mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-05-14 11:33:42 +02:00
* [ci] Re-enable fail on warning for pytest pipeline. * [Fix] Use sqlite3 context managers in pandas module. * [Fix] Add closing context.
202 lines
6.6 KiB
Python
202 lines
6.6 KiB
Python
import warnings
|
|
import gzip
|
|
import sqlite3
|
|
from contextlib import closing
|
|
import pandas as pd
|
|
from ..obs import Obs
|
|
from ..correlators import Corr
|
|
from .json import create_json_string, import_json_string
|
|
import numpy as np
|
|
|
|
|
|
def to_sql(df, table_name, db, if_exists='fail', gz=True, **kwargs):
|
|
"""Write DataFrame including Obs or Corr valued columns to sqlite database.
|
|
|
|
Parameters
|
|
----------
|
|
df : pandas.DataFrame
|
|
Dataframe to be written to the database.
|
|
table_name : str
|
|
Name of the table in the database.
|
|
db : str
|
|
Path to the sqlite database.
|
|
if exists : str
|
|
How to behave if table already exists. Options 'fail', 'replace', 'append'.
|
|
gz : bool
|
|
If True the json strings are gzipped.
|
|
|
|
Returns
|
|
-------
|
|
None
|
|
"""
|
|
se_df = _serialize_df(df, gz=gz)
|
|
with closing(sqlite3.connect(db)) as con:
|
|
se_df.to_sql(table_name, con=con, if_exists=if_exists, index=False, **kwargs)
|
|
|
|
|
|
def read_sql(sql, db, auto_gamma=False, **kwargs):
|
|
"""Execute SQL query on sqlite database and obtain DataFrame including Obs or Corr valued columns.
|
|
|
|
Parameters
|
|
----------
|
|
sql : str
|
|
SQL query to be executed.
|
|
db : str
|
|
Path to the sqlite database.
|
|
auto_gamma : bool
|
|
If True applies the gamma_method to all imported Obs objects with the default parameters for
|
|
the error analysis. Default False.
|
|
|
|
Returns
|
|
-------
|
|
data : pandas.DataFrame
|
|
Dataframe with the content of the sqlite database.
|
|
"""
|
|
with closing(sqlite3.connect(db)) as con:
|
|
extract_df = pd.read_sql(sql, con=con, **kwargs)
|
|
return _deserialize_df(extract_df, auto_gamma=auto_gamma)
|
|
|
|
|
|
def dump_df(df, fname, gz=True):
|
|
"""Exports a pandas DataFrame containing Obs valued columns to a (gzipped) csv file.
|
|
|
|
Before making use of pandas to_csv functionality Obs objects are serialized via the standardized
|
|
json format of pyerrors.
|
|
|
|
Parameters
|
|
----------
|
|
df : pandas.DataFrame
|
|
Dataframe to be dumped to a file.
|
|
fname : str
|
|
Filename of the output file.
|
|
gz : bool
|
|
If True, the output is a gzipped csv file. If False, the output is a csv file.
|
|
|
|
Returns
|
|
-------
|
|
None
|
|
"""
|
|
for column in df:
|
|
serialize = _need_to_serialize(df[column])
|
|
if not serialize:
|
|
if all(isinstance(entry, (int, np.integer, float, np.floating)) for entry in df[column]):
|
|
if any([np.isnan(entry) for entry in df[column]]):
|
|
warnings.warn("nan value in column " + column + " will be replaced by None", UserWarning)
|
|
|
|
out = _serialize_df(df, gz=False)
|
|
|
|
if not fname.endswith('.csv'):
|
|
fname += '.csv'
|
|
|
|
if gz is True:
|
|
if not fname.endswith('.gz'):
|
|
fname += '.gz'
|
|
out.to_csv(fname, index=False, compression='gzip')
|
|
else:
|
|
out.to_csv(fname, index=False)
|
|
|
|
|
|
def load_df(fname, auto_gamma=False, gz=True):
|
|
"""Imports a pandas DataFrame from a csv.(gz) file in which Obs objects are serialized as json strings.
|
|
|
|
Parameters
|
|
----------
|
|
fname : str
|
|
Filename of the input file.
|
|
auto_gamma : bool
|
|
If True applies the gamma_method to all imported Obs objects with the default parameters for
|
|
the error analysis. Default False.
|
|
gz : bool
|
|
If True, assumes that data is gzipped. If False, assumes JSON file.
|
|
|
|
Returns
|
|
-------
|
|
data : pandas.DataFrame
|
|
Dataframe with the content of the sqlite database.
|
|
"""
|
|
if not fname.endswith('.csv') and not fname.endswith('.gz'):
|
|
fname += '.csv'
|
|
|
|
if gz is True:
|
|
if not fname.endswith('.gz'):
|
|
fname += '.gz'
|
|
with gzip.open(fname) as f:
|
|
re_import = pd.read_csv(f, keep_default_na=False)
|
|
else:
|
|
if fname.endswith('.gz'):
|
|
warnings.warn("Trying to read from %s without unzipping!" % fname, UserWarning)
|
|
re_import = pd.read_csv(fname, keep_default_na=False)
|
|
|
|
return _deserialize_df(re_import, auto_gamma=auto_gamma)
|
|
|
|
|
|
def _serialize_df(df, gz=False):
|
|
"""Serializes all Obs or Corr valued columns into json strings according to the pyerrors json specification.
|
|
|
|
Parameters
|
|
----------
|
|
df : pandas.DataFrame
|
|
DataFrame to be serilized.
|
|
gz: bool
|
|
gzip the json string representation. Default False.
|
|
"""
|
|
out = df.copy()
|
|
for column in out:
|
|
serialize = _need_to_serialize(out[column])
|
|
|
|
if serialize is True:
|
|
out[column] = out[column].transform(lambda x: create_json_string(x, indent=0) if x is not None else None)
|
|
if gz is True:
|
|
out[column] = out[column].transform(lambda x: gzip.compress((x if x is not None else '').encode('utf-8')))
|
|
return out
|
|
|
|
|
|
def _deserialize_df(df, auto_gamma=False):
|
|
"""Deserializes all pyerrors json strings into Obs or Corr objects according to the pyerrors json specification.
|
|
|
|
Parameters
|
|
----------
|
|
df : pandas.DataFrame
|
|
DataFrame to be deserilized.
|
|
auto_gamma : bool
|
|
If True applies the gamma_method to all imported Obs objects with the default parameters for
|
|
the error analysis. Default False.
|
|
|
|
Notes:
|
|
------
|
|
In case any column of the DataFrame is gzipped it is gunzipped in the process.
|
|
"""
|
|
for column in df.select_dtypes(include="object"):
|
|
if isinstance(df[column][0], bytes):
|
|
if df[column][0].startswith(b"\x1f\x8b\x08\x00"):
|
|
df[column] = df[column].transform(lambda x: gzip.decompress(x).decode('utf-8'))
|
|
|
|
if not all([e is None for e in df[column]]):
|
|
df[column] = df[column].replace({r'^$': None}, regex=True)
|
|
i = 0
|
|
while df[column][i] is None:
|
|
i += 1
|
|
if isinstance(df[column][i], str):
|
|
if '"program":' in df[column][i][:20]:
|
|
df[column] = df[column].transform(lambda x: import_json_string(x, verbose=False) if x is not None else None)
|
|
if auto_gamma is True:
|
|
if isinstance(df[column][i], list):
|
|
df[column].apply(lambda x: [o.gm() if o is not None else x for o in x])
|
|
else:
|
|
df[column].apply(lambda x: x.gm() if x is not None else x)
|
|
return df
|
|
|
|
|
|
def _need_to_serialize(col):
|
|
serialize = False
|
|
i = 0
|
|
while i < len(col) and col[i] is None:
|
|
i += 1
|
|
if i == len(col):
|
|
return serialize
|
|
if isinstance(col[i], (Obs, Corr)):
|
|
serialize = True
|
|
elif isinstance(col[i], list):
|
|
if all(isinstance(o, Obs) for o in col[i]):
|
|
serialize = True
|
|
return serialize
|