mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-05-15 20:13:41 +02:00
630 lines
27 KiB
Python
630 lines
27 KiB
Python
import numpy as np
|
|
import autograd.numpy as anp
|
|
from .pyerrors import *
|
|
from .fits import standard_fit
|
|
from .roots import find_root
|
|
from matplotlib import pyplot as plt
|
|
from matplotlib.ticker import NullFormatter # useful for `logit` scale
|
|
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
|
|
#import PySimpleGUI as sg
|
|
import matplotlib
|
|
|
|
class Corr:
|
|
"""The class for a correlator (time dependent sequence of pe.Obs).
|
|
|
|
Everything, this class does, can be achieved using lists or arrays of Obs.
|
|
But it is simply more convenient to have a dedicated object for correlators.
|
|
One often wants to add or multiply correlators of the same length at every timeslice and it is inconvinient
|
|
to iterate over all timeslices for every operation. This is especially true, when dealing with smearing matrices.
|
|
|
|
The correlator can have two types of content: An Obs at every timeslice OR a GEVP
|
|
smearing matrix at every timeslice. Other dependency (eg. spacial) are not supported.
|
|
|
|
"""
|
|
|
|
def __init__(self, data_input, padding_front=0, padding_back=0):
|
|
#All data_input should be a list of things at different timeslices. This needs to be verified
|
|
|
|
if not (isinstance(data_input, list)):
|
|
raise TypeError('Corr__init__ expects a list of timeslices.')
|
|
# data_input can have multiple shapes. The simplest one is a list of Obs.
|
|
#We check, if this is the case
|
|
if all([isinstance(item, Obs) for item in data_input]):
|
|
self.content=[np.asarray([item]) for item in data_input]
|
|
#Wrapping the Obs in an array ensures that the data structure is consistent with smearing matrices.
|
|
self.N = 1 # number of smearings
|
|
|
|
#data_input in the form [np.array(Obs,NxN)]
|
|
elif all([isinstance(item,np.ndarray) or item==None for item in data_input]) and any([isinstance(item,np.ndarray)for item in data_input]):
|
|
self.content = data_input
|
|
|
|
noNull=[a for a in self.content if not (a is None)] #To check if the matrices are correct for all undefined elements
|
|
self.N = noNull[0].shape[0]
|
|
# The checks are now identical to the case above
|
|
if self.N > 1 and noNull[0].shape[0] != noNull[0].shape[1]:
|
|
raise Exception("Smearing matrices are not NxN")
|
|
if (not all([item.shape == noNull[0].shape for item in noNull])):
|
|
raise Exception("Items in data_input are not of identical shape." + str(noNull))
|
|
else: # In case its a list of something else.
|
|
raise Exception ("data_input contains item of wrong type")
|
|
|
|
self.tag = None
|
|
|
|
#We now apply some padding to our list. In case that our list represents a correlator of length T but is not defined at every value.
|
|
#An undefined timeslice is represented by the None object
|
|
self.content = [None] * padding_front + self.content + [None] * padding_back
|
|
self.T = len(self.content) #for convenience: will be used a lot
|
|
|
|
|
|
self.gamma_method()
|
|
|
|
|
|
def gamma_method(self):
|
|
for item in self.content:
|
|
if not(item is None):
|
|
if self.N == 1:
|
|
item[0].gamma_method()
|
|
else:
|
|
for i in range(self.N):
|
|
for j in range(self.N):
|
|
item[i,j].gamma_method()
|
|
|
|
#We need to project the Correlator with a Vector to get a single value at each timeslice.
|
|
#The method can use one or two vectors.
|
|
#If two are specified it returns v1@G@v2 (the order might be very important.)
|
|
#By default it will return the lowest source, which usually means unsmeared-unsmeared (0,0), but it does not have to
|
|
def projected(self, vector_l=None, vector_r=None):
|
|
if self.N == 1:
|
|
raise Exception("Trying to project a Corr, that already has N=1.")
|
|
#This Exception is in no way necessary. One could just return self
|
|
#But there is no scenario, where a user would want that to happen and the error message might be more informative.
|
|
|
|
self.gamma_method()
|
|
|
|
if vector_l is None:
|
|
vector_l,vector_r=np.asarray([1.] + (self.N - 1) * [0.]),np.asarray([1.] + (self.N - 1) * [0.])
|
|
elif(vector_r is None):
|
|
vector_r=vector_l
|
|
|
|
if not vector_l.shape == vector_r.shape == (self.N,):
|
|
raise Exception("Vectors are of wrong shape!")
|
|
|
|
#We always normalize before projecting! But we only raise a warning, when it is clear, they where not meant to be normalized.
|
|
if (not(0.95 < vector_r@vector_r < 1.05)) or (not(0.95 < vector_l@vector_l < 1.05)):
|
|
print("Vectors are normalized before projection!")
|
|
|
|
vector_l,vector_r = vector_l / np.sqrt((vector_l@vector_l)), vector_r / np.sqrt(vector_r@vector_r)
|
|
|
|
newcontent = [None if (item is None) else np.asarray([vector_l.T@item@vector_r]) for item in self.content]
|
|
return Corr(newcontent)
|
|
|
|
#For purposes of debugging and verification, one might want to see a single smearing level. smearing will return a Corr at the specified i,j. where both are integers 0<=i,j<N.
|
|
def smearing(self, i, j):
|
|
if self.N == 1:
|
|
raise Exception("Trying to pick smearing from projected Corr")
|
|
newcontent=[None if(item is None) else item[i, j] for item in self.content]
|
|
return Corr(newcontent)
|
|
|
|
|
|
#Obs and Matplotlib do not play nicely
|
|
#We often want to retrieve x,y,y_err as lists to pass them to something like pyplot.errorbar
|
|
def plottable(self):
|
|
if self.N != 1:
|
|
raise Exception("Can only make Corr[N=1] plottable") #We could also autoproject to the groundstate or expect vectors, but this is supposed to be a super simple function.
|
|
x_list = [x for x in range(self.T) if (not self.content[x] is None)]
|
|
y_list = [y[0].value for y in self.content if (not y is None)]
|
|
y_err_list = [y[0].dvalue for y in self.content if (not y is None)]
|
|
|
|
return x_list, y_list, y_err_list
|
|
|
|
#symmetric returns a Corr, that has been symmetrized.
|
|
#A symmetry checker is still to be implemented
|
|
#The method will not delete any redundant timeslices (Bad for memory, Great for convenience)
|
|
def symmetric(self):
|
|
|
|
if self.T%2 != 0:
|
|
raise Exception("Can not symmetrize odd T")
|
|
|
|
newcontent = [self.content[0]]
|
|
for t in range(1, self.T):
|
|
if (self.content[t] is None) or (self.content[self.T - t] is None):
|
|
newcontent.append(None)
|
|
else:
|
|
newcontent.append(0.5 * (self.content[t] + self.content[self.T - t]))
|
|
if(all([x is None for x in newcontent])):
|
|
raise Exception("Corr could not be symmetrized: No redundant values")
|
|
return Corr(newcontent)
|
|
|
|
def anti_symmetric(self):
|
|
|
|
if self.T%2 != 0:
|
|
raise Exception("Can not symmetrize odd T")
|
|
|
|
newcontent=[self.content[0]]
|
|
for t in range(1, self.T):
|
|
if (self.content[t] is None) or (self.content[self.T - t] is None):
|
|
newcontent.append(None)
|
|
else:
|
|
newcontent.append(0.5 * (self.content[t] - self.content[self.T - t]))
|
|
if(all([x is None for x in newcontent])):
|
|
raise Exception("Corr could not be symmetrized: No redundant values")
|
|
return Corr(newcontent)
|
|
|
|
|
|
#This method will symmetrice the matrices and therefore make them positive definit.
|
|
def smearing_symmetric(self):
|
|
if self.N > 1:
|
|
transposed = [None if (G is None) else G.T for G in self.content]
|
|
return 0.5 * (Corr(transposed)+self)
|
|
if self.N == 1:
|
|
raise Exception("Trying to symmetrize a smearing matrix, that already has N=1.")
|
|
|
|
|
|
#We also include a simple GEVP method based on Scipy.linalg
|
|
def GEVP(self, t0, ts):
|
|
if (self.content[t0] is None) or (self.content[ts] is None):
|
|
raise Exception("Corr not defined at t0/ts")
|
|
G0, Gt = np.empty([self.N, self.N], dtype="double"), np.empty([self.N, self.N], dtype="double")
|
|
for i in range(self.N):
|
|
for j in range(self.N):
|
|
G0[i, j] = self.content[t0][i, j].value
|
|
Gt[i, j] = self.content[ts][i, j].value
|
|
|
|
sp_val,sp_vec = scipy.linalg.eig(Gt, G0)
|
|
sp_vec = sp_vec[:,np.argmax(sp_val)] #we only want the eigenvector belonging to the biggest eigenvalue.
|
|
sp_vec = sp_vec/np.sqrt(sp_vec@sp_vec)
|
|
return sp_vec
|
|
|
|
|
|
def roll(self, dt):
|
|
return Corr(list(np.roll(np.array(self.content, dtype=object), dt)))
|
|
|
|
|
|
def deriv(self, symmetric=True): #Defaults to symmetric derivative
|
|
if not symmetric:
|
|
newcontent = []
|
|
for t in range(self.T - 1):
|
|
if (self.content[t] is None) or (self.content[t+1] is None):
|
|
newcontent.append(None)
|
|
else:
|
|
newcontent.append(self.content[t + 1] - self.content[t])
|
|
if(all([x is None for x in newcontent])):
|
|
raise Exception("Derivative is undefined at all timeslices")
|
|
return Corr(newcontent, padding_back=1)
|
|
if symmetric:
|
|
newcontent = []
|
|
for t in range(1, self.T-1):
|
|
if (self.content[t-1] is None) or (self.content[t+1] is None):
|
|
newcontent.append(None)
|
|
else:
|
|
newcontent.append(0.5 * (self.content[t + 1] - self.content[t - 1]))
|
|
if(all([x is None for x in newcontent])):
|
|
raise Exception('Derivative is undefined at all timeslices')
|
|
return Corr(newcontent, padding_back=1, padding_front=1)
|
|
|
|
|
|
def second_deriv(self):
|
|
newcontent = []
|
|
for t in range(1, self.T-1):
|
|
if (self.content[t-1] is None) or (self.content[t+1] is None):
|
|
newcontent.append(None)
|
|
else:
|
|
newcontent.append((self.content[t + 1] - 2 * self.content[t] + self.content[t - 1]))
|
|
if(all([x is None for x in newcontent])):
|
|
raise Exception("Derivative is undefined at all timeslices")
|
|
return Corr(newcontent, padding_back=1, padding_front=1)
|
|
|
|
|
|
def m_eff(self, variant='log', guess=1.0):
|
|
"""Returns the effective mass of the correlator as correlator object
|
|
|
|
Parameters
|
|
----------
|
|
variant -- log: uses the standard effective mass log(C(t) / C(t+1))
|
|
periodic : Solves C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m. See, e.g., arXiv:1205.5380
|
|
guess -- guess for the root finder, only relevant for the root variant
|
|
"""
|
|
if self.N != 1:
|
|
raise Exception('Correlator must be projected before getting m_eff')
|
|
if variant is 'log':
|
|
newcontent = []
|
|
for t in range(self.T - 1):
|
|
if (self.content[t] is None) or (self.content[t + 1] is None):
|
|
newcontent.append(None)
|
|
else:
|
|
newcontent.append(self.content[t] / self.content[t + 1])
|
|
if(all([x is None for x in newcontent])):
|
|
raise Exception('m_eff is undefined at all timeslices')
|
|
|
|
return np.log(Corr(newcontent, padding_back=1))
|
|
|
|
elif variant is 'periodic':
|
|
newcontent = []
|
|
for t in range(self.T - 1):
|
|
if (self.content[t] is None) or (self.content[t + 1] is None):
|
|
newcontent.append(None)
|
|
else:
|
|
func = lambda x, d : anp.cosh(x * (t - self.T / 2)) / anp.cosh(x * (t + 1 - self.T / 2)) - d
|
|
newcontent.append(np.abs(find_root(self.content[t][0] / self.content[t + 1][0], func, guess=guess)))
|
|
if(all([x is None for x in newcontent])):
|
|
raise Exception('m_eff is undefined at all timeslices')
|
|
|
|
return Corr(newcontent, padding_back=1)
|
|
else:
|
|
raise Exception('Unkown variant.')
|
|
|
|
#We want to apply a pe.standard_fit directly to the Corr using an arbitrary function and range.
|
|
def fit(self, function, fitrange=None, silent=False, **kwargs):
|
|
if self.N != 1:
|
|
raise Exception("Correlator must be projected before fitting")
|
|
|
|
if fitrange is None:
|
|
fitrange=[0, self.T]
|
|
|
|
xs = [x for x in range(fitrange[0], fitrange[1]) if not self.content[x] is None]
|
|
ys = [self.content[x][0] for x in range(fitrange[0], fitrange[1]) if not self.content[x] is None]
|
|
result = standard_fit(xs, ys, function, silent=silent, **kwargs)
|
|
if isinstance(result, list):
|
|
[item.gamma_method() for item in result if isinstance(item,Obs)]
|
|
elif isinstance(result, dict):
|
|
[item.gamma_method() for item in result['fit_parameters'] if isinstance(item,Obs)]
|
|
else:
|
|
raise Exception('Unexpected fit result.')
|
|
return result
|
|
|
|
#we want to quickly get a plateau
|
|
def plateau(self, plateau_range, method="fit"):
|
|
if self.N != 1:
|
|
raise Exception("Correlator must be projected before getting a plateau.")
|
|
if(all([self.content[t] is None for t in range(plateau_range[0], plateau_range[1])])):
|
|
raise Exception("plateau is undefined at all timeslices in plateaurange.")
|
|
if method == "fit":
|
|
def const_func(a, t):
|
|
return a[0] # At some point pe.standard fit had an issue with single parameter fits. Being careful does not hurt
|
|
return self.fit(const_func,plateau_range)[0]
|
|
elif method in ["avg","average","mean"]:
|
|
returnvalue= np.mean([item[0] for item in self.content[plateau_range[0]:plateau_range[1]+1] if not item is None])
|
|
returnvalue.gamma_method()
|
|
return returnvalue
|
|
|
|
else:
|
|
raise Exception("Unsupported plateau method: " + method)
|
|
|
|
#quick and dirty plotting function to view Correlator inside Jupyter
|
|
#If one would not want to import pyplot, this could easily be replaced by a call to pe.plot_corrs
|
|
#This might be a bit more flexible later
|
|
def show(self, x_range=None, comp=None, logscale=False, plateau=None, fit_res=None, save=None):
|
|
"""Plots the correlator, uses tag as label if available.
|
|
|
|
Parameters
|
|
----------
|
|
x_range -- list of two values, determining the range of the x-axis e.g. [4, 8]
|
|
comp -- Correlator or list of correlators which are plotted for comparison.
|
|
logscale -- Sets y-axis to logscale
|
|
save -- path to file in which the figure should be saved
|
|
"""
|
|
if self.N!=1:
|
|
raise Exception("Correlator must be projected before plotting")
|
|
if x_range is None:
|
|
x_range=[0, self.T]
|
|
|
|
fig = plt.figure()
|
|
ax1 = fig.add_subplot(111)
|
|
|
|
x,y,y_err=self.plottable()
|
|
ax1.errorbar(x, y, y_err, label=self.tag)
|
|
if logscale:
|
|
ax1.set_yscale('log')
|
|
else:
|
|
# we generate ylim instead of using autoscaling.
|
|
try:
|
|
y_min=min([(x[0].value - x[0].dvalue) for x in self.content[x_range[0]:x_range[1]] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)])
|
|
y_max=max([(x[0].value + x[0].dvalue) for x in self.content[x_range[0]:x_range[1]] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)])
|
|
ax1.set_ylim([y_min - 0.1 * (y_max - y_min), y_max + 0.1 * (y_max - y_min)])
|
|
except:
|
|
pass
|
|
if comp:
|
|
if isinstance(comp, Corr) or isinstance(comp, list):
|
|
for corr in comp if isinstance(comp, list) else [comp]:
|
|
x,y,y_err=corr.plottable()
|
|
plt.errorbar(x, y, y_err, label=corr.tag, mfc=plt.rcParams['axes.facecolor'])
|
|
else:
|
|
raise Exception('comp must be a correlator or a list of correlators.')
|
|
|
|
if plateau:
|
|
if isinstance(plateau, Obs):
|
|
ax1.axhline(y=plateau.value, linewidth=2, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--', label=plateau.__repr__()[4:-1])
|
|
ax1.axhspan(plateau.value - plateau.dvalue, plateau.value + plateau.dvalue, alpha=0.25, color=plt.rcParams['text.color'], ls='-')
|
|
else:
|
|
raise Exception('plateau must be an Obs')
|
|
|
|
if fit_res:
|
|
x_samples = np.arange(x_range[0], x_range[1] + 1, 0.05)
|
|
ax1.plot(x_samples,
|
|
fit_res['fit_function']([o.value for o in fit_res['fit_parameters']], x_samples)
|
|
, ls='-', marker=',', lw=2)
|
|
|
|
ax1.set_xlabel(r'$x_0 / a$')
|
|
ax1.set_xlim([x_range[0] - 0.5, x_range[1] + 0.5])
|
|
|
|
handles, labels = ax1.get_legend_handles_labels()
|
|
if labels:
|
|
legend = ax1.legend()
|
|
plt.draw()
|
|
|
|
if save:
|
|
if isinstance(save, str):
|
|
fig.savefig(save)
|
|
else:
|
|
raise Exception('safe has to be a string.')
|
|
|
|
return
|
|
|
|
def dump(self,filename):
|
|
dump_object(self,filename)
|
|
return
|
|
|
|
def print(self, range=[0, None]):
|
|
print(self.__repr__(range))
|
|
|
|
def __repr__(self, range=[0, None]):
|
|
if range[1]:
|
|
range[1] += 1
|
|
content_string = 'x0/a\tCorr(x0/a)\n------------------\n'
|
|
for i, sub_corr in enumerate(self.content[range[0]:range[1]]):
|
|
if sub_corr is None:
|
|
content_string += str(i + range[0]) + '\n'
|
|
else:
|
|
content_string += str(i + range[0])
|
|
for element in sub_corr:
|
|
content_string += '\t' + element.__repr__()[4:-1]
|
|
content_string += '\n'
|
|
return content_string
|
|
def __str__(self):
|
|
return self.__repr__()
|
|
#return ("Corr[T="+str(self.T)+" , N="+str(self.N)+" , content="+str([o[0] for o in [o for o in self.content]])+"]")
|
|
|
|
#We define the basic operations, that can be performed with correlators.
|
|
#While */+- get defined here, they only work for Corr*Obs and not Obs*Corr.
|
|
#This is because Obs*Corr checks Obs.__mul__ first and does not catch an exception.
|
|
#One could try and tell Obs to check if the y in __mul__ is a Corr and
|
|
|
|
def __add__(self, y):
|
|
if isinstance(y, Corr):
|
|
if ((self.N!=y.N) or (self.T!=y.T) ):
|
|
raise Exception("Addition of Corrs with different shape")
|
|
newcontent=[]
|
|
for t in range(self.T):
|
|
if (self.content[t] is None) or (y.content[t] is None):
|
|
newcontent.append(None)
|
|
else:
|
|
newcontent.append(self.content[t]+y.content[t])
|
|
return Corr(newcontent)
|
|
|
|
elif isinstance(y, Obs) or isinstance(y, int) or isinstance(y,float):
|
|
newcontent=[]
|
|
for t in range(self.T):
|
|
if (self.content[t] is None):
|
|
newcontent.append(None)
|
|
else:
|
|
newcontent.append(self.content[t]+y)
|
|
return Corr(newcontent)
|
|
else:
|
|
raise TypeError("Corr + wrong type")
|
|
|
|
def __mul__(self,y):
|
|
if isinstance(y,Corr):
|
|
if not((self.N==1 or y.N==1 or self.N==y.N) and self.T==y.T):
|
|
raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T")
|
|
newcontent=[]
|
|
for t in range(self.T):
|
|
if (self.content[t] is None) or (y.content[t] is None):
|
|
newcontent.append(None)
|
|
else:
|
|
newcontent.append(self.content[t]*y.content[t])
|
|
return Corr(newcontent)
|
|
|
|
elif isinstance(y, Obs) or isinstance(y, int) or isinstance(y,float):
|
|
newcontent=[]
|
|
for t in range(self.T):
|
|
if (self.content[t] is None):
|
|
newcontent.append(None)
|
|
else:
|
|
newcontent.append(self.content[t]*y)
|
|
return Corr(newcontent)
|
|
else:
|
|
raise TypeError("Corr * wrong type")
|
|
|
|
def __truediv__(self,y):
|
|
if isinstance(y,Corr):
|
|
if not((self.N==1 or y.N==1 or self.N==y.N) and self.T==y.T):
|
|
raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T")
|
|
newcontent=[]
|
|
for t in range(self.T):
|
|
if (self.content[t] is None) or (y.content[t] is None):
|
|
newcontent.append(None)
|
|
else:
|
|
newcontent.append(self.content[t]/y.content[t])
|
|
#Here we set the entire timeslice to undefined, if one of the smearings has encountered an division by zero.
|
|
#While this might throw away perfectly good values in other smearings, we will never have to check, if all values in our matrix are defined
|
|
for t in range(self.T):
|
|
if newcontent[t] is None:
|
|
continue
|
|
if np.isnan(np.sum(newcontent[t]).value):
|
|
newcontent[t]=None
|
|
|
|
if all([item is None for item in newcontent]):
|
|
raise Exception("Division returns completely undefined correlator")
|
|
|
|
|
|
|
|
return Corr(newcontent)
|
|
|
|
elif isinstance(y, Obs):
|
|
if y.value==0:
|
|
raise Exception("Division by Zero will return undefined correlator")
|
|
newcontent=[]
|
|
for t in range(self.T):
|
|
if (self.content[t] is None):
|
|
newcontent.append(None)
|
|
else:
|
|
newcontent.append(self.content[t]/y)
|
|
return Corr(newcontent)
|
|
|
|
elif isinstance(y, int) or isinstance(y,float):
|
|
if y==0:
|
|
raise Exception("Division by Zero will return undefined correlator")
|
|
newcontent=[]
|
|
for t in range(self.T):
|
|
if (self.content[t] is None):
|
|
newcontent.append(None)
|
|
else:
|
|
newcontent.append(self.content[t]/y)
|
|
return Corr(newcontent)
|
|
else:
|
|
raise TypeError("Corr / wrong type")
|
|
|
|
def __neg__(self):
|
|
newcontent=[None if (item is None) else -1.*item for item in self.content]
|
|
return Corr(newcontent)
|
|
|
|
def __sub__(self,y):
|
|
return self +(-y)
|
|
|
|
def __pow__(self, y):
|
|
if isinstance(y, Obs) or isinstance(y,int) or isinstance(y,float):
|
|
newcontent=[None if (item is None) else item**y for item in self.content]
|
|
return Corr(newcontent)
|
|
else:
|
|
raise TypeError("type of exponent not supported")
|
|
|
|
def __abs__(self):
|
|
newcontent=[None if (item is None) else np.abs(item) for item in self.content]
|
|
return Corr(newcontent)
|
|
|
|
#The numpy functions:
|
|
def sqrt(self):
|
|
return self**0.5
|
|
|
|
def log(self):
|
|
newcontent=[None if (item is None) else np.log(item) for item in self.content]
|
|
return Corr(newcontent)
|
|
|
|
def exp(self):
|
|
newcontent=[None if (item is None) else np.exp(item) for item in self.content]
|
|
return Corr(newcontent)
|
|
|
|
def sin(self):
|
|
newcontent=[None if (item is None) else np.sin(item) for item in self.content]
|
|
return Corr(newcontent)
|
|
|
|
def cos(self):
|
|
newcontent=[None if (item is None) else np.cos(item) for item in self.content]
|
|
return Corr(newcontent)
|
|
|
|
def tan(self):
|
|
newcontent=[None if (item is None) else np.tan(item) for item in self.content]
|
|
|
|
for t in range(self.T):
|
|
if newcontent[t] is None:
|
|
continue
|
|
if np.isnan(np.sum(newcontent[t]).value):
|
|
newcontent[t]=None
|
|
if all([item is None for item in newcontent]):
|
|
raise Exception("Operation returns completely undefined correlator")
|
|
|
|
return Corr(newcontent)
|
|
|
|
def sinh(self):
|
|
newcontent=[None if (item is None) else np.sinh(item) for item in self.content]
|
|
return Corr(newcontent)
|
|
|
|
def cosh(self):
|
|
newcontent=[None if (item is None) else np.cosh(item) for item in self.content]
|
|
return Corr(newcontent)
|
|
|
|
def tanh(self):
|
|
newcontent=[None if (item is None) else np.tanh(item) for item in self.content]
|
|
for t in range(self.T):
|
|
if newcontent[t] is None:
|
|
continue
|
|
if np.isnan(np.sum(newcontent[t]).value):
|
|
newcontent[t]=None
|
|
if all([item is None for item in newcontent]):
|
|
raise Exception("Operation returns completely undefined correlator")
|
|
return Corr(newcontent)
|
|
|
|
def arcsin(self):
|
|
newcontent=[None if (item is None) else np.arcsin(item) for item in self.content]
|
|
for t in range(self.T):
|
|
if newcontent[t] is None:
|
|
continue
|
|
if np.isnan(np.sum(newcontent[t]).value):
|
|
newcontent[t]=None
|
|
if all([item is None for item in newcontent]):
|
|
raise Exception("Operation returns completely undefined correlator")
|
|
return Corr(newcontent)
|
|
|
|
def arccos(self):
|
|
newcontent=[None if (item is None) else np.arccos(item) for item in self.content]
|
|
for t in range(self.T):
|
|
if newcontent[t] is None:
|
|
continue
|
|
if np.isnan(np.sum(newcontent[t]).value):
|
|
newcontent[t]=None
|
|
if all([item is None for item in newcontent]):
|
|
raise Exception("Operation returns completely undefined correlator")
|
|
return Corr(newcontent)
|
|
|
|
def arctan(self):
|
|
newcontent=[None if (item is None) else np.arctan(item) for item in self.content]
|
|
for t in range(self.T):
|
|
if newcontent[t] is None:
|
|
continue
|
|
if np.isnan(np.sum(newcontent[t]).value):
|
|
newcontent[t]=None
|
|
if all([item is None for item in newcontent]):
|
|
raise Exception("Operation returns completely undefined correlator")
|
|
return Corr(newcontent)
|
|
|
|
def arcsinh(self):
|
|
newcontent=[None if (item is None) else np.arcsinh(item) for item in self.content]
|
|
for t in range(self.T):
|
|
if newcontent[t] is None:
|
|
continue
|
|
if np.isnan(np.sum(newcontent[t]).value):
|
|
newcontent[t]=None
|
|
if all([item is None for item in newcontent]):
|
|
raise Exception("Operation returns completely undefined correlator")
|
|
return Corr(newcontent)
|
|
|
|
def arccosh(self):
|
|
newcontent=[None if (item is None) else np.arccosh(item) for item in self.content]
|
|
for t in range(self.T):
|
|
if newcontent[t] is None:
|
|
continue
|
|
if np.isnan(np.sum(newcontent[t]).value):
|
|
newcontent[t]=None
|
|
if all([item is None for item in newcontent]):
|
|
raise Exception("Operation returns completely undefined correlator")
|
|
return Corr(newcontent)
|
|
|
|
def arctanh(self):
|
|
newcontent=[None if (item is None) else np.arctanh(item) for item in self.content]
|
|
for t in range(self.T):
|
|
if newcontent[t] is None:
|
|
continue
|
|
if np.isnan(np.sum(newcontent[t]).value):
|
|
newcontent[t]=None
|
|
if all([item is None for item in newcontent]):
|
|
raise Exception("Operation returns completely undefined correlator")
|
|
return Corr(newcontent)
|
|
|
|
|
|
#right hand side operations (require tweak in main module to work)
|
|
def __rsub__(self,y):
|
|
return -self+y
|
|
def __rmul__(self, y):
|
|
return self * y
|
|
def __radd__(self,y):
|
|
return self + y
|