pyerrors/pyerrors/input/hadrons.py
2022-07-22 10:25:59 +01:00

457 lines
16 KiB
Python

import os
import warnings
from collections import Counter
import h5py
from pathlib import Path
import numpy as np
from ..obs import Obs, CObs
from ..correlators import Corr
from ..dirac import epsilon_tensor_rank4
def _get_files(path, filestem, idl):
ls = os.listdir(path)
# Clean up file list
files = list(filter(lambda x: x.startswith(filestem + "."), ls))
if not files:
raise Exception('No files starting with', filestem, 'in folder', path)
def get_cnfg_number(n):
return int(n.replace(".h5", "")[len(filestem) + 1:]) # From python 3.9 onward the safer 'removesuffix' method can be used.
# Sort according to configuration number
files.sort(key=get_cnfg_number)
cnfg_numbers = []
filtered_files = []
for line in files:
no = get_cnfg_number(line)
if idl:
if no in list(idl):
filtered_files.append(line)
cnfg_numbers.append(no)
else:
filtered_files.append(line)
cnfg_numbers.append(no)
if idl:
if Counter(list(idl)) != Counter(cnfg_numbers):
raise Exception("Not all configurations specified in idl found, configurations " + str(list(Counter(list(idl)) - Counter(cnfg_numbers))) + " are missing.")
# Check that configurations are evenly spaced
dc = np.unique(np.diff(cnfg_numbers))
if np.any(dc < 0):
raise Exception("Unsorted files")
if len(dc) == 1:
idx = range(cnfg_numbers[0], cnfg_numbers[-1] + dc[0], dc[0])
elif idl:
idx = idl
warnings.warn("Configurations are not evenly spaced.", RuntimeWarning)
else:
raise Exception("Configurations are not evenly spaced.")
return filtered_files, idx
def read_meson_hd5(path, filestem, ens_id, meson='meson_0', idl=None, gammas=None):
r'''Read hadrons meson hdf5 file and extract the meson labeled 'meson'
Parameters
-----------------
path : str
path to the files to read
filestem : str
namestem of the files to read
ens_id : str
name of the ensemble, required for internal bookkeeping
meson : str
label of the meson to be extracted, standard value meson_0 which
corresponds to the pseudoscalar pseudoscalar two-point function.
gammas : tuple of strings
Instrad of a meson label one can also provide a tuple of two strings
indicating the gamma matrices at source and sink.
("Gamma5", "Gamma5") corresponds to the pseudoscalar pseudoscalar
two-point function. The gammas argument dominateds over meson.
idl : range
If specified only configurations in the given range are read in.
'''
files, idx = _get_files(path, filestem, idl)
tree = meson.rsplit('_')[0]
if gammas is not None:
h5file = h5py.File(path + '/' + files[0], "r")
found_meson = None
for key in h5file[tree].keys():
if gammas[0] == h5file[tree][key].attrs["gamma_snk"][0].decode() and h5file[tree][key].attrs["gamma_src"][0].decode() == gammas[1]:
found_meson = key
break
h5file.close()
if found_meson:
meson = found_meson
else:
raise Exception("Source Sink combination " + str(gammas) + " not found.")
corr_data = []
infos = []
for hd5_file in files:
h5file = h5py.File(path + '/' + hd5_file, "r")
if not tree + '/' + meson in h5file:
raise Exception("Entry '" + meson + "' not contained in the files.")
raw_data = h5file[tree + '/' + meson + '/corr']
real_data = raw_data[:]["re"].astype(np.double)
corr_data.append(real_data)
if not infos:
for k, i in h5file[tree + '/' + meson].attrs.items():
infos.append(k + ': ' + i[0].decode())
h5file.close()
corr_data = np.array(corr_data)
l_obs = []
for c in corr_data.T:
l_obs.append(Obs([c], [ens_id], idl=[idx]))
corr = Corr(l_obs)
corr.tag = r", ".join(infos)
return corr
def read_DistillationContraction_hd5(path, ens_id, diagrams=["direct"], idl=None):
"""Read hadrons DistillationContraction hdf5 files in given directory structure
Parameters
-----------------
path : str
path to the directories to read
ens_id : str
name of the ensemble, required for internal bookkeeping
diagrams : list
List of strings of the diagrams to extract, e.g. ["direct", "box", "cross"].
idl : range
If specified only configurations in the given range are read in.
"""
res_dict = {}
directories, idx = _get_files(path, "data", idl)
explore_path = Path(path + "/" + directories[0])
for explore_file in explore_path.iterdir():
if explore_file.is_file():
stem = explore_file.with_suffix("").with_suffix("").as_posix().split("/")[-1]
file_list = []
for dir in directories:
tmp_path = Path(path + "/" + dir)
file_list.append((tmp_path / stem).as_posix() + tmp_path.suffix + ".h5")
corr_data = {}
for diagram in diagrams:
corr_data[diagram] = []
for n_file, (hd5_file, n_traj) in enumerate(zip(file_list, list(idx))):
h5file = h5py.File(hd5_file)
if n_file == 0:
if h5file["DistillationContraction/Metadata"].attrs.get("TimeSources")[0].decode() != "0...":
raise Exception("Routine is only implemented for files containing inversions on all timeslices.")
Nt = h5file["DistillationContraction/Metadata"].attrs.get("Nt")[0]
identifier = []
for in_file in range(len(h5file["DistillationContraction/Metadata/DmfInputFiles"].attrs.keys()) - 1):
encoded_info = h5file["DistillationContraction/Metadata/DmfInputFiles"].attrs.get("DmfInputFiles_" + str(in_file))
full_info = encoded_info[0].decode().split("/")[-1].replace(".h5", "").split("_")
my_tuple = (full_info[0], full_info[1][1:], full_info[2], full_info[3])
identifier.append(my_tuple)
identifier = tuple(identifier)
# "DistillationContraction/Metadata/DmfSuffix" contains info about different quarks, irrelevant in the SU(3) case.
for diagram in diagrams:
real_data = np.zeros(Nt)
for x0 in range(Nt):
raw_data = h5file["DistillationContraction/Correlators/" + diagram + "/" + str(x0)][:]["re"].astype(np.double)
real_data += np.roll(raw_data, -x0)
real_data /= Nt
corr_data[diagram].append(real_data)
h5file.close()
res_dict[str(identifier)] = {}
for diagram in diagrams:
tmp_data = np.array(corr_data[diagram])
l_obs = []
for c in tmp_data.T:
l_obs.append(Obs([c], [ens_id], idl=[idx]))
corr = Corr(l_obs)
corr.tag = str(identifier)
res_dict[str(identifier)][diagram] = corr
return res_dict
class Npr_matrix(np.ndarray):
def __new__(cls, input_array, mom_in=None, mom_out=None):
obj = np.asarray(input_array).view(cls)
obj.mom_in = mom_in
obj.mom_out = mom_out
return obj
@property
def g5H(self):
"""Gamma_5 hermitean conjugate
Uses the fact that the propagator is gamma5 hermitean, so just the
in and out momenta of the propagator are exchanged.
"""
return Npr_matrix(self,
mom_in=self.mom_out,
mom_out=self.mom_in)
def _propagate_mom(self, other, name):
s_mom = getattr(self, name, None)
o_mom = getattr(other, name, None)
if s_mom is not None and o_mom is not None:
if not np.allclose(s_mom, o_mom):
raise Exception(name + ' does not match.')
return o_mom if o_mom is not None else s_mom
def __matmul__(self, other):
return self.__new__(Npr_matrix,
super().__matmul__(other),
self._propagate_mom(other, 'mom_in'),
self._propagate_mom(other, 'mom_out'))
def __array_finalize__(self, obj):
if obj is None:
return
self.mom_in = getattr(obj, 'mom_in', None)
self.mom_out = getattr(obj, 'mom_out', None)
def read_ExternalLeg_hd5(path, filestem, ens_id, idl=None):
"""Read hadrons ExternalLeg hdf5 file and output an array of CObs
Parameters
----------
path : str
path to the files to read
filestem : str
namestem of the files to read
ens_id : str
name of the ensemble, required for internal bookkeeping
idl : range
If specified only configurations in the given range are read in.
"""
files, idx = _get_files(path, filestem, idl)
mom = None
corr_data = []
for hd5_file in files:
file = h5py.File(path + '/' + hd5_file, "r")
raw_data = file['ExternalLeg/corr'][0][0].view('complex')
corr_data.append(raw_data)
if mom is None:
mom = np.array(str(file['ExternalLeg/info'].attrs['pIn'])[3:-2].strip().split(), dtype=float)
file.close()
corr_data = np.array(corr_data)
rolled_array = np.rollaxis(corr_data, 0, 5)
matrix = np.empty((rolled_array.shape[:-1]), dtype=object)
for si, sj, ci, cj in np.ndindex(rolled_array.shape[:-1]):
real = Obs([rolled_array[si, sj, ci, cj].real], [ens_id], idl=[idx])
imag = Obs([rolled_array[si, sj, ci, cj].imag], [ens_id], idl=[idx])
matrix[si, sj, ci, cj] = CObs(real, imag)
return Npr_matrix(matrix, mom_in=mom)
def read_Bilinear_hd5(path, filestem, ens_id, idl=None):
"""Read hadrons Bilinear hdf5 file and output an array of CObs
Parameters
----------
path : str
path to the files to read
filestem : str
namestem of the files to read
ens_id : str
name of the ensemble, required for internal bookkeeping
idl : range
If specified only configurations in the given range are read in.
"""
files, idx = _get_files(path, filestem, idl)
mom_in = None
mom_out = None
corr_data = {}
for hd5_file in files:
file = h5py.File(path + '/' + hd5_file, "r")
for i in range(16):
name = file['Bilinear/Bilinear_' + str(i) + '/info'].attrs['gamma'][0].decode('UTF-8')
if name not in corr_data:
corr_data[name] = []
raw_data = file['Bilinear/Bilinear_' + str(i) + '/corr'][0][0].view('complex')
corr_data[name].append(raw_data)
if mom_in is None:
mom_in = np.array(str(file['Bilinear/Bilinear_' + str(i) + '/info'].attrs['pIn'])[3:-2].strip().split(), dtype=float)
if mom_out is None:
mom_out = np.array(str(file['Bilinear/Bilinear_' + str(i) + '/info'].attrs['pOut'])[3:-2].strip().split(), dtype=float)
file.close()
result_dict = {}
for key, data in corr_data.items():
local_data = np.array(data)
rolled_array = np.rollaxis(local_data, 0, 5)
matrix = np.empty((rolled_array.shape[:-1]), dtype=object)
for si, sj, ci, cj in np.ndindex(rolled_array.shape[:-1]):
real = Obs([rolled_array[si, sj, ci, cj].real], [ens_id], idl=[idx])
imag = Obs([rolled_array[si, sj, ci, cj].imag], [ens_id], idl=[idx])
matrix[si, sj, ci, cj] = CObs(real, imag)
result_dict[key] = Npr_matrix(matrix, mom_in=mom_in, mom_out=mom_out)
return result_dict
def read_Fourquark_hd5(path, filestem, ens_id, idl=None, vertices=["VA", "AV"]):
"""Read hadrons FourquarkFullyConnected hdf5 file and output an array of CObs
Parameters
----------
path : str
path to the files to read
filestem : str
namestem of the files to read
ens_id : str
name of the ensemble, required for internal bookkeeping
idl : range
If specified only configurations in the given range are read in.
vertices : list
Vertex functions to be extracted.
"""
files, idx = _get_files(path, filestem, idl)
mom_in = None
mom_out = None
vertex_names = []
for vertex in vertices:
vertex_names += _get_lorentz_names(vertex)
corr_data = {}
tree = 'FourQuarkFullyConnected/FourQuarkFullyConnected_'
for hd5_file in files:
file = h5py.File(path + '/' + hd5_file, "r")
for i in range(32):
name = (file[tree + str(i) + '/info'].attrs['gammaA'][0].decode('UTF-8'), file[tree + str(i) + '/info'].attrs['gammaB'][0].decode('UTF-8'))
if name in vertex_names:
if name not in corr_data:
corr_data[name] = []
raw_data = file[tree + str(i) + '/corr'][0][0].view('complex')
corr_data[name].append(raw_data)
if mom_in is None:
mom_in = np.array(str(file[tree + str(i) + '/info'].attrs['pIn'])[3:-2].strip().split(), dtype=float)
if mom_out is None:
mom_out = np.array(str(file[tree + str(i) + '/info'].attrs['pOut'])[3:-2].strip().split(), dtype=float)
file.close()
intermediate_dict = {}
for vertex in vertices:
lorentz_names = _get_lorentz_names(vertex)
for v_name in lorentz_names:
if v_name in [('SigmaXY', 'SigmaZT'),
('SigmaXT', 'SigmaYZ'),
('SigmaYZ', 'SigmaXT'),
('SigmaZT', 'SigmaXY')]:
sign = -1
else:
sign = 1
if vertex not in intermediate_dict:
intermediate_dict[vertex] = sign * np.array(corr_data[v_name])
else:
intermediate_dict[vertex] += sign * np.array(corr_data[v_name])
result_dict = {}
for key, data in intermediate_dict.items():
rolled_array = np.moveaxis(data, 0, 8)
matrix = np.empty((rolled_array.shape[:-1]), dtype=object)
for index in np.ndindex(rolled_array.shape[:-1]):
real = Obs([rolled_array[index].real], [ens_id], idl=[idx])
imag = Obs([rolled_array[index].imag], [ens_id], idl=[idx])
matrix[index] = CObs(real, imag)
result_dict[key] = Npr_matrix(matrix, mom_in=mom_in, mom_out=mom_out)
return result_dict
def _get_lorentz_names(name):
lorentz_index = ['X', 'Y', 'Z', 'T']
res = []
if name == "TT":
for i in range(4):
for j in range(i + 1, 4):
res.append(("Sigma" + lorentz_index[i] + lorentz_index[j], "Sigma" + lorentz_index[i] + lorentz_index[j]))
return res
if name == "TTtilde":
for i in range(4):
for j in range(i + 1, 4):
for k in range(4):
for o in range(k + 1, 4):
fac = epsilon_tensor_rank4(i, j, k, o)
if not np.isclose(fac, 0.0):
res.append(("Sigma" + lorentz_index[i] + lorentz_index[j], "Sigma" + lorentz_index[k] + lorentz_index[o]))
return res
assert len(name) == 2
if 'S' in name or 'P' in name:
if not set(name) <= set(['S', 'P']):
raise Exception("'" + name + "' is not a Lorentz scalar")
g_names = {'S': 'Identity',
'P': 'Gamma5'}
res.append((g_names[name[0]], g_names[name[1]]))
else:
if not set(name) <= set(['V', 'A']):
raise Exception("'" + name + "' is not a Lorentz scalar")
for ind in lorentz_index:
res.append(('Gamma' + ind + (name[0] == 'A') * 'Gamma5',
'Gamma' + ind + (name[1] == 'A') * 'Gamma5'))
return res