholesky decomposition of the correlation matrix `corr`
and then returns the inverse covariance matrix `chol_inv` as a lower triangular matrix by solving `chol * x = inverrdiag`.
Parameters
----------
corr : np.ndarray
correlation matrix
inverrdiag : np.ndarray
diagonal matrix, the entries are the inverse errors of the data points considered
"""
condn = np.linalg.cond(corr)
if condn > 0.1 / np.finfo(float).eps:
raise Exception(f"Cannot invert correlation matrix as its condition number exceeds machine precision ({condn:1.2e})")
if condn > 1e13:
warnings.warn("Correlation matrix may be ill-conditioned, condition number: {%1.2e}" % (condn), RuntimeWarning)
chol = np.linalg.cholesky(corr)
chol_inv = scipy.linalg.solve_triangular(chol, inverrdiag, lower=True)
return chol_inv
def sort_corr(corr, kl, yd):
""" Reorders a correlation matrix to match the alphabetical order of its underlying y data.
The ordering of the input correlation matrix `corr` is given by the list of keys `kl`.
The input dictionary `yd` (with the same keys `kl`) must contain the corresponding y data
that the correlation matrix is based on.
This function sorts the list of keys `kl` alphabetically and sorts the matrix `corr`
according to this alphabetical order such that the sorted matrix `corr_sorted` corresponds
to the y data `yd` when arranged in an alphabetical order by its keys.
Parameters
----------
corr : np.ndarray
A square correlation matrix constructed using the order of the y data specified by `kl`.
The dimensions of `corr` should match the total number of y data points in `yd` combined.
kl : list of str
A list of keys that denotes the order in which the y data from `yd` was used to build the
input correlation matrix `corr`.
yd : dict of list
A dictionary where each key corresponds to a unique identifier, and its value is a list of
y data points. The total number of y data points across all keys must match the dimensions
of `corr`. The lists in the dictionary can be lists of Obs.
Returns
-------
np.ndarray
A new, sorted correlation matrix that corresponds to the y data from `yd` when arranged alphabetically by its keys.
Example
-------
>>> import numpy as np
>>> import pyerrors as pe
>>> corr = np.array([[1, 0.2, 0.3], [0.2, 1, 0.4], [0.3, 0.4, 1]])
>>> kl = ['b', 'a']
>>> yd = {'a': [1, 2], 'b': [3]}
>>> sorted_corr = pe.obs.sort_corr(corr, kl, yd)
>>> print(sorted_corr)
array([[1. , 0.3, 0.4],
[0.3, 1. , 0.2],
[0.4, 0.2, 1. ]])
"""
kl_sorted = sorted(kl)
posd = {}
ofs = 0
for ki, k in enumerate(kl):
posd[k] = [i + ofs for i in range(len(yd[k]))]
ofs += len(posd[k])
mapping = []
for k in kl_sorted:
for i in range(len(yd[k])):
mapping.append(posd[k][i])
corr_sorted = np.zeros_like(corr)
for i in range(corr.shape[0]):
for j in range(corr.shape[0]):
corr_sorted[i][j] = corr[mapping[i]][mapping[j]]
return corr_sorted
def _smooth_eigenvalues(corr, E):
"""Eigenvalue smoothing as described in hep-lat/9412087
corr : np.ndarray
correlation matrix
E : integer
Number of eigenvalues to be left substantially unchanged
"""
if not (2 < E < corr.shape[0] - 1):
raise Exception(f"'E' has to be between 2 and the dimension of the correlation matrix minus 1 ({corr.shape[0] - 1}).")
vals, vec = np.linalg.eigh(corr)
lambda_min = np.mean(vals[:-E])
vals[vals < lambda_min] = lambda_min
vals /= np.mean(vals)
return vec @ np.diag(vals) @ vec.T
def _covariance_element(obs1, obs2):
"""Estimates the covariance of two Obs objects, neglecting autocorrelations."""
def calc_gamma(deltas1, deltas2, idx1, idx2, new_idx):
deltas1 = _reduce_deltas(deltas1, idx1, new_idx)
deltas2 = _reduce_deltas(deltas2, idx2, new_idx)
return np.sum(deltas1 * deltas2)
if set(obs1.names).isdisjoint(set(obs2.names)):
return 0.0
if not hasattr(obs1, 'e_dvalue') or not hasattr(obs2, 'e_dvalue'):
raise Exception('The gamma method has to be applied to both Obs first.')
dvalue = 0.0
for e_name in obs1.mc_names:
if e_name not in obs2.mc_names:
continue
idl_d = {}
for r_name in obs1.e_content[e_name]:
if r_name not in obs2.e_content[e_name]:
continue
idl_d[r_name] = _intersection_idx([obs1.idl[r_name], obs2.idl[r_name]])
gamma = 0.0
for r_name in obs1.e_content[e_name]:
if r_name not in obs2.e_content[e_name]:
continue
if len(idl_d[r_name]) == 0:
continue
gamma += calc_gamma(obs1.deltas[r_name], obs2.deltas[r_name], obs1.idl[r_name], obs2.idl[r_name], idl_d[r_name])
if gamma == 0.0:
continue
gamma_div = 0.0
for r_name in obs1.e_content[e_name]:
if r_name not in obs2.e_content[e_name]:
continue
if len(idl_d[r_name]) == 0:
continue
gamma_div += np.sqrt(calc_gamma(obs1.deltas[r_name], obs1.deltas[r_name], obs1.idl[r_name], obs1.idl[r_name], idl_d[r_name]) * calc_gamma(obs2.deltas[r_name], obs2.deltas[r_name], obs2.idl[r_name], obs2.idl[r_name], idl_d[r_name]))
gamma /= gamma_div
dvalue += gamma
for e_name in obs1.cov_names:
if e_name not in obs2.cov_names:
continue
dvalue += np.dot(np.transpose(obs1.covobs[e_name].grad), np.dot(obs1.covobs[e_name].cov, obs2.covobs[e_name].grad)).item()
return dvalue
def import_jackknife(jacks, name, idl=None):
"""Imports jackknife samples and returns an Obs
Parameters
----------
jacks : numpy.ndarray
numpy array containing the mean value as zeroth entry and
the N jackknife samples as first to Nth entry.
name : str
name of the ensemble the samples are defined on.
"""
length = len(jacks) - 1
prj = (np.ones((length, length)) - (length - 1) * np.identity(length))
samples = jacks[1:] @ prj
mean = np.mean(samples)
new_obs = Obs([samples - mean], [name], idl=idl, means=[mean])
new_obs._value = jacks[0]
return new_obs
def import_bootstrap(boots, name, random_numbers):
"""Imports bootstrap samples and returns an Obs
Parameters
----------
boots : numpy.ndarray
numpy array containing the mean value as zeroth entry and
the N bootstrap samples as first to Nth entry.
name : str
name of the ensemble the samples are defined on.
random_numbers : np.ndarray
Array of shape (samples, length) containing the random numbers to generate the bootstrap samples,
where samples is the number of bootstrap samples and length is the length of the original Monte Carlo
chain to be reconstructed.
"""
samples, length = random_numbers.shape
if samples != len(boots) - 1:
raise ValueError("Random numbers do not have the correct shape.")
if samples < length:
raise ValueError("Obs can't be reconstructed if there are fewer bootstrap samples than Monte Carlo data points.")
proj = np.vstack([np.bincount(o, minlength=length) for o in random_numbers]) / length
samples = scipy.linalg.lstsq(proj, boots[1:])[0]
ret = Obs([samples], [name])
ret._value = boots[0]
return ret
def merge_obs(list_of_obs):
"""Combine all observables in list_of_obs into one new observable
Parameters
----------
list_of_obs : list
list of the Obs object to be combined
Notes
-----
It is not possible to combine obs which are based on the same replicum
"""
replist = [item for obs in list_of_obs for item in obs.names]
if (len(replist) == len(set(replist))) is False:
raise Exception('list_of_obs contains duplicate replica: %s' % (str(replist)))
if any([len(o.cov_names) for o in list_of_obs]):
raise Exception('Not possible to merge data that contains covobs!')
new_dict = {}
idl_dict = {}
for o in list_of_obs:
new_dict.update({key: o.deltas.get(key, 0) + o.r_values.get(key, 0)
for key in set(o.deltas) | set(o.r_values)})
idl_dict.update({key: o.idl.get(key, 0) for key in set(o.deltas)})
names = sorted(new_dict.keys())
o = Obs([new_dict[name] for name in names], names, idl=[idl_dict[name] for name in names])
o.reweighted = np.max([oi.reweighted for oi in list_of_obs])
return o
def cov_Obs(means, cov, name, grad=None):
"""Create an Obs based on mean(s) and a covariance matrix
Parameters
----------
mean : list of floats or float
N mean value(s) of the new Obs
cov : list or array
2d (NxN) Covariance matrix, 1d diagonal entries or 0d covariance
name : str
identifier for the covariance matrix
grad : list or array
Gradient of the Covobs wrt. the means belonging to cov.
"""
def covobs_to_obs(co):
"""Make an Obs out of a Covobs
Parameters
----------
co : Covobs
Covobs to be embedded into the Obs
"""
o = Obs([], [], means=[])
o._value = co.value
o.names.append(co.name)
o._covobs[co.name] = co
o._dvalue = np.sqrt(co.errsq())
return o
ol = []
if isinstance(means, (float, int)):
means = [means]
for i in range(len(means)):
ol.append(covobs_to_obs(Covobs(means[i], cov, name, pos=i, grad=grad)))
if ol[0].covobs[name].N != len(means):
raise Exception('You have to provide %d mean values!' % (ol[0].N))
if len(ol) == 1:
return ol[0]
return ol
def _determine_gap(o, e_content, e_name):
gaps = []
for r_name in e_content[e_name]:
if isinstance(o.idl[r_name], range):
gaps.append(o.idl[r_name].step)
else:
gaps.append(np.min(np.diff(o.idl[r_name])))
gap = min(gaps)
if not np.all([gi % gap == 0 for gi in gaps]):
raise Exception(f"Replica for ensemble {e_name} do not have a common spacing.", gaps)
return gap
def _check_lists_equal(idl):
'''
Use groupby to efficiently check whether all elements of idl are identical.
Returns True if all elements are equal, otherwise False.
Parameters
----------
idl : list of lists, ranges or np.ndarrays
'''
g = groupby([np.nditer(el) if isinstance(el, np.ndarray) else el for el in idl])
if next(g, True) and not next(g, False):
return True
return False