mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-03-15 23:00:25 +01:00
112 lines
4.3 KiB
Python
112 lines
4.3 KiB
Python
#!/usr/bin/env python
|
||
# coding: utf-8
|
||
|
||
import numpy as np
|
||
import scipy.linalg
|
||
from .pyerrors import Obs
|
||
from .linalg import svd, eig, pinv
|
||
|
||
|
||
def matrix_pencil_method(corrs, k=1, p=None, **kwargs):
|
||
""" Matrix pencil method to extract k energy levels from data
|
||
|
||
Implementation of the matrix pencil method based on
|
||
eq. (2.17) of Y. Hua, T. K. Sarkar, IEEE Trans. Acoust. 38, 814-824 (1990)
|
||
|
||
Parameters
|
||
----------
|
||
data -- can be a list of Obs for the analysis of a single correlator, or a list of lists
|
||
of Obs if several correlators are to analyzed at once.
|
||
k -- Number of states to extract (default 1).
|
||
p -- matrix pencil parameter which filters noise. The optimal value is expected between
|
||
len(data)/3 and 2*len(data)/3. The computation is more expensive the closer p is
|
||
to len(data)/2 but could possibly suppress more noise (default len(data)//2).
|
||
"""
|
||
if isinstance(corrs[0], Obs):
|
||
data = [corrs]
|
||
else:
|
||
data = corrs
|
||
|
||
lengths = [len(d) for d in data]
|
||
if lengths.count(lengths[0]) != len(lengths):
|
||
raise Exception('All datasets have to have the same length.')
|
||
|
||
data_sets = len(data)
|
||
n_data = len(data[0])
|
||
|
||
if p is None:
|
||
p = max(n_data // 2, k)
|
||
if n_data <= p:
|
||
raise Exception('The pencil p has to be smaller than the number of data samples.')
|
||
if p < k or n_data - p < k:
|
||
raise Exception('Cannot extract', k, 'energy levels with p=', p, 'and N-p=', n_data - p)
|
||
|
||
# Construct the hankel matrices
|
||
matrix = []
|
||
for n in range(data_sets):
|
||
matrix.append(scipy.linalg.hankel(data[n][:n_data - p], data[n][n_data - p - 1:]))
|
||
matrix = np.array(matrix)
|
||
# Construct y1 and y2
|
||
y1 = np.concatenate(matrix[:, :, :p])
|
||
y2 = np.concatenate(matrix[:, :, 1:])
|
||
# Apply SVD to y2
|
||
u, s, vh = svd(y2, **kwargs)
|
||
# Construct z from y1 and SVD of y2, setting all singular values beyond the kth to zero
|
||
z = np.diag(1. / s[:k]) @ u[:, :k].T @ y1 @ vh.T[:, :k]
|
||
# Return the sorted logarithms of the real eigenvalues as Obs
|
||
energy_levels = np.log(np.abs(eig(z, **kwargs)))
|
||
return sorted(energy_levels, key=lambda x: abs(x.value))
|
||
|
||
|
||
def matrix_pencil_method_old(data, p, noise_level=None, verbose=1, **kwargs):
|
||
""" Older impleentation of the matrix pencil method with pencil p on given data to
|
||
extract energy levels.
|
||
|
||
Parameters
|
||
----------
|
||
data -- lists of Obs, where the nth entry is considered to be the correlation function
|
||
at x0=n+offset.
|
||
p -- matrix pencil parameter which corresponds to the number of energy levels to extract.
|
||
higher values for p can help decreasing noise.
|
||
noise_level -- If this argument is not None an additional prefiltering via singular
|
||
value decomposition is performed in which all singular values below 10^(-noise_level)
|
||
times the largest singular value are discarded. This increases the computation time.
|
||
verbose -- if larger than zero details about the noise filtering are printed to stdout
|
||
(default 1)
|
||
|
||
"""
|
||
n_data = len(data)
|
||
if n_data <= p:
|
||
raise Exception('The pencil p has to be smaller than the number of data samples.')
|
||
|
||
matrix = scipy.linalg.hankel(data[:n_data - p], data[n_data - p - 1:]) @ np.identity(p + 1)
|
||
|
||
if noise_level is not None:
|
||
u, s, vh = svd(matrix)
|
||
|
||
s_values = np.vectorize(lambda x: x.value)(s)
|
||
if verbose > 0:
|
||
print('Singular values: ', s_values)
|
||
digit = np.argwhere(s_values / s_values[0] < 10.0**(-noise_level))
|
||
if digit.size == 0:
|
||
digit = len(s_values)
|
||
else:
|
||
digit = int(digit[0])
|
||
if verbose > 0:
|
||
print('Consider only', digit, 'out of', len(s), 'singular values')
|
||
|
||
new_matrix = u[:, :digit] * s[:digit] @ vh[:digit, :]
|
||
y1 = new_matrix[:, :-1]
|
||
y2 = new_matrix[:, 1:]
|
||
else:
|
||
y1 = matrix[:, :-1]
|
||
y2 = matrix[:, 1:]
|
||
|
||
# Moore–Penrose pseudoinverse
|
||
pinv_y1 = pinv(y1)
|
||
|
||
# Note: Automatic differentiation of eig is implemented in the git of autograd
|
||
# but not yet released to PyPi (1.3). The code is currently part of pyerrors
|
||
e = eig((pinv_y1 @ y2), **kwargs)
|
||
energy_levels = -np.log(np.abs(e))
|
||
return sorted(energy_levels, key=lambda x: abs(x.value))
|