pyerrors/pyerrors/input/openQCD.py
2021-10-11 11:44:48 +01:00

337 lines
12 KiB
Python

#!/usr/bin/env python
# coding: utf-8
import os
import fnmatch
import re
import struct
import numpy as np # Thinly-wrapped numpy
from ..pyerrors import Obs
from ..fits import fit_lin
def read_rwms(path, prefix, version='2.0', names=None, **kwargs):
"""Read rwms format from given folder structure. Returns a list of length nrw
Attributes
-----------------
version -- version of openQCD, default 2.0
Keyword arguments
-----------------
r_start -- list which contains the first config to be read for each replicum
r_stop -- list which contains the last config to be read for each replicum
postfix -- postfix of the file to read, e.g. '.ms1' for openQCD-files
"""
#oqcd versions implemented in this method
known_oqcd_versions = ['1.4','1.6','2.0']
if not (version in known_oqcd_versions):
raise Exception('Unknown openQCD version defined!')
else: #Set defaults for openQCD Version to be version 1.4, emulate the old behaviour of this method
# Deprecate this kwarg in version 2.0.
print("Working with openQCD version " + version)
if 'postfix' in kwargs:
postfix = kwargs.get('postfix')
else:
postfix = ''
ls = []
for (dirpath, dirnames, filenames) in os.walk(path):
ls.extend(filenames)
break
if not ls:
raise Exception('Error, directory not found')
# Exclude files with different names
for exc in ls:
if not fnmatch.fnmatch(exc, prefix + '*'+postfix+'.dat'):
ls = list(set(ls) - set([exc]))
if len(ls) > 1:
ls.sort(key=lambda x: int(re.findall(r'\d+', x[len(prefix):])[0]))
#ls = fnames
#print(ls)
replica = len(ls)
if 'r_start' in kwargs:
r_start = kwargs.get('r_start')
if len(r_start) != replica:
raise Exception('r_start does not match number of replicas')
# Adjust Configuration numbering to python index
r_start = [o - 1 if o else None for o in r_start]
else:
r_start = [None] * replica
if 'r_stop' in kwargs:
r_stop = kwargs.get('r_stop')
if len(r_stop) != replica:
raise Exception('r_stop does not match number of replicas')
else:
r_stop = [None] * replica
print('Read reweighting factors from', prefix[:-1], ',', replica, 'replica', end='')
print_err = 0
if 'print_err' in kwargs:
print_err = 1
print()
deltas = []
for rep in range(replica):
tmp_array = []
with open(path+ '/' + ls[rep], 'rb') as fp:
#header
t = fp.read(4) # number of reweighting factors
if rep == 0:
nrw = struct.unpack('i', t)[0]
if version == '2.0':
nrw = int(nrw/2)
for k in range(nrw):
deltas.append([])
else:
if ((nrw != struct.unpack('i', t)[0] and (not verion == '2.0')) or (nrw != struct.unpack('i', t)[0]/2 and version == '2.0')):# little weird if-clause due to the /2 operation needed.
raise Exception('Error: different number of reweighting factors for replicum', rep)
for k in range(nrw):
tmp_array.append([])
# This block is necessary for openQCD1.6 and openQCD2.0 ms1 files
nfct = []
if version in ['1.6','2.0']:
for i in range(nrw):
t = fp.read(4)
nfct.append(struct.unpack('i', t)[0])
#print('nfct: ', nfct) # Hasenbusch factor, 1 for rat reweighting
else:
for i in range(nrw):
nfct.append(1)
nsrc = []
for i in range(nrw):
t = fp.read(4)
nsrc.append(struct.unpack('i', t)[0])
if version is '2.0':
if not struct.unpack('i', fp.read(4))[0] == 0:
print('something is wrong!')
#body
while 0 < 1:
t = fp.read(4)
if len(t) < 4:
break
if print_err:
config_no = struct.unpack('i', t)
for i in range(nrw):
if(version == '2.0'):
tmpd = _read_array_openQCD2(fp)
tmpd = _read_array_openQCD2(fp)
tmp_rw = tmpd['arr']
tmp_nfct = 1.0
for j in range(tmpd['n'][0]):
tmp_nfct *= np.mean(np.exp(-np.asarray(tmp_rw[j])))
if print_err:
print(config_no, i, j, np.mean(np.exp(-np.asarray(tmp_rw[j]))), np.std(np.exp(-np.asarray(tmp_rw[j]))))
print('Sources:', np.exp(-np.asarray(tmp_rw[j])))
print('Partial factor:', tmp_nfct)
elif version is '1.6' or version is '1.4':
tmp_nfct = 1.0
for j in range(nfct[i]):
t = fp.read(8 * nsrc[i])
t = fp.read(8 * nsrc[i])
tmp_rw = struct.unpack('d' * nsrc[i], t)
tmp_nfct *= np.mean(np.exp(-np.asarray(tmp_rw)))
if print_err:
print(config_no, i, j, np.mean(np.exp(-np.asarray(tmp_rw))), np.std(np.exp(-np.asarray(tmp_rw))))
print('Sources:', np.exp(-np.asarray(tmp_rw)))
print('Partial factor:', tmp_nfct)
tmp_array[i].append(tmp_nfct)
for k in range(nrw):
deltas[k].append(tmp_array[k][r_start[rep]:r_stop[rep]])
print(',', nrw, 'reweighting factors with', nsrc, 'sources')
result = []
for t in range(nrw):
if names == None:
result.append(Obs(deltas[t], [w.split(".")[0] for w in ls]))
else:
print(names)
result.append(Obs(deltas[t], names))
return result
def extract_t0(path, prefix, dtr_read, xmin, spatial_extent, fit_range=5, **kwargs):
"""Extract t0 from given .ms.dat files. Returns t0 as Obs.
It is assumed that all boundary effects have sufficiently decayed at x0=xmin.
The data around the zero crossing of t^2<E> - 0.3 is fitted with a linear function
from which the exact root is extracted.
Only works with openQCD v 1.2.
Parameters
----------
path -- Path to .ms.dat files
prefix -- Ensemble prefix
dtr_read -- Determines how many trajectories should be skipped when reading the ms.dat files.
Corresponds to dtr_cnfg / dtr_ms in the openQCD input file.
xmin -- First timeslice where the boundary effects have sufficiently decayed.
spatial_extent -- spatial extent of the lattice, required for normalization.
fit_range -- Number of data points left and right of the zero crossing to be included in the linear fit. (Default: 5)
Keyword arguments
-----------------
r_start -- list which contains the first config to be read for each replicum.
r_stop -- list which contains the last config to be read for each replicum.
plaquette -- If true extract the plaquette estimate of t0 instead.
"""
ls = []
for (dirpath, dirnames, filenames) in os.walk(path):
ls.extend(filenames)
break
if not ls:
raise Exception('Error, directory not found')
# Exclude files with different names
for exc in ls:
if not fnmatch.fnmatch(exc, prefix + '*.ms.dat'):
ls = list(set(ls) - set([exc]))
if len(ls) > 1:
ls.sort(key=lambda x: int(re.findall(r'\d+', x[len(prefix):])[0]))
replica = len(ls)
if 'r_start' in kwargs:
r_start = kwargs.get('r_start')
if len(r_start) != replica:
raise Exception('r_start does not match number of replicas')
# Adjust Configuration numbering to python index
r_start = [o - 1 if o else None for o in r_start]
else:
r_start = [None] * replica
if 'r_stop' in kwargs:
r_stop = kwargs.get('r_stop')
if len(r_stop) != replica:
raise Exception('r_stop does not match number of replicas')
else:
r_stop = [None] * replica
print('Extract t0 from', prefix, ',', replica, 'replica')
Ysum = []
for rep in range(replica):
with open(path + '/' + ls[rep], 'rb') as fp:
# Read header
t = fp.read(12)
header = struct.unpack('iii', t)
if rep == 0:
dn = header[0]
nn = header[1]
tmax = header[2]
elif dn != header[0] or nn != header[1] or tmax != header[2]:
raise Exception('Replica parameters do not match.')
t = fp.read(8)
if rep == 0:
eps = struct.unpack('d', t)[0]
print('Step size:', eps, ', Maximal t value:', dn * (nn) * eps)
elif eps != struct.unpack('d', t)[0]:
raise Exception('Values for eps do not match among replica.')
Ysl = []
# Read body
while 0 < 1:
t = fp.read(4)
if(len(t) < 4):
break
nc = struct.unpack('i', t)[0]
t = fp.read(8 * tmax * (nn + 1))
if kwargs.get('plaquette'):
if nc % dtr_read == 0:
Ysl.append(struct.unpack('d' * tmax * (nn + 1), t))
t = fp.read(8 * tmax * (nn + 1))
if not kwargs.get('plaquette'):
if nc % dtr_read == 0:
Ysl.append(struct.unpack('d' * tmax * (nn + 1), t))
t = fp.read(8 * tmax * (nn + 1))
Ysum.append([])
for i, item in enumerate(Ysl):
Ysum[-1].append([np.mean(item[current + xmin:current + tmax - xmin]) for current in range(0, len(item), tmax)])
t2E_dict = {}
for n in range(nn + 1):
samples = []
for nrep, rep in enumerate(Ysum):
samples.append([])
for cnfg in rep:
samples[-1].append(cnfg[n])
samples[-1] = samples[-1][r_start[nrep]:r_stop[nrep]]
new_obs = Obs(samples, [(w.split('.'))[0] for w in ls])
t2E_dict[n * dn * eps] = (n * dn * eps) ** 2 * new_obs / (spatial_extent ** 3) - 0.3
zero_crossing = np.argmax(np.array([o.value for o in t2E_dict.values()]) > 0.0)
x = list(t2E_dict.keys())[zero_crossing - fit_range: zero_crossing + fit_range]
y = list(t2E_dict.values())[zero_crossing - fit_range: zero_crossing + fit_range]
[o.gamma_method() for o in y]
fit_result = fit_lin(x, y)
return -fit_result[0] / fit_result[1]
def _parse_array_openQCD2(d, n, size, wa, quadrupel=False):
arr = []
if d == 2:
tot = 0
for i in range(n[d-1]-1):
if quadrupel:
tmp = wa[tot:n[d-1]]
tmp2 = []
for i in range(len(tmp)):
if i % 2 == 0:
tmp2.append(tmp[i])
arr.append(tmp2)
else:
arr.append(np.asarray(wa[tot:n[d-1]]))
return arr
# mimic the read_array routine of openQCD-2.0.
# fp is the opened file handle
# returns the dict array
# at this point we only parse a 2d array
# d = 2
# n = [nfct[irw], 2*nsrc[irw]]
def _read_array_openQCD2(fp):
t = fp.read(4)
d = struct.unpack('i', t)[0]
t = fp.read(4*d)
n = struct.unpack('%di' % (d), t)
t = fp.read(4)
size = struct.unpack('i', t)[0]
if size == 4:
types = 'i'
elif size == 8:
types = 'd'
elif size == 16:
types = 'dd'
else:
print('Type not known!')
m = n[0]
for i in range(1,d):
m *= n[i]
t = fp.read(m*size)
tmp = struct.unpack('%d%s' % (m, types), t)
arr = _parse_array_openQCD2(d, n, size, tmp, quadrupel=True)
return {'d': d, 'n': n, 'size': size, 'arr': arr}