mirror of
				https://github.com/fjosw/pyerrors.git
				synced 2025-11-04 09:35:45 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			734 lines
		
	
	
	
		
			25 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			734 lines
		
	
	
	
		
			25 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#!/usr/bin/env python
 | 
						|
# coding: utf-8
 | 
						|
 | 
						|
import sys
 | 
						|
import os
 | 
						|
import fnmatch
 | 
						|
import re
 | 
						|
import struct
 | 
						|
import autograd.numpy as np  # Thinly-wrapped numpy
 | 
						|
from ..pyerrors import Obs
 | 
						|
from ..fits import fit_lin
 | 
						|
 | 
						|
 | 
						|
def read_sfcf(path, prefix, name, **kwargs):
 | 
						|
    """Read sfcf C format from given folder structure.
 | 
						|
 | 
						|
    Keyword arguments
 | 
						|
    -----------------
 | 
						|
    im -- if True, read imaginary instead of real part of the correlation function.
 | 
						|
    single -- if True, read a boundary-to-boundary correlation function with a single value
 | 
						|
    b2b -- if True, read a time-dependent boundary-to-boundary correlation function
 | 
						|
    names -- Alternative labeling for replicas/ensembles. Has to have the appropriate length
 | 
						|
    """
 | 
						|
    if kwargs.get('im'):
 | 
						|
        im = 1
 | 
						|
        part = 'imaginary'
 | 
						|
    else:
 | 
						|
        im = 0
 | 
						|
        part = 'real'
 | 
						|
 | 
						|
    if kwargs.get('single'):
 | 
						|
        b2b = 1
 | 
						|
        single = 1
 | 
						|
    else:
 | 
						|
        b2b = 0
 | 
						|
        single = 0
 | 
						|
 | 
						|
    if kwargs.get('b2b'):
 | 
						|
        b2b = 1
 | 
						|
 | 
						|
    read = 0
 | 
						|
    T = 0
 | 
						|
    start = 0
 | 
						|
    ls = []
 | 
						|
    for (dirpath, dirnames, filenames) in os.walk(path):
 | 
						|
        ls.extend(dirnames)
 | 
						|
        break
 | 
						|
    if not ls:
 | 
						|
        print('Error, directory not found')
 | 
						|
        sys.exit()
 | 
						|
    for exc in ls:
 | 
						|
        if fnmatch.fnmatch(exc, prefix + '*'):
 | 
						|
            ls = list(set(ls) - set(exc))
 | 
						|
    if len(ls) > 1:
 | 
						|
        ls.sort(key=lambda x: int(re.findall(r'\d+', x[len(prefix):])[0]))
 | 
						|
    replica = len(ls)
 | 
						|
    print('Read', part, 'part of', name, 'from', prefix, ',', replica, 'replica')
 | 
						|
    if 'names' in kwargs:
 | 
						|
        new_names = kwargs.get('names')
 | 
						|
        if len(new_names) != replica:
 | 
						|
            raise Exception('Names does not have the required length', replica)
 | 
						|
    else:
 | 
						|
        new_names = ls
 | 
						|
    print(replica, 'replica')
 | 
						|
    for i, item in enumerate(ls):
 | 
						|
        print(item)
 | 
						|
        sub_ls = []
 | 
						|
        for (dirpath, dirnames, filenames) in os.walk(path+'/'+item):
 | 
						|
            sub_ls.extend(dirnames)
 | 
						|
            break
 | 
						|
        for exc in sub_ls:
 | 
						|
            if fnmatch.fnmatch(exc, 'cfg*'):
 | 
						|
                sub_ls = list(set(sub_ls) - set(exc))
 | 
						|
        sub_ls.sort(key=lambda x: int(x[3:]))
 | 
						|
        no_cfg = len(sub_ls)
 | 
						|
        print(no_cfg, 'configurations')
 | 
						|
 | 
						|
        if i == 0:
 | 
						|
            with open(path + '/' + item + '/' + sub_ls[0] + '/' + name) as fp:
 | 
						|
                for k, line in enumerate(fp):
 | 
						|
                    if read == 1 and not line.strip() and k > start + 1:
 | 
						|
                        break
 | 
						|
                    if read == 1 and k >= start:
 | 
						|
                        T += 1
 | 
						|
                    if '[correlator]' in line:
 | 
						|
                        read = 1
 | 
						|
                        start = k + 7 + b2b
 | 
						|
                        T -= b2b
 | 
						|
 | 
						|
            deltas = []
 | 
						|
            for j in range(T):
 | 
						|
                deltas.append([])
 | 
						|
 | 
						|
        sublength = len(sub_ls)
 | 
						|
        for j in range(T):
 | 
						|
            deltas[j].append(np.zeros(sublength))
 | 
						|
 | 
						|
        for cnfg, subitem in enumerate(sub_ls):
 | 
						|
            with open(path + '/' + item + '/' + subitem + '/'+name) as fp:
 | 
						|
                for k, line in enumerate(fp):
 | 
						|
                    if(k >= start and k < start + T):
 | 
						|
                        floats = list(map(float, line.split()))
 | 
						|
                        deltas[k-start][i][cnfg] = floats[1 + im - single]
 | 
						|
 | 
						|
    result = []
 | 
						|
    for t in range(T):
 | 
						|
        result.append(Obs(deltas[t], new_names))
 | 
						|
 | 
						|
    return result
 | 
						|
 | 
						|
 | 
						|
def read_sfcf_c(path, prefix, name, quarks='.*', noffset=0, wf=0, wf2=0, **kwargs):
 | 
						|
    """Read sfcf c format from given folder structure.
 | 
						|
 | 
						|
    Arguments
 | 
						|
    -----------------
 | 
						|
    quarks -- Label of the quarks used in the sfcf input file
 | 
						|
    noffset -- Offset of the source (only relevant when wavefunctions are used)
 | 
						|
    wf -- ID of wave function
 | 
						|
    wf2 -- ID of the second wavefunction (only relevant for boundary-to-boundary correlation functions)
 | 
						|
 | 
						|
    Keyword arguments
 | 
						|
    -----------------
 | 
						|
    im -- if True, read imaginary instead of real part of the correlation function.
 | 
						|
    b2b -- if True, read a time-dependent boundary-to-boundary correlation function
 | 
						|
    names -- Alternative labeling for replicas/ensembles. Has to have the appropriate length
 | 
						|
    """
 | 
						|
    
 | 
						|
    if kwargs.get('im'):
 | 
						|
        im = 1
 | 
						|
        part = 'imaginary'
 | 
						|
    else:
 | 
						|
        im = 0
 | 
						|
        part = 'real'
 | 
						|
 | 
						|
    if kwargs.get('b2b'):
 | 
						|
        b2b = 1
 | 
						|
    else:
 | 
						|
        b2b = 0
 | 
						|
 | 
						|
    read = 0
 | 
						|
    T = 0
 | 
						|
    start = 0
 | 
						|
    ls = []
 | 
						|
    for (dirpath, dirnames, filenames) in os.walk(path):
 | 
						|
        ls.extend(dirnames)
 | 
						|
        break
 | 
						|
    if not ls:
 | 
						|
        print('Error, directory not found')
 | 
						|
        sys.exit()
 | 
						|
    # Exclude folders with different names
 | 
						|
    for exc in ls:
 | 
						|
        if not fnmatch.fnmatch(exc, prefix+'*'):
 | 
						|
            ls = list(set(ls) - set([exc]))
 | 
						|
    if len(ls) > 1:
 | 
						|
        ls.sort(key=lambda x: int(re.findall(r'\d+', x[len(prefix):])[0]))  # New version, to cope with ids, etc.
 | 
						|
    replica = len(ls)
 | 
						|
    if 'names' in kwargs:
 | 
						|
        new_names = kwargs.get('names')
 | 
						|
        if len(new_names) != replica:
 | 
						|
            raise Exception('Names does not have the required length', replica)
 | 
						|
    else:
 | 
						|
        new_names = ls
 | 
						|
    print('Read', part, 'part of', name, 'from', prefix[:-1], ',', replica, 'replica')
 | 
						|
    for i, item in enumerate(ls):
 | 
						|
        sub_ls = []
 | 
						|
        for (dirpath, dirnames, filenames) in os.walk(path+'/'+item):
 | 
						|
            sub_ls.extend(filenames)
 | 
						|
            break
 | 
						|
        for exc in sub_ls:
 | 
						|
            if not fnmatch.fnmatch(exc, prefix+'*'):
 | 
						|
                sub_ls = list(set(sub_ls) - set([exc]))
 | 
						|
        sub_ls.sort(key=lambda x: int(re.findall(r'\d+', x)[-1]))
 | 
						|
 | 
						|
        first_cfg = int(re.findall(r'\d+', sub_ls[0])[-1])
 | 
						|
 | 
						|
        last_cfg = len(sub_ls) + first_cfg - 1
 | 
						|
 | 
						|
        for cfg in range(1, len(sub_ls)):
 | 
						|
            if int(re.findall(r'\d+', sub_ls[cfg])[-1]) != first_cfg + cfg:
 | 
						|
                last_cfg = cfg + first_cfg - 1
 | 
						|
                break
 | 
						|
 | 
						|
        no_cfg = last_cfg - first_cfg + 1
 | 
						|
        print(item, ':', no_cfg, 'evenly spaced configurations (', first_cfg, '-', last_cfg, ') ,', len(sub_ls) - no_cfg, 'configs omitted\n')
 | 
						|
 | 
						|
        if i == 0:
 | 
						|
            pattern = 'name      ' + name + '\nquarks    ' + quarks + '\noffset    ' + str(noffset) + '\nwf        ' + str(wf)
 | 
						|
            if b2b:
 | 
						|
                pattern += '\nwf_2      ' + str(wf2)
 | 
						|
 | 
						|
            with open(path+'/'+item+'/'+sub_ls[0], 'r') as file:
 | 
						|
                content = file.read()
 | 
						|
                match = re.search(pattern, content)
 | 
						|
                if match:
 | 
						|
                    start_read = content.count('\n', 0, match.start()) + 5 + b2b
 | 
						|
                    end_match = re.search('\n\s*\n', content[match.start():])
 | 
						|
                    T = content[match.start():].count('\n', 0, end_match.start()) - 4 - b2b
 | 
						|
                    assert T > 0
 | 
						|
                    print(T, 'entries, starting to read in line', start_read)
 | 
						|
                else:
 | 
						|
                    raise Exception('Correlator with pattern\n' + pattern + '\nnot found.')
 | 
						|
 | 
						|
            deltas = []
 | 
						|
            for j in range(T):
 | 
						|
                deltas.append([])
 | 
						|
 | 
						|
        sublength = no_cfg
 | 
						|
        for j in range(T):
 | 
						|
            deltas[j].append(np.zeros(sublength))
 | 
						|
 | 
						|
        for cfg in range(no_cfg):
 | 
						|
            with open(path+'/'+item+'/'+sub_ls[cfg]) as fp:
 | 
						|
                for k, line in enumerate(fp):
 | 
						|
                    if k == start_read - 5 - b2b:
 | 
						|
                        if line.strip() != 'name      ' + name:
 | 
						|
                            raise Exception('Wrong format', sub_ls[cfg])
 | 
						|
                    if(k >= start_read and k < start_read + T):
 | 
						|
                        floats = list(map(float, line.split()))
 | 
						|
                        deltas[k-start_read][i][cfg] = floats[-2:][im]
 | 
						|
 | 
						|
    result = []
 | 
						|
    for t in range(T):
 | 
						|
        result.append(Obs(deltas[t], new_names))
 | 
						|
    return result
 | 
						|
 | 
						|
 | 
						|
def read_qtop(path, prefix, **kwargs):
 | 
						|
    """Read qtop format from given folder structure.
 | 
						|
 | 
						|
    Keyword arguments
 | 
						|
    -----------------
 | 
						|
    target -- specifies the topological sector to be reweighted to (default 0)
 | 
						|
    full -- if true read the charge instead of the reweighting factor.
 | 
						|
    """
 | 
						|
 | 
						|
    if 'target' in kwargs:
 | 
						|
        target = kwargs.get('target')
 | 
						|
    else:
 | 
						|
        target = 0
 | 
						|
 | 
						|
    if kwargs.get('full'):
 | 
						|
        full = 1
 | 
						|
    else:
 | 
						|
        full = 0
 | 
						|
 | 
						|
    ls = []
 | 
						|
    for (dirpath, dirnames, filenames) in os.walk(path):
 | 
						|
        ls.extend(filenames)
 | 
						|
        break
 | 
						|
 | 
						|
    if not ls:
 | 
						|
        print('Error, directory not found')
 | 
						|
        sys.exit()
 | 
						|
 | 
						|
    # Exclude files with different names
 | 
						|
    for exc in ls:
 | 
						|
        if not fnmatch.fnmatch(exc, prefix+'*'):
 | 
						|
            ls = list(set(ls) - set([exc]))
 | 
						|
    if len(ls) > 1:
 | 
						|
        ls.sort(key=lambda x: int(re.findall(r'\d+', x[len(prefix):])[0]))  # New version, to cope with ids, etc.
 | 
						|
    replica = len(ls)
 | 
						|
    print('Read Q_top from', prefix[:-1], ',', replica, 'replica')
 | 
						|
 | 
						|
    deltas = []
 | 
						|
 | 
						|
    for rep in range(replica):
 | 
						|
        tmp = []
 | 
						|
        with open(path+'/'+ls[rep]) as fp:
 | 
						|
            for k, line in enumerate(fp):
 | 
						|
                floats = list(map(float, line.split()))
 | 
						|
                if full == 1:
 | 
						|
                    tmp.append(floats[1])
 | 
						|
                else:
 | 
						|
                    if int(floats[1]) == target:
 | 
						|
                        tmp.append(1.0)
 | 
						|
                    else:
 | 
						|
                        tmp.append(0.0)
 | 
						|
 | 
						|
        deltas.append(np.array(tmp))
 | 
						|
 | 
						|
    result = Obs(deltas, [(w.split('.'))[0] for w in ls])
 | 
						|
 | 
						|
    return result
 | 
						|
 | 
						|
def parse_array_openQCD2(d, n, size, wa, quadrupel=False):
 | 
						|
    arr = []
 | 
						|
    if d == 2:
 | 
						|
        tot = 0
 | 
						|
        for i in range(n[d-1]-1):
 | 
						|
            if quadrupel:
 | 
						|
                tmp = wa[tot:n[d-1]]
 | 
						|
                tmp2 = []
 | 
						|
                for i in range(len(tmp)):
 | 
						|
                    if i % 2 == 0:
 | 
						|
                        tmp2.append(tmp[i])
 | 
						|
                arr.append(tmp2)
 | 
						|
            else:
 | 
						|
                arr.append(np.asarray(wa[tot:n[d-1]]))
 | 
						|
    return arr
 | 
						|
 | 
						|
 | 
						|
# mimic the read_array routine of openQCD-2.0. 
 | 
						|
# fp is the opened file handle
 | 
						|
# returns the dict array 
 | 
						|
# at this point we only parse a 2d array
 | 
						|
# d = 2
 | 
						|
# n = [nfct[irw], 2*nsrc[irw]]
 | 
						|
def read_array_openQCD2(fp):
 | 
						|
    t = fp.read(4)
 | 
						|
    d = struct.unpack('i', t)[0]
 | 
						|
    t = fp.read(4*d)
 | 
						|
    n = struct.unpack('%di' % (d), t)
 | 
						|
    t = fp.read(4)
 | 
						|
    size = struct.unpack('i', t)[0]
 | 
						|
    if size == 4:
 | 
						|
        types = 'i'
 | 
						|
    elif size == 8:
 | 
						|
        types = 'd'
 | 
						|
    elif size == 16:
 | 
						|
        types = 'dd'
 | 
						|
    else:
 | 
						|
        print('Type not known!')
 | 
						|
    m = n[0]
 | 
						|
    for i in range(1,d):
 | 
						|
        m *= n[i]
 | 
						|
 | 
						|
    t = fp.read(m*size)
 | 
						|
    #print("struct.calc tmp = "+str(struct.calcsize('%d%s' % (m, types))))
 | 
						|
    tmp = struct.unpack('%d%s' % (m, types), t)
 | 
						|
    
 | 
						|
    arr = parse_array_openQCD2(d, n, size, tmp, quadrupel=True)
 | 
						|
    return {'d': d, 'n': n, 'size': size, 'arr': arr}
 | 
						|
 | 
						|
def read_rwms(path, prefix, names=None, **kwargs):
 | 
						|
    """Read rwms format from given folder structure. Returns a list of length nrw
 | 
						|
 | 
						|
    Keyword arguments
 | 
						|
    -----------------
 | 
						|
    new_format -- if True, the array of the associated numbers of Hasenbusch factors is extracted (v>=openQCD1.6)
 | 
						|
    r_start -- list which contains the first config to be read for each replicum
 | 
						|
    r_stop -- list which contains the last config to be read for each replicum
 | 
						|
    oqcd_ver_string -- openQCD version
 | 
						|
    postfix -- postfix of the file to read, e.g. '.ms1' for openQCD-files
 | 
						|
    """
 | 
						|
    #oqcd versions implemented in this method
 | 
						|
    known_oqcd_versions = ['1.4','1.6','2.0']
 | 
						|
    if 'oqcd_ver_string' in kwargs:
 | 
						|
        ver_str = kwargs.get('oqcd_ver_string')
 | 
						|
        if not (ver_str in known_oqcd_versions):
 | 
						|
            raise Exception('Unknown openQCD version defined!')
 | 
						|
    else:     #Set defaults for openQCD Version to be version 1.4, emulate the old behaviour of this method
 | 
						|
        if 'new_format':
 | 
						|
            ver_str = '1.6'
 | 
						|
        else:
 | 
						|
            ver_str = '1.4'
 | 
						|
    print("Working with oQCD version:" + ver_str)
 | 
						|
    if 'postfix' in kwargs:
 | 
						|
        postfix = kwargs.get('postfix')
 | 
						|
    else:
 | 
						|
        postfix = ''
 | 
						|
    ls = []
 | 
						|
    for (dirpath, dirnames, filenames) in os.walk(path):
 | 
						|
        ls.extend(filenames)
 | 
						|
        break
 | 
						|
 | 
						|
    if not ls:
 | 
						|
        print('Error, directory not found')
 | 
						|
        sys.exit()
 | 
						|
 | 
						|
    # Exclude files with different names
 | 
						|
    for exc in ls:
 | 
						|
        if not fnmatch.fnmatch(exc, prefix + '*'+postfix+'.dat'):
 | 
						|
            ls = list(set(ls) - set([exc]))
 | 
						|
    if len(ls) > 1:
 | 
						|
        ls.sort(key=lambda x: int(re.findall(r'\d+', x[len(prefix):])[0]))
 | 
						|
    #ls = fnames
 | 
						|
    #print(ls)
 | 
						|
    replica = len(ls)
 | 
						|
 | 
						|
    if 'r_start' in kwargs:
 | 
						|
        r_start = kwargs.get('r_start')
 | 
						|
        if len(r_start) != replica:
 | 
						|
            raise Exception('r_start does not match number of replicas')
 | 
						|
        # Adjust Configuration numbering to python index
 | 
						|
        r_start = [o - 1 if o else None for o in r_start]
 | 
						|
    else:
 | 
						|
        r_start = [None] * replica
 | 
						|
 | 
						|
    if 'r_stop' in kwargs:
 | 
						|
        r_stop = kwargs.get('r_stop')
 | 
						|
        if len(r_stop) != replica:
 | 
						|
            raise Exception('r_stop does not match number of replicas')
 | 
						|
    else:
 | 
						|
        r_stop = [None] * replica
 | 
						|
 | 
						|
    print('Read reweighting factors from', prefix[:-1], ',', replica, 'replica', end='')
 | 
						|
 | 
						|
    print_err = 0
 | 
						|
    if 'print_err' in kwargs:
 | 
						|
        print_err = 1
 | 
						|
        print()
 | 
						|
 | 
						|
    deltas = []
 | 
						|
 | 
						|
    for rep in range(replica):
 | 
						|
        tmp_array = []
 | 
						|
        with open(path+ '/' + ls[rep], 'rb') as fp:
 | 
						|
 | 
						|
            #header
 | 
						|
            t = fp.read(4) # number of reweighting factors
 | 
						|
            if rep == 0:
 | 
						|
                nrw = struct.unpack('i', t)[0]
 | 
						|
                if ver_str == '2.0':
 | 
						|
                    nrw = int(nrw/2)
 | 
						|
                for k in range(nrw):
 | 
						|
                    deltas.append([])
 | 
						|
            else:
 | 
						|
                if ((nrw != struct.unpack('i', t)[0] and (not ver_str == '2.0')) or (nrw != struct.unpack('i', t)[0]/2 and ver_str == '2.0')):#little weird if-clause due to the /2 operation needed...
 | 
						|
                    print('Error: different number of reweighting factors for replicum', rep)
 | 
						|
                    sys.exit()
 | 
						|
 | 
						|
            for k in range(nrw):
 | 
						|
                tmp_array.append([])
 | 
						|
 | 
						|
            # This block is necessary for openQCD1.6 and openQCD2.0 ms1 files
 | 
						|
            nfct = []
 | 
						|
            if ver_str in ['1.6','2.0']:
 | 
						|
                for i in range(nrw):
 | 
						|
                    t = fp.read(4)
 | 
						|
                    nfct.append(struct.unpack('i', t)[0])
 | 
						|
                #print('nfct: ', nfct) # Hasenbusch factor, 1 for rat reweighting
 | 
						|
            else:
 | 
						|
                for i in range(nrw):
 | 
						|
                    nfct.append(1)
 | 
						|
 | 
						|
            nsrc = []
 | 
						|
            for i in range(nrw):
 | 
						|
                t = fp.read(4)
 | 
						|
                nsrc.append(struct.unpack('i', t)[0])
 | 
						|
            if (ver_str == '2.0'):
 | 
						|
                if not struct.unpack('i', fp.read(4))[0] == 0:
 | 
						|
                    print('something is wrong!')
 | 
						|
            print('nfct:', nfct, 'nsrc:', nsrc)
 | 
						|
 | 
						|
            #body
 | 
						|
            while 0 < 1:
 | 
						|
                t = fp.read(4)
 | 
						|
                if len(t) < 4:
 | 
						|
                    break
 | 
						|
                if print_err:
 | 
						|
                    config_no = struct.unpack('i', t)
 | 
						|
                for i in range(nrw):
 | 
						|
                    if(ver_str == '2.0'):
 | 
						|
                        tmpd = read_array_openQCD2(fp)
 | 
						|
                        tmpd = read_array_openQCD2(fp)
 | 
						|
                        tmp_rw = tmpd['arr']
 | 
						|
                        tmp_nfct = 1.0
 | 
						|
                        for j in range(tmpd['n'][0]):
 | 
						|
                            tmp_nfct *= np.mean(np.exp(-np.asarray(tmp_rw[j])))
 | 
						|
                            if print_err:
 | 
						|
                                print(config_no, i, j, np.mean(np.exp(-np.asarray(tmp_rw[j]))), np.std(np.exp(-np.asarray(tmp_rw[j]))))
 | 
						|
                                print('Sources:', np.exp(-np.asarray(tmp_rw[j])))
 | 
						|
                                print('Partial factor:', tmp_nfct)
 | 
						|
                    elif(ver_str=='1.6' or ver_str=='1.4'):
 | 
						|
                        tmp_nfct = 1.0
 | 
						|
                        for j in range(nfct[i]):
 | 
						|
                            t = fp.read(8 * nsrc[i])
 | 
						|
                            t = fp.read(8 * nsrc[i])
 | 
						|
                            tmp_rw = struct.unpack('d' * nsrc[i], t)
 | 
						|
                            tmp_nfct *= np.mean(np.exp(-np.asarray(tmp_rw)))
 | 
						|
                            if print_err:
 | 
						|
                                print(config_no, i, j, np.mean(np.exp(-np.asarray(tmp_rw))), np.std(np.exp(-np.asarray(tmp_rw))))
 | 
						|
                                print('Sources:', np.exp(-np.asarray(tmp_rw)))
 | 
						|
                                print('Partial factor:', tmp_nfct)
 | 
						|
                    tmp_array[i].append(tmp_nfct)
 | 
						|
 | 
						|
            for k in range(nrw):
 | 
						|
                deltas[k].append(tmp_array[k][r_start[rep]:r_stop[rep]])
 | 
						|
 | 
						|
    print(',', nrw, 'reweighting factors with', nsrc, 'sources')
 | 
						|
    result = []
 | 
						|
    for t in range(nrw):
 | 
						|
        if names == None:
 | 
						|
            result.append(Obs(deltas[t], [w.split(".")[0] for w in ls]))
 | 
						|
        else:
 | 
						|
            print(names)
 | 
						|
            result.append(Obs(deltas[t], names))
 | 
						|
    return result
 | 
						|
 | 
						|
 | 
						|
def read_pbp(path, prefix, **kwargs):
 | 
						|
    """Read pbp format from given folder structure. Returns a list of length nrw
 | 
						|
 | 
						|
    Keyword arguments
 | 
						|
    -----------------
 | 
						|
    r_start -- list which contains the first config to be read for each replicum
 | 
						|
    r_stop -- list which contains the last config to be read for each replicum
 | 
						|
 | 
						|
    """
 | 
						|
 | 
						|
    extract_nfct = 1
 | 
						|
 | 
						|
    ls = []
 | 
						|
    for (dirpath, dirnames, filenames) in os.walk(path):
 | 
						|
        ls.extend(filenames)
 | 
						|
        break
 | 
						|
 | 
						|
    if not ls:
 | 
						|
        print('Error, directory not found')
 | 
						|
        sys.exit()
 | 
						|
 | 
						|
    # Exclude files with different names
 | 
						|
    for exc in ls:
 | 
						|
        if not fnmatch.fnmatch(exc, prefix + '*.dat'):
 | 
						|
            ls = list(set(ls) - set([exc]))
 | 
						|
    if len(ls) > 1:
 | 
						|
        ls.sort(key=lambda x: int(re.findall(r'\d+', x[len(prefix):])[0]))
 | 
						|
    replica = len(ls)
 | 
						|
 | 
						|
    if 'r_start' in kwargs:
 | 
						|
        r_start = kwargs.get('r_start')
 | 
						|
        if len(r_start) != replica:
 | 
						|
            raise Exception('r_start does not match number of replicas')
 | 
						|
        # Adjust Configuration numbering to python index
 | 
						|
        r_start = [o - 1 if o else None for o in r_start]
 | 
						|
    else:
 | 
						|
        r_start = [None] * replica
 | 
						|
 | 
						|
    if 'r_stop' in kwargs:
 | 
						|
        r_stop = kwargs.get('r_stop')
 | 
						|
        if len(r_stop) != replica:
 | 
						|
            raise Exception('r_stop does not match number of replicas')
 | 
						|
    else:
 | 
						|
        r_stop = [None] * replica
 | 
						|
 | 
						|
    print('Read <bar{psi}\psi> from', prefix[:-1], ',', replica, 'replica', end='')
 | 
						|
 | 
						|
    print_err = 0
 | 
						|
    if 'print_err' in kwargs:
 | 
						|
        print_err = 1
 | 
						|
        print()
 | 
						|
 | 
						|
    deltas = []
 | 
						|
 | 
						|
    for rep in range(replica):
 | 
						|
        tmp_array = []
 | 
						|
        with open(path+ '/' + ls[rep], 'rb') as fp:
 | 
						|
 | 
						|
            #header
 | 
						|
            t = fp.read(4) # number of reweighting factors
 | 
						|
            if rep == 0:
 | 
						|
                nrw = struct.unpack('i', t)[0]
 | 
						|
                for k in range(nrw):
 | 
						|
                    deltas.append([])
 | 
						|
            else:
 | 
						|
                if nrw != struct.unpack('i', t)[0]:
 | 
						|
                    print('Error: different number of reweighting factors for replicum', rep)
 | 
						|
                    sys.exit()
 | 
						|
 | 
						|
            for k in range(nrw):
 | 
						|
                tmp_array.append([])
 | 
						|
 | 
						|
            # This block is necessary for openQCD1.6 ms1 files
 | 
						|
            nfct = []
 | 
						|
            if extract_nfct == 1:
 | 
						|
                for i in range(nrw):
 | 
						|
                    t = fp.read(4)
 | 
						|
                    nfct.append(struct.unpack('i', t)[0])
 | 
						|
                print('nfct: ', nfct) # Hasenbusch factor, 1 for rat reweighting
 | 
						|
            else:
 | 
						|
                for i in range(nrw):
 | 
						|
                    nfct.append(1)
 | 
						|
 | 
						|
            nsrc = []
 | 
						|
            for i in range(nrw):
 | 
						|
                t = fp.read(4)
 | 
						|
                nsrc.append(struct.unpack('i', t)[0])
 | 
						|
 | 
						|
            #body
 | 
						|
            while 0 < 1:
 | 
						|
                t = fp.read(4)
 | 
						|
                if len(t) < 4:
 | 
						|
                    break
 | 
						|
                if print_err:
 | 
						|
                    config_no = struct.unpack('i', t)
 | 
						|
                for i in range(nrw):
 | 
						|
                    tmp_nfct = 1.0
 | 
						|
                    for j in range(nfct[i]):
 | 
						|
                        t = fp.read(8 * nsrc[i])
 | 
						|
                        t = fp.read(8 * nsrc[i])
 | 
						|
                        tmp_rw = struct.unpack('d' * nsrc[i], t)
 | 
						|
                        tmp_nfct *= np.mean(np.asarray(tmp_rw))
 | 
						|
                        if print_err:
 | 
						|
                            print(config_no, i, j, np.mean(np.asarray(tmp_rw)), np.std(np.asarray(tmp_rw)))
 | 
						|
                            print('Sources:', np.asarray(tmp_rw))
 | 
						|
                            print('Partial factor:', tmp_nfct)
 | 
						|
                    tmp_array[i].append(tmp_nfct)
 | 
						|
 | 
						|
            for k in range(nrw):
 | 
						|
                deltas[k].append(tmp_array[k][r_start[rep]:r_stop[rep]])
 | 
						|
 | 
						|
    print(',', nrw, '<bar{psi}\psi> with', nsrc, 'sources')
 | 
						|
    result = []
 | 
						|
    for t in range(nrw):
 | 
						|
        result.append(Obs(deltas[t], [(w.split('.'))[0] for w in ls]))
 | 
						|
 | 
						|
    return result
 | 
						|
 | 
						|
 | 
						|
def extract_t0(path, prefix, dtr_read, xmin, spatial_extent, fit_range=5, **kwargs):
 | 
						|
    """Extract t0 from given .ms.dat files. Returns t0 as Obs.
 | 
						|
 | 
						|
    It is assumed that all boundary effects have sufficiently decayed at x0=xmin.
 | 
						|
    The data around the zero crossing of t^2<E> - 0.3 is fitted with a linear function
 | 
						|
    from which the exact root is extracted.
 | 
						|
    Only works with openQCD v 1.2.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    path -- Path to .ms.dat files
 | 
						|
    prefix -- Ensemble prefix
 | 
						|
    dtr_read -- Determines how many trajectories should be skipped when reading the ms.dat files.
 | 
						|
                Corresponds to dtr_cnfg / dtr_ms in the openQCD input file.
 | 
						|
    xmin -- First timeslice where the boundary effects have sufficiently decayed.
 | 
						|
    spatial_extent -- spatial extent of the lattice, required for normalization.
 | 
						|
    fit_range -- Number of data points left and right of the zero crossing to be included in the linear fit. (Default: 5)
 | 
						|
 | 
						|
    Keyword arguments
 | 
						|
    -----------------
 | 
						|
    r_start -- list which contains the first config to be read for each replicum.
 | 
						|
    r_stop -- list which contains the last config to be read for each replicum.
 | 
						|
    plaquette -- If true extract the plaquette estimate of t0 instead.
 | 
						|
    """
 | 
						|
 | 
						|
    ls = []
 | 
						|
    for (dirpath, dirnames, filenames) in os.walk(path):
 | 
						|
        ls.extend(filenames)
 | 
						|
        break
 | 
						|
 | 
						|
    if not ls:
 | 
						|
        print('Error, directory not found')
 | 
						|
        sys.exit()
 | 
						|
 | 
						|
    # Exclude files with different names
 | 
						|
    for exc in ls:
 | 
						|
        if not fnmatch.fnmatch(exc, prefix + '*.ms.dat'):
 | 
						|
            ls = list(set(ls) - set([exc]))
 | 
						|
    if len(ls) > 1:
 | 
						|
        ls.sort(key=lambda x: int(re.findall(r'\d+', x[len(prefix):])[0]))
 | 
						|
    replica = len(ls)
 | 
						|
 | 
						|
    if 'r_start' in kwargs:
 | 
						|
        r_start = kwargs.get('r_start')
 | 
						|
        if len(r_start) != replica:
 | 
						|
            raise Exception('r_start does not match number of replicas')
 | 
						|
        # Adjust Configuration numbering to python index
 | 
						|
        r_start = [o - 1 if o else None for o in r_start]
 | 
						|
    else:
 | 
						|
        r_start = [None] * replica
 | 
						|
 | 
						|
    if 'r_stop' in kwargs:
 | 
						|
        r_stop = kwargs.get('r_stop')
 | 
						|
        if len(r_stop) != replica:
 | 
						|
            raise Exception('r_stop does not match number of replicas')
 | 
						|
    else:
 | 
						|
        r_stop = [None] * replica
 | 
						|
 | 
						|
    print('Extract t0 from', prefix, ',', replica, 'replica')
 | 
						|
 | 
						|
    Ysum = []
 | 
						|
 | 
						|
    for rep in range(replica):
 | 
						|
 | 
						|
        with open(path + '/' + ls[rep], 'rb') as fp:
 | 
						|
            # Read header
 | 
						|
            t = fp.read(12)
 | 
						|
            header = struct.unpack('iii', t)
 | 
						|
            if rep == 0:
 | 
						|
                dn = header[0]
 | 
						|
                nn = header[1]
 | 
						|
                tmax = header[2]
 | 
						|
            elif dn != header[0] or nn != header[1] or tmax != header[2]:
 | 
						|
                raise Exception('Replica parameters do not match.')
 | 
						|
 | 
						|
            t = fp.read(8)
 | 
						|
            if rep == 0:
 | 
						|
                eps = struct.unpack('d', t)[0]
 | 
						|
                print('Step size:', eps, ', Maximal t value:', dn * (nn) * eps)
 | 
						|
            elif eps != struct.unpack('d', t)[0]:
 | 
						|
                raise Exception('Values for eps do not match among replica.')
 | 
						|
 | 
						|
            Ysl = []
 | 
						|
 | 
						|
            # Read body
 | 
						|
            while 0 < 1:
 | 
						|
                t = fp.read(4)
 | 
						|
                if(len(t) < 4):
 | 
						|
                    break
 | 
						|
                nc = struct.unpack('i', t)[0]
 | 
						|
 | 
						|
                t = fp.read(8 * tmax * (nn + 1))
 | 
						|
                if kwargs.get('plaquette'):
 | 
						|
                    if nc % dtr_read == 0:
 | 
						|
                        Ysl.append(struct.unpack('d' * tmax * (nn + 1), t))
 | 
						|
                t = fp.read(8 * tmax * (nn + 1))
 | 
						|
                if not kwargs.get('plaquette'):
 | 
						|
                    if nc % dtr_read == 0:
 | 
						|
                        Ysl.append(struct.unpack('d' * tmax * (nn + 1), t))
 | 
						|
                t = fp.read(8 * tmax * (nn + 1))
 | 
						|
 | 
						|
        Ysum.append([])
 | 
						|
        for i, item in enumerate(Ysl):
 | 
						|
            Ysum[-1].append([np.mean(item[current + xmin:current + tmax - xmin]) for current in range(0, len(item), tmax)])
 | 
						|
 | 
						|
    t2E_dict = {}
 | 
						|
    for n in range(nn + 1):
 | 
						|
        samples = []
 | 
						|
        for nrep, rep in enumerate(Ysum):
 | 
						|
            samples.append([])
 | 
						|
            for cnfg in rep:
 | 
						|
                samples[-1].append(cnfg[n])
 | 
						|
            samples[-1] = samples[-1][r_start[nrep]:r_stop[nrep]]
 | 
						|
        new_obs = Obs(samples, [(w.split('.'))[0] for w in ls])
 | 
						|
        t2E_dict[n * dn * eps] = (n * dn * eps) ** 2 * new_obs / (spatial_extent ** 3) - 0.3
 | 
						|
 | 
						|
    zero_crossing = np.argmax(np.array([o.value for o in t2E_dict.values()]) > 0.0)
 | 
						|
 | 
						|
    x = list(t2E_dict.keys())[zero_crossing - fit_range: zero_crossing + fit_range]
 | 
						|
    y = list(t2E_dict.values())[zero_crossing - fit_range: zero_crossing + fit_range]
 | 
						|
    [o.gamma_method() for o in y]
 | 
						|
 | 
						|
    fit_result = fit_lin(x, y)
 | 
						|
    return -fit_result[0] / fit_result[1]
 |