mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-03-15 23:00:25 +01:00
105 lines
3.4 KiB
Python
105 lines
3.4 KiB
Python
import autograd.numpy as np
|
|
import math
|
|
import scipy.optimize
|
|
from scipy.odr import ODR, Model, RealData
|
|
import pyerrors as pe
|
|
import pytest
|
|
|
|
np.random.seed(0)
|
|
|
|
|
|
def test_least_squares():
|
|
dim = 10 + int(30 * np.random.rand())
|
|
x = np.arange(dim)
|
|
y = 2 * np.exp(-0.06 * x) + np.random.normal(0.0, 0.15, dim)
|
|
yerr = 0.1 + 0.1 * np.random.rand(dim)
|
|
|
|
oy = []
|
|
for i, item in enumerate(x):
|
|
oy.append(pe.pseudo_Obs(y[i], yerr[i], str(i)))
|
|
|
|
def f(x, a, b):
|
|
return a * np.exp(-b * x)
|
|
|
|
popt, pcov = scipy.optimize.curve_fit(f, x, y, sigma=[o.dvalue for o in oy], absolute_sigma=True)
|
|
|
|
def func(a, x):
|
|
y = a[0] * np.exp(-a[1] * x)
|
|
return y
|
|
|
|
out = pe.least_squares(x, oy, func)
|
|
beta = out.fit_parameters
|
|
|
|
for i in range(2):
|
|
beta[i].gamma_method(S=1.0)
|
|
assert math.isclose(beta[i].value, popt[i], abs_tol=1e-5)
|
|
assert math.isclose(pcov[i, i], beta[i].dvalue ** 2, abs_tol=1e-3)
|
|
assert math.isclose(pe.covariance(beta[0], beta[1]), pcov[0, 1], abs_tol=1e-3)
|
|
pe.Obs.e_tag_global = 0
|
|
|
|
chi2_pyerrors = np.sum(((f(x, *[o.value for o in beta]) - y) / yerr) ** 2) / (len(x) - 2)
|
|
chi2_scipy = np.sum(((f(x, *popt) - y) / yerr) ** 2) / (len(x) - 2)
|
|
assert math.isclose(chi2_pyerrors, chi2_scipy, abs_tol=1e-10)
|
|
|
|
|
|
def test_total_least_squares():
|
|
dim = 10 + int(30 * np.random.rand())
|
|
x = np.arange(dim) + np.random.normal(0.0, 0.15, dim)
|
|
xerr = 0.1 + 0.1 * np.random.rand(dim)
|
|
y = 2 * np.exp(-0.06 * x) + np.random.normal(0.0, 0.15, dim)
|
|
yerr = 0.1 + 0.1 * np.random.rand(dim)
|
|
|
|
ox = []
|
|
for i, item in enumerate(x):
|
|
ox.append(pe.pseudo_Obs(x[i], xerr[i], str(i)))
|
|
|
|
oy = []
|
|
for i, item in enumerate(x):
|
|
oy.append(pe.pseudo_Obs(y[i], yerr[i], str(i)))
|
|
|
|
def f(x, a, b):
|
|
return a * np.exp(-b * x)
|
|
|
|
def func(a, x):
|
|
y = a[0] * np.exp(-a[1] * x)
|
|
return y
|
|
|
|
data = RealData([o.value for o in ox], [o.value for o in oy], sx=[o.dvalue for o in ox], sy=[o.dvalue for o in oy])
|
|
model = Model(func)
|
|
odr = ODR(data, model, [0, 0], partol=np.finfo(np.float64).eps)
|
|
odr.set_job(fit_type=0, deriv=1)
|
|
output = odr.run()
|
|
|
|
out = pe.total_least_squares(ox, oy, func)
|
|
beta = out.fit_parameters
|
|
|
|
pe.Obs.e_tag_global = 5
|
|
for i in range(2):
|
|
beta[i].gamma_method(e_tag=5, S=1.0)
|
|
assert math.isclose(beta[i].value, output.beta[i], rel_tol=1e-5)
|
|
assert math.isclose(output.cov_beta[i, i], beta[i].dvalue ** 2, rel_tol=2.5e-1), str(output.cov_beta[i, i]) + ' ' + str(beta[i].dvalue ** 2)
|
|
assert math.isclose(pe.covariance(beta[0], beta[1]), output.cov_beta[0, 1], rel_tol=2.5e-1)
|
|
pe.Obs.e_tag_global = 0
|
|
|
|
|
|
def test_odr_derivatives():
|
|
x = []
|
|
y = []
|
|
x_err = 0.01
|
|
y_err = 0.01
|
|
|
|
for n in np.arange(1, 9, 2):
|
|
loc_xvalue = n + np.random.normal(0.0, x_err)
|
|
x.append(pe.pseudo_Obs(loc_xvalue, x_err, str(n)))
|
|
y.append(pe.pseudo_Obs((lambda x: x ** 2 - 1)(loc_xvalue) +
|
|
np.random.normal(0.0, y_err), y_err, str(n)))
|
|
|
|
def func(a, x):
|
|
return a[0] + a[1] * x ** 2
|
|
out = pe.total_least_squares(x, y, func)
|
|
fit1 = out.fit_parameters
|
|
|
|
with pytest.warns(DeprecationWarning):
|
|
tfit = pe.fits.fit_general(x, y, func, base_step=0.1, step_ratio=1.1, num_steps=20)
|
|
assert np.abs(np.max(np.array(list(fit1[1].deltas.values()))
|
|
- np.array(list(tfit[1].deltas.values())))) < 10e-8
|