pyerrors/pyerrors/correlators.py
2022-01-19 11:03:45 +00:00

979 lines
39 KiB
Python

import warnings
import numpy as np
import autograd.numpy as anp
import matplotlib.pyplot as plt
import scipy.linalg
from .obs import Obs, reweight, correlate, CObs
from .misc import dump_object, _assert_equal_properties
from .fits import least_squares
from .linalg import eigh, inv, cholesky
from .roots import find_root
class Corr:
"""The class for a correlator (time dependent sequence of pe.Obs).
Everything, this class does, can be achieved using lists or arrays of Obs.
But it is simply more convenient to have a dedicated object for correlators.
One often wants to add or multiply correlators of the same length at every timeslice and it is inconvenient
to iterate over all timeslices for every operation. This is especially true, when dealing with smearing matrices.
The correlator can have two types of content: An Obs at every timeslice OR a GEVP
smearing matrix at every timeslice. Other dependency (eg. spatial) are not supported.
"""
def __init__(self, data_input, padding=[0, 0], prange=None):
""" Initialize a Corr object.
Parameters
----------
data_input : list
list of Obs or list of arrays of Obs.
padding : list, optional
List with two entries where the first labels the padding
at the front of the correlator and the second the padding
at the back.
prange : list, optional
List containing the first and last timeslice of the plateau
region indentified for this correlator.
"""
if not isinstance(data_input, list):
raise TypeError('Corr__init__ expects a list of timeslices.')
if all([(isinstance(item, Obs) or isinstance(item, CObs)) for item in data_input]):
_assert_equal_properties(data_input)
self.content = [np.asarray([item]) for item in data_input]
self.N = 1
elif all([isinstance(item, np.ndarray) or item is None for item in data_input]) and any([isinstance(item, np.ndarray) for item in data_input]):
self.content = data_input
noNull = [a for a in self.content if not (a is None)] # To check if the matrices are correct for all undefined elements
self.N = noNull[0].shape[0]
if self.N > 1 and noNull[0].shape[0] != noNull[0].shape[1]:
raise Exception("Smearing matrices are not NxN")
if (not all([item.shape == noNull[0].shape for item in noNull])):
raise Exception("Items in data_input are not of identical shape." + str(noNull))
else:
raise Exception("data_input contains item of wrong type")
self.tag = None
# An undefined timeslice is represented by the None object
self.content = [None] * padding[0] + self.content + [None] * padding[1]
self.T = len(self.content)
self.prange = prange
self.gamma_method()
def __getitem__(self, idx):
"""Return the content of timeslice idx"""
if self.content[idx] is None:
return None
elif len(self.content[idx]) == 1:
return self.content[idx][0]
else:
return self.content[idx]
@property
def reweighted(self):
bool_array = np.array([list(map(lambda x: x.reweighted, o)) for o in [x for x in self.content if x is not None]])
if np.all(bool_array == 1):
return True
elif np.all(bool_array == 0):
return False
else:
raise Exception("Reweighting status of correlator corrupted.")
def gamma_method(self, **kwargs):
"""Apply the gamma method to the content of the Corr."""
for item in self.content:
if not(item is None):
if self.N == 1:
item[0].gamma_method(**kwargs)
else:
for i in range(self.N):
for j in range(self.N):
item[i, j].gamma_method(**kwargs)
def projected(self, vector_l=None, vector_r=None, normalize=False):
"""We need to project the Correlator with a Vector to get a single value at each timeslice.
The method can use one or two vectors.
If two are specified it returns v1@G@v2 (the order might be very important.)
By default it will return the lowest source, which usually means unsmeared-unsmeared (0,0), but it does not have to
"""
if self.N == 1:
raise Exception("Trying to project a Corr, that already has N=1.")
self.gamma_method()
if vector_l is None:
vector_l, vector_r = np.asarray([1.] + (self.N - 1) * [0.]), np.asarray([1.] + (self.N - 1) * [0.])
elif(vector_r is None):
vector_r = vector_l
if isinstance(vector_l, list) and not isinstance(vector_r, list):
if len(vector_l) != self.T:
raise Exception("Length of vector list must be equal to T")
vector_r = [vector_r] * self.T
if isinstance(vector_r, list) and not isinstance(vector_l, list):
if len(vector_r) != self.T:
raise Exception("Length of vector list must be equal to T")
vector_l = [vector_l] * self.T
if not isinstance(vector_l, list):
if not vector_l.shape == vector_r.shape == (self.N,):
raise Exception("Vectors are of wrong shape!")
if normalize:
vector_l, vector_r = vector_l / np.sqrt((vector_l @ vector_l)), vector_r / np.sqrt(vector_r @ vector_r)
# if (not (0.95 < vector_r @ vector_r < 1.05)) or (not (0.95 < vector_l @ vector_l < 1.05)):
# print("Vectors are normalized before projection!")
newcontent = [None if (item is None) else np.asarray([vector_l.T @ item @ vector_r]) for item in self.content]
else:
# There are no checks here yet. There are so many possible scenarios, where this can go wrong.
if normalize:
for t in range(self.T):
vector_l[t], vector_r[t] = vector_l[t] / np.sqrt((vector_l[t] @ vector_l[t])), vector_r[t] / np.sqrt(vector_r[t] @ vector_r[t])
newcontent = [None if (self.content[t] is None or vector_l[t] is None or vector_r[t] is None) else np.asarray([vector_l[t].T @ self.content[t] @ vector_r[t]]) for t in range(self.T)]
return Corr(newcontent)
def sum(self):
return np.sqrt(self.N) * self.projected(np.ones(self.N))
# For purposes of debugging and verification, one might want to see a single smearing level. smearing will return a Corr at the specified i,j. where both are integers 0<=i,j<N.
def smearing(self, i, j):
if self.N == 1:
raise Exception("Trying to pick smearing from projected Corr")
newcontent = [None if(item is None) else item[i, j] for item in self.content]
return Corr(newcontent)
def plottable(self):
"""Outputs the correlator in a plotable format.
Outputs three lists containing the timeslice index, the value on each
timeslice and the error on each timeslice.
"""
if self.N != 1:
raise Exception("Can only make Corr[N=1] plottable") # We could also autoproject to the groundstate or expect vectors, but this is supposed to be a super simple function.
x_list = [x for x in range(self.T) if not self.content[x] is None]
y_list = [y[0].value for y in self.content if y is not None]
y_err_list = [y[0].dvalue for y in self.content if y is not None]
return x_list, y_list, y_err_list
def symmetric(self):
""" Symmetrize the correlator around x0=0."""
if self.T % 2 != 0:
raise Exception("Can not symmetrize odd T")
if np.argmax(np.abs(self.content)) != 0:
warnings.warn("Correlator does not seem to be symmetric around x0=0.", RuntimeWarning)
newcontent = [self.content[0]]
for t in range(1, self.T):
if (self.content[t] is None) or (self.content[self.T - t] is None):
newcontent.append(None)
else:
newcontent.append(0.5 * (self.content[t] + self.content[self.T - t]))
if(all([x is None for x in newcontent])):
raise Exception("Corr could not be symmetrized: No redundant values")
return Corr(newcontent, prange=self.prange)
def anti_symmetric(self):
"""Anti-symmetrize the correlator around x0=0."""
if self.T % 2 != 0:
raise Exception("Can not symmetrize odd T")
if not all([o.is_zero_within_error(3) for o in self.content[0]]):
warnings.warn("Correlator does not seem to be anti-symmetric around x0=0.", RuntimeWarning)
newcontent = [self.content[0]]
for t in range(1, self.T):
if (self.content[t] is None) or (self.content[self.T - t] is None):
newcontent.append(None)
else:
newcontent.append(0.5 * (self.content[t] - self.content[self.T - t]))
if(all([x is None for x in newcontent])):
raise Exception("Corr could not be symmetrized: No redundant values")
return Corr(newcontent, prange=self.prange)
def smearing_symmetric(self):
"""Symmetrizes the matrices and therefore make them positive definite."""
if self.N > 1:
transposed = [None if (G is None) else G.T for G in self.content]
return 0.5 * (Corr(transposed) + self)
if self.N == 1:
raise Exception("Trying to symmetrize a smearing matrix, that already has N=1.")
# There are two ways, the GEVP metod can be called.
# 1. return_list=False will return a single eigenvector, normalized according to V*C(t_0)*V=1
# 2. return_list=True will return a new eigenvector for every timeslice. The time t_s is used to order the vectors according to. arXiv:2004.10472 [hep-lat]
def GEVP(self, t0, ts, state=0, sorting="Eigenvalue", return_list=False):
if not return_list:
if (self.content[t0] is None) or (self.content[ts] is None):
raise Exception("Corr not defined at t0/ts")
G0, Gt = np.empty([self.N, self.N], dtype="double"), np.empty([self.N, self.N], dtype="double")
for i in range(self.N):
for j in range(self.N):
G0[i, j] = self.content[t0][i, j].value
Gt[i, j] = self.content[ts][i, j].value
sp_vecs = _GEVP_solver(Gt, G0)
sp_vec = sp_vecs[state]
return sp_vec
if return_list:
all_vecs = []
for t in range(self.T):
try:
G0, Gt = np.empty([self.N, self.N], dtype="double"), np.empty([self.N, self.N], dtype="double")
for i in range(self.N):
for j in range(self.N):
G0[i, j] = self.content[t0][i, j].value
Gt[i, j] = self.content[t][i, j].value
sp_vecs = _GEVP_solver(Gt, G0)
if sorting == "Eigenvalue":
sp_vec = sp_vecs[state]
all_vecs.append(sp_vec)
else:
all_vecs.append(sp_vecs)
except Exception:
all_vecs.append(None)
if sorting == "Eigenvector":
all_vecs = _sort_vectors(all_vecs, ts)
all_vecs = [a[state] for a in all_vecs]
return all_vecs
def Eigenvalue(self, t0, state=1):
G = self.smearing_symmetric()
G0 = G.content[t0]
L = cholesky(G0)
Li = inv(L)
LT = L.T
LTi = inv(LT)
newcontent = []
for t in range(self.T):
if self.content[t] is None:
newcontent.append(None)
else:
Gt = G.content[t]
M = Li @ Gt @ LTi
eigenvalues = eigh(M)[0]
eigenvalue = eigenvalues[-state]
newcontent.append(eigenvalue)
return Corr(newcontent)
def Hankel(self, N, periodic=False):
"""Constructs an NxN Hankel matrix
C(t) c(t+1) ... c(t+n-1)
C(t+1) c(t+2) ... c(t+n)
.................
C(t+(n-1)) c(t+n) ... c(t+2(n-1))
Parameters
----------
N : int
Dimension of the Hankel matrix
periodic : bool, optional
determines whether the matrix is extended periodically
"""
if self.N != 1:
raise Exception("Multi-operator Prony not implemented!")
array = np.empty([N, N], dtype="object")
new_content = []
for t in range(self.T):
new_content.append(array.copy())
def wrap(i):
if i >= self.T:
return i - self.T
return i
for t in range(self.T):
for i in range(N):
for j in range(N):
if periodic:
new_content[t][i, j] = self.content[wrap(t + i + j)][0]
elif (t + i + j) >= self.T:
new_content[t] = None
else:
new_content[t][i, j] = self.content[t + i + j][0]
return Corr(new_content)
def roll(self, dt):
"""Periodically shift the correlator by dt timeslices
Parameters
----------
dt : int
number of timeslices
"""
return Corr(list(np.roll(np.array(self.content, dtype=object), dt)))
def reverse(self):
"""Reverse the time ordering of the Corr"""
return Corr(self.content[:: -1])
def correlate(self, partner):
"""Correlate the correlator with another correlator or Obs
Parameters
----------
partner : Obs or Corr
partner to correlate the correlator with.
Can either be an Obs which is correlated with all entries of the
correlator or a Corr of same length.
"""
new_content = []
for x0, t_slice in enumerate(self.content):
if t_slice is None:
new_content.append(None)
else:
if isinstance(partner, Corr):
if partner.content[x0] is None:
new_content.append(None)
else:
new_content.append(np.array([correlate(o, partner.content[x0][0]) for o in t_slice]))
elif isinstance(partner, Obs): # Should this include CObs?
new_content.append(np.array([correlate(o, partner) for o in t_slice]))
else:
raise Exception("Can only correlate with an Obs or a Corr.")
return Corr(new_content)
def reweight(self, weight, **kwargs):
"""Reweight the correlator.
Parameters
----------
weight : Obs
Reweighting factor. An Observable that has to be defined on a superset of the
configurations in obs[i].idl for all i.
all_configs : bool
if True, the reweighted observables are normalized by the average of
the reweighting factor on all configurations in weight.idl and not
on the configurations in obs[i].idl.
"""
new_content = []
for t_slice in self.content:
if t_slice is None:
new_content.append(None)
else:
new_content.append(np.array(reweight(weight, t_slice, **kwargs)))
return Corr(new_content)
def T_symmetry(self, partner, parity=+1):
"""Return the time symmetry average of the correlator and its partner
Parameters
----------
partner : Corr
Time symmetry partner of the Corr
partity : int
Parity quantum number of the correlator, can be +1 or -1
"""
if not isinstance(partner, Corr):
raise Exception("T partner has to be a Corr object.")
if parity not in [+1, -1]:
raise Exception("Parity has to be +1 or -1.")
T_partner = parity * partner.reverse()
t_slices = []
for x0, t_slice in enumerate((self - T_partner).content):
if t_slice is not None:
if not t_slice[0].is_zero_within_error(5):
t_slices.append(x0)
if t_slices:
warnings.warn("T symmetry partners do not agree within 5 sigma on time slices " + str(t_slices) + ".", RuntimeWarning)
return (self + T_partner) / 2
def deriv(self, symmetric=True):
"""Return the first derivative of the correlator with respect to x0.
Parameters
----------
symmetric : bool
decides whether symmetric of simple finite differences are used. Default: True
"""
if not symmetric:
newcontent = []
for t in range(self.T - 1):
if (self.content[t] is None) or (self.content[t + 1] is None):
newcontent.append(None)
else:
newcontent.append(self.content[t + 1] - self.content[t])
if(all([x is None for x in newcontent])):
raise Exception("Derivative is undefined at all timeslices")
return Corr(newcontent, padding=[0, 1])
if symmetric:
newcontent = []
for t in range(1, self.T - 1):
if (self.content[t - 1] is None) or (self.content[t + 1] is None):
newcontent.append(None)
else:
newcontent.append(0.5 * (self.content[t + 1] - self.content[t - 1]))
if(all([x is None for x in newcontent])):
raise Exception('Derivative is undefined at all timeslices')
return Corr(newcontent, padding=[1, 1])
def second_deriv(self):
"""Return the second derivative of the correlator with respect to x0."""
newcontent = []
for t in range(1, self.T - 1):
if (self.content[t - 1] is None) or (self.content[t + 1] is None):
newcontent.append(None)
else:
newcontent.append((self.content[t + 1] - 2 * self.content[t] + self.content[t - 1]))
if(all([x is None for x in newcontent])):
raise Exception("Derivative is undefined at all timeslices")
return Corr(newcontent, padding=[1, 1])
def m_eff(self, variant='log', guess=1.0):
"""Returns the effective mass of the correlator as correlator object
Parameters
----------
variant : str
log : uses the standard effective mass log(C(t) / C(t+1))
cosh, periodic : Use periodicitiy of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m.
sinh : Use anti-periodicitiy of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m.
See, e.g., arXiv:1205.5380
arccosh : Uses the explicit form of the symmetrized correlator (not recommended)
guess : float
guess for the root finder, only relevant for the root variant
"""
if self.N != 1:
raise Exception('Correlator must be projected before getting m_eff')
if variant == 'log':
newcontent = []
for t in range(self.T - 1):
if (self.content[t] is None) or (self.content[t + 1] is None):
newcontent.append(None)
else:
newcontent.append(self.content[t] / self.content[t + 1])
if(all([x is None for x in newcontent])):
raise Exception('m_eff is undefined at all timeslices')
return np.log(Corr(newcontent, padding=[0, 1]))
elif variant in ['periodic', 'cosh', 'sinh']:
if variant in ['periodic', 'cosh']:
func = anp.cosh
else:
func = anp.sinh
def root_function(x, d):
return func(x * (t - self.T / 2)) / func(x * (t + 1 - self.T / 2)) - d
newcontent = []
for t in range(self.T - 1):
if (self.content[t] is None) or (self.content[t + 1] is None):
newcontent.append(None)
# Fill the two timeslices in the middle of the lattice with their predecessors
elif variant == 'sinh' and t in [self.T / 2, self.T / 2 - 1]:
newcontent.append(newcontent[-1])
else:
newcontent.append(np.abs(find_root(self.content[t][0] / self.content[t + 1][0], root_function, guess=guess)))
if(all([x is None for x in newcontent])):
raise Exception('m_eff is undefined at all timeslices')
return Corr(newcontent, padding=[0, 1])
elif variant == 'arccosh':
newcontent = []
for t in range(1, self.T - 1):
if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t - 1] is None):
newcontent.append(None)
else:
newcontent.append((self.content[t + 1] + self.content[t - 1]) / (2 * self.content[t]))
if(all([x is None for x in newcontent])):
raise Exception("m_eff is undefined at all timeslices")
return np.arccosh(Corr(newcontent, padding=[1, 1]))
else:
raise Exception('Unknown variant.')
def fit(self, function, fitrange=None, silent=False, **kwargs):
"""Fits function to the data
Parameters
----------
function : obj
function to fit to the data. See fits.least_squares for details.
fitrange : list
Range in which the function is to be fitted to the data.
If not specified, self.prange or all timeslices are used.
silent : bool
Decides whether output is printed to the standard output.
"""
if self.N != 1:
raise Exception("Correlator must be projected before fitting")
if fitrange is None:
if self.prange:
fitrange = self.prange
else:
fitrange = [0, self.T - 1]
xs = [x for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]
ys = [self.content[x][0] for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]
result = least_squares(xs, ys, function, silent=silent, **kwargs)
result.gamma_method()
return result
def plateau(self, plateau_range=None, method="fit"):
""" Extract a plateau value from a Corr object
Parameters
----------
plateau_range : list
list with two entries, indicating the first and the last timeslice
of the plateau region.
method : str
method to extract the plateau.
'fit' fits a constant to the plateau region
'avg', 'average' or 'mean' just average over the given timeslices.
"""
if not plateau_range:
if self.prange:
plateau_range = self.prange
else:
raise Exception("no plateau range provided")
if self.N != 1:
raise Exception("Correlator must be projected before getting a plateau.")
if(all([self.content[t] is None for t in range(plateau_range[0], plateau_range[1] + 1)])):
raise Exception("plateau is undefined at all timeslices in plateaurange.")
if method == "fit":
def const_func(a, t):
return a[0]
return self.fit(const_func, plateau_range)[0]
elif method in ["avg", "average", "mean"]:
returnvalue = np.mean([item[0] for item in self.content[plateau_range[0]:plateau_range[1] + 1] if item is not None])
returnvalue.gamma_method()
return returnvalue
else:
raise Exception("Unsupported plateau method: " + method)
def set_prange(self, prange):
"""Sets the attribute prange of the Corr object."""
if not len(prange) == 2:
raise Exception("prange must be a list or array with two values")
if not ((isinstance(prange[0], int)) and (isinstance(prange[1], int))):
raise Exception("Start and end point must be integers")
if not (0 <= prange[0] <= self.T and 0 <= prange[1] <= self.T and prange[0] < prange[1]):
raise Exception("Start and end point must define a range in the interval 0,T")
self.prange = prange
return
def show(self, x_range=None, comp=None, y_range=None, logscale=False, plateau=None, fit_res=None, ylabel=None, save=None):
"""Plots the correlator, uses tag as label if available.
Parameters
----------
x_range : list
list of two values, determining the range of the x-axis e.g. [4, 8]
comp : Corr or list of Corr
Correlator or list of correlators which are plotted for comparison.
logscale : bool
Sets y-axis to logscale
plateau : Obs
plateau to be visualized in the figure
fit_res : Fit_result
Fit_result object to be visualized
ylabel : str
Label for the y-axis
save : str
path to file in which the figure should be saved
"""
if self.N != 1:
raise Exception("Correlator must be projected before plotting")
if x_range is None:
x_range = [0, self.T - 1]
fig = plt.figure()
ax1 = fig.add_subplot(111)
x, y, y_err = self.plottable()
ax1.errorbar(x, y, y_err, label=self.tag)
if logscale:
ax1.set_yscale('log')
else:
# we generate ylim instead of using autoscaling.
if y_range is None:
try:
y_min = min([(x[0].value - x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)])
y_max = max([(x[0].value + x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)])
ax1.set_ylim([y_min - 0.1 * (y_max - y_min), y_max + 0.1 * (y_max - y_min)])
except Exception:
pass
else:
ax1.set_ylim(y_range)
if comp:
if isinstance(comp, Corr) or isinstance(comp, list):
for corr in comp if isinstance(comp, list) else [comp]:
x, y, y_err = corr.plottable()
plt.errorbar(x, y, y_err, label=corr.tag, mfc=plt.rcParams['axes.facecolor'])
else:
raise Exception('comp must be a correlator or a list of correlators.')
if plateau:
if isinstance(plateau, Obs):
ax1.axhline(y=plateau.value, linewidth=2, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--', label=str(plateau))
ax1.axhspan(plateau.value - plateau.dvalue, plateau.value + plateau.dvalue, alpha=0.25, color=plt.rcParams['text.color'], ls='-')
else:
raise Exception('plateau must be an Obs')
if self.prange:
ax1.axvline(self.prange[0], 0, 1, ls='-', marker=',')
ax1.axvline(self.prange[1], 0, 1, ls='-', marker=',')
if fit_res:
x_samples = np.arange(x_range[0], x_range[1] + 1, 0.05)
ax1.plot(x_samples,
fit_res.fit_function([o.value for o in fit_res.fit_parameters], x_samples),
ls='-', marker=',', lw=2)
ax1.set_xlabel(r'$x_0 / a$')
if ylabel:
ax1.set_ylabel(ylabel)
ax1.set_xlim([x_range[0] - 0.5, x_range[1] + 0.5])
handles, labels = ax1.get_legend_handles_labels()
if labels:
ax1.legend()
plt.draw()
if save:
if isinstance(save, str):
fig.savefig(save)
else:
raise Exception("Safe has to be a string.")
return
def dump(self, filename, datatype="json.gz", **kwargs):
"""Dumps the Corr into a file of chosen type
Parameters
----------
filename : str
Name of the file to be saved.
datatype : str
Format of the exported file. Supported formats include
"json.gz" and "pickle"
path : str
specifies a custom path for the file (default '.')
"""
if datatype == "json.gz":
from .input.json import dump_to_json
if 'path' in kwargs:
file_name = kwargs.get('path') + '/' + filename
else:
file_name = filename
dump_to_json(self, file_name)
elif datatype == "pickle":
dump_object(self, filename, **kwargs)
else:
raise Exception("Unknown datatype " + str(datatype))
def print(self, range=[0, None]):
print(self.__repr__(range))
def __repr__(self, range=[0, None]):
content_string = ""
content_string += "Corr T=" + str(self.T) + " N=" + str(self.N) + "\n" # +" filled with"+ str(type(self.content[0][0])) there should be a good solution here
if self.tag is not None:
content_string += "Description: " + self.tag + "\n"
if self.N != 1:
return content_string
# This avoids a crash for N>1. I do not know, what else to do here. I like the list representation for N==1. We could print only one "smearing" or one matrix. Printing everything will just
# be a wall of numbers.
if range[1]:
range[1] += 1
content_string += 'x0/a\tCorr(x0/a)\n------------------\n'
for i, sub_corr in enumerate(self.content[range[0]:range[1]]):
if sub_corr is None:
content_string += str(i + range[0]) + '\n'
else:
content_string += str(i + range[0])
for element in sub_corr:
content_string += '\t' + ' ' * int(element >= 0) + str(element)
content_string += '\n'
return content_string
def __str__(self):
return self.__repr__()
# We define the basic operations, that can be performed with correlators.
# While */+- get defined here, they only work for Corr*Obs and not Obs*Corr.
# This is because Obs*Corr checks Obs.__mul__ first and does not catch an exception.
# One could try and tell Obs to check if the y in __mul__ is a Corr and
def __add__(self, y):
if isinstance(y, Corr):
if ((self.N != y.N) or (self.T != y.T)):
raise Exception("Addition of Corrs with different shape")
newcontent = []
for t in range(self.T):
if (self.content[t] is None) or (y.content[t] is None):
newcontent.append(None)
else:
newcontent.append(self.content[t] + y.content[t])
return Corr(newcontent)
elif isinstance(y, Obs) or isinstance(y, int) or isinstance(y, float) or isinstance(y, CObs):
newcontent = []
for t in range(self.T):
if (self.content[t] is None):
newcontent.append(None)
else:
newcontent.append(self.content[t] + y)
return Corr(newcontent, prange=self.prange)
else:
raise TypeError("Corr + wrong type")
def __mul__(self, y):
if isinstance(y, Corr):
if not((self.N == 1 or y.N == 1 or self.N == y.N) and self.T == y.T):
raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T")
newcontent = []
for t in range(self.T):
if (self.content[t] is None) or (y.content[t] is None):
newcontent.append(None)
else:
newcontent.append(self.content[t] * y.content[t])
return Corr(newcontent)
elif isinstance(y, Obs) or isinstance(y, int) or isinstance(y, float) or isinstance(y, CObs):
newcontent = []
for t in range(self.T):
if (self.content[t] is None):
newcontent.append(None)
else:
newcontent.append(self.content[t] * y)
return Corr(newcontent, prange=self.prange)
else:
raise TypeError("Corr * wrong type")
def __truediv__(self, y):
if isinstance(y, Corr):
if not((self.N == 1 or y.N == 1 or self.N == y.N) and self.T == y.T):
raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T")
newcontent = []
for t in range(self.T):
if (self.content[t] is None) or (y.content[t] is None):
newcontent.append(None)
else:
newcontent.append(self.content[t] / y.content[t])
# Here we set the entire timeslice to undefined, if one of the smearings has encountered an division by zero.
# While this might throw away perfectly good values in other smearings, we will never have to check, if all values in our matrix are defined
for t in range(self.T):
if newcontent[t] is None:
continue
if np.isnan(np.sum(newcontent[t]).value):
newcontent[t] = None
if all([item is None for item in newcontent]):
raise Exception("Division returns completely undefined correlator")
return Corr(newcontent)
elif isinstance(y, Obs) or isinstance(y, CObs):
if isinstance(y, Obs):
if y.value == 0:
raise Exception('Division by zero will return undefined correlator')
if isinstance(y, CObs):
if y.is_zero():
raise Exception('Division by zero will return undefined correlator')
newcontent = []
for t in range(self.T):
if (self.content[t] is None):
newcontent.append(None)
else:
newcontent.append(self.content[t] / y)
return Corr(newcontent, prange=self.prange)
elif isinstance(y, int) or isinstance(y, float):
if y == 0:
raise Exception('Division by zero will return undefined correlator')
newcontent = []
for t in range(self.T):
if (self.content[t] is None):
newcontent.append(None)
else:
newcontent.append(self.content[t] / y)
return Corr(newcontent, prange=self.prange)
else:
raise TypeError('Corr / wrong type')
def __neg__(self):
newcontent = [None if (item is None) else -1. * item for item in self.content]
return Corr(newcontent, prange=self.prange)
def __sub__(self, y):
return self + (-y)
def __pow__(self, y):
if isinstance(y, Obs) or isinstance(y, int) or isinstance(y, float) or isinstance(y, CObs):
newcontent = [None if (item is None) else item**y for item in self.content]
return Corr(newcontent, prange=self.prange)
else:
raise TypeError('Type of exponent not supported')
def __abs__(self):
newcontent = [None if (item is None) else np.abs(item) for item in self.content]
return Corr(newcontent, prange=self.prange)
# The numpy functions:
def sqrt(self):
return self**0.5
def log(self):
newcontent = [None if (item is None) else np.log(item) for item in self.content]
return Corr(newcontent, prange=self.prange)
def exp(self):
newcontent = [None if (item is None) else np.exp(item) for item in self.content]
return Corr(newcontent, prange=self.prange)
def _apply_func_to_corr(self, func):
newcontent = [None if (item is None) else func(item) for item in self.content]
for t in range(self.T):
if newcontent[t] is None:
continue
if np.isnan(np.sum(newcontent[t]).value):
newcontent[t] = None
if all([item is None for item in newcontent]):
raise Exception('Operation returns undefined correlator')
return Corr(newcontent)
def sin(self):
return self._apply_func_to_corr(np.sin)
def cos(self):
return self._apply_func_to_corr(np.cos)
def tan(self):
return self._apply_func_to_corr(np.tan)
def sinh(self):
return self._apply_func_to_corr(np.sinh)
def cosh(self):
return self._apply_func_to_corr(np.cosh)
def tanh(self):
return self._apply_func_to_corr(np.tanh)
def arcsin(self):
return self._apply_func_to_corr(np.arcsin)
def arccos(self):
return self._apply_func_to_corr(np.arccos)
def arctan(self):
return self._apply_func_to_corr(np.arctan)
def arcsinh(self):
return self._apply_func_to_corr(np.arcsinh)
def arccosh(self):
return self._apply_func_to_corr(np.arccosh)
def arctanh(self):
return self._apply_func_to_corr(np.arctanh)
# Right hand side operations (require tweak in main module to work)
def __radd__(self, y):
return self + y
def __rsub__(self, y):
return -self + y
def __rmul__(self, y):
return self * y
def __rtruediv__(self, y):
return (self / y) ** (-1)
@property
def real(self):
def return_real(obs_OR_cobs):
if isinstance(obs_OR_cobs, CObs):
return obs_OR_cobs.real
else:
return obs_OR_cobs
return self._apply_func_to_corr(return_real)
@property
def imag(self):
def return_imag(obs_OR_cobs):
if isinstance(obs_OR_cobs, CObs):
return obs_OR_cobs.imag
else:
return obs_OR_cobs * 0 # So it stays the right type
return self._apply_func_to_corr(return_imag)
def _sort_vectors(vec_set, ts):
"""Helper function used to find a set of Eigenvectors consistent over all timeslices"""
reference_sorting = np.array(vec_set[ts])
N = reference_sorting.shape[0]
sorted_vec_set = []
for t in range(len(vec_set)):
if vec_set[t] is None:
sorted_vec_set.append(None)
elif not t == ts:
perms = permutation([i for i in range(N)])
best_score = 0
for perm in perms:
current_score = 1
for k in range(N):
new_sorting = reference_sorting.copy()
new_sorting[perm[k], :] = vec_set[t][k]
current_score *= abs(np.linalg.det(new_sorting))
if current_score > best_score:
best_score = current_score
best_perm = perm
sorted_vec_set.append([vec_set[t][k] for k in best_perm])
else:
sorted_vec_set.append(vec_set[t])
return sorted_vec_set
def permutation(lst): # Shamelessly copied
if len(lst) == 1:
return [lst]
ll = []
for i in range(len(lst)):
m = lst[i]
remLst = lst[:i] + lst[i + 1:]
# Generating all permutations where m is first
for p in permutation(remLst):
ll.append([m] + p)
return ll
def _GEVP_solver(Gt, G0): # Just so normalization an sorting does not need to be repeated. Here we could later put in some checks
sp_val, sp_vecs = scipy.linalg.eig(Gt, G0)
sp_vecs = [sp_vecs[:, np.argsort(sp_val)[-i]] for i in range(1, sp_vecs.shape[0] + 1)]
sp_vecs = [v / np.sqrt((v.T @ G0 @ v)) for v in sp_vecs]
return sp_vecs