mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-03-15 23:00:25 +01:00
742 lines
26 KiB
Python
742 lines
26 KiB
Python
from collections.abc import Sequence
|
|
import warnings
|
|
import numpy as np
|
|
import autograd.numpy as anp
|
|
import scipy.optimize
|
|
import scipy.stats
|
|
import matplotlib.pyplot as plt
|
|
from matplotlib import gridspec
|
|
from scipy.odr import ODR, Model, RealData
|
|
import iminuit
|
|
from autograd import jacobian
|
|
from autograd import elementwise_grad as egrad
|
|
from .obs import Obs, derived_observable, covariance, cov_Obs
|
|
|
|
|
|
class Fit_result(Sequence):
|
|
"""Represents fit results.
|
|
|
|
Attributes
|
|
----------
|
|
fit_parameters : list
|
|
results for the individual fit parameters,
|
|
also accessible via indices.
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.fit_parameters = None
|
|
|
|
def __getitem__(self, idx):
|
|
return self.fit_parameters[idx]
|
|
|
|
def __len__(self):
|
|
return len(self.fit_parameters)
|
|
|
|
def gamma_method(self):
|
|
"""Apply the gamma method to all fit parameters"""
|
|
[o.gamma_method() for o in self.fit_parameters]
|
|
|
|
def __str__(self):
|
|
self.gamma_method()
|
|
my_str = 'Goodness of fit:\n'
|
|
if hasattr(self, 'chisquare_by_dof'):
|
|
my_str += '\u03C7\u00b2/d.o.f. = ' + f'{self.chisquare_by_dof:2.6f}' + '\n'
|
|
elif hasattr(self, 'residual_variance'):
|
|
my_str += 'residual variance = ' + f'{self.residual_variance:2.6f}' + '\n'
|
|
if hasattr(self, 'chisquare_by_expected_chisquare'):
|
|
my_str += '\u03C7\u00b2/\u03C7\u00b2exp = ' + f'{self.chisquare_by_expected_chisquare:2.6f}' + '\n'
|
|
my_str += 'Fit parameters:\n'
|
|
for i_par, par in enumerate(self.fit_parameters):
|
|
my_str += str(i_par) + '\t' + ' ' * int(par >= 0) + str(par).rjust(int(par < 0.0)) + '\n'
|
|
return my_str
|
|
|
|
def __repr__(self):
|
|
m = max(map(len, list(self.__dict__.keys()))) + 1
|
|
return '\n'.join([key.rjust(m) + ': ' + repr(value) for key, value in sorted(self.__dict__.items())])
|
|
|
|
|
|
def least_squares(x, y, func, priors=None, silent=False, **kwargs):
|
|
r'''Performs a non-linear fit to y = func(x).
|
|
|
|
Parameters
|
|
----------
|
|
x : list
|
|
list of floats.
|
|
y : list
|
|
list of Obs.
|
|
func : object
|
|
fit function, has to be of the form
|
|
|
|
```python
|
|
def func(a, x):
|
|
y = a[0] + a[1] * x + a[2] * anp.sinh(x)
|
|
return y
|
|
```
|
|
|
|
For multiple x values func can be of the form
|
|
|
|
```python
|
|
def func(a, x):
|
|
(x1, x2) = x
|
|
return a[0] * x1 ** 2 + a[1] * x2
|
|
```
|
|
|
|
It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation
|
|
will not work
|
|
priors : list, optional
|
|
priors has to be a list with an entry for every parameter in the fit. The entries can either be
|
|
Obs (e.g. results from a previous fit) or strings containing a value and an error formatted like
|
|
0.548(23), 500(40) or 0.5(0.4)
|
|
silent : bool, optional
|
|
If true all output to the console is omitted (default False).
|
|
initial_guess : list
|
|
can provide an initial guess for the input parameters. Relevant for
|
|
non-linear fits with many parameters.
|
|
method : str
|
|
can be used to choose an alternative method for the minimization of chisquare.
|
|
The possible methods are the ones which can be used for scipy.optimize.minimize and
|
|
migrad of iminuit. If no method is specified, Levenberg-Marquard is used.
|
|
Reliable alternatives are migrad, Powell and Nelder-Mead.
|
|
resplot : bool
|
|
If true, a plot which displays fit, data and residuals is generated (default False).
|
|
qqplot : bool
|
|
If true, a quantile-quantile plot of the fit result is generated (default False).
|
|
expected_chisquare : bool
|
|
If true prints the expected chisquare which is
|
|
corrected by effects caused by correlated input data.
|
|
This can take a while as the full correlation matrix
|
|
has to be calculated (default False).
|
|
correlated_fit : bool
|
|
If true, use the full correlation matrix in the definition of the chisquare
|
|
(only works for prior==None and when no method is given, at the moment).
|
|
const_par : list, optional
|
|
List of N Obs that are used to constrain the last N fit parameters of func.
|
|
'''
|
|
if priors is not None:
|
|
return _prior_fit(x, y, func, priors, silent=silent, **kwargs)
|
|
else:
|
|
return _standard_fit(x, y, func, silent=silent, **kwargs)
|
|
|
|
|
|
def total_least_squares(x, y, func, silent=False, **kwargs):
|
|
r'''Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.
|
|
|
|
Parameters
|
|
----------
|
|
x : list
|
|
list of Obs, or a tuple of lists of Obs
|
|
y : list
|
|
list of Obs. The dvalues of the Obs are used as x- and yerror for the fit.
|
|
func : object
|
|
func has to be of the form
|
|
|
|
```python
|
|
def func(a, x):
|
|
y = a[0] + a[1] * x + a[2] * anp.sinh(x)
|
|
return y
|
|
```
|
|
|
|
For multiple x values func can be of the form
|
|
|
|
```python
|
|
def func(a, x):
|
|
(x1, x2) = x
|
|
return a[0] * x1 ** 2 + a[1] * x2
|
|
```
|
|
|
|
It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation
|
|
will not work.
|
|
silent : bool, optional
|
|
If true all output to the console is omitted (default False).
|
|
initial_guess : list
|
|
can provide an initial guess for the input parameters. Relevant for non-linear
|
|
fits with many parameters.
|
|
expected_chisquare : bool
|
|
If true prints the expected chisquare which is
|
|
corrected by effects caused by correlated input data.
|
|
This can take a while as the full correlation matrix
|
|
has to be calculated (default False).
|
|
const_par : list, optional
|
|
List of N Obs that are used to constrain the last N fit parameters of func.
|
|
|
|
Based on the orthogonal distance regression module of scipy
|
|
'''
|
|
|
|
output = Fit_result()
|
|
|
|
output.fit_function = func
|
|
|
|
x = np.array(x)
|
|
|
|
x_shape = x.shape
|
|
|
|
if not callable(func):
|
|
raise TypeError('func has to be a function.')
|
|
|
|
func_aug = func
|
|
if 'const_par' in kwargs:
|
|
const_par = kwargs['const_par']
|
|
if isinstance(const_par, Obs):
|
|
const_par = [const_par]
|
|
|
|
def func(p, x):
|
|
return func_aug(np.concatenate((p, [o.value for o in const_par])), x)
|
|
else:
|
|
const_par = []
|
|
|
|
for i in range(25):
|
|
try:
|
|
func(np.arange(i), x.T[0])
|
|
except Exception:
|
|
pass
|
|
else:
|
|
break
|
|
|
|
n_parms = i
|
|
if not silent:
|
|
print('Fit with', n_parms, 'parameters')
|
|
if(len(const_par) > 0):
|
|
print('\t and %d constrained parameter%s' % (len(const_par), 's' if len(const_par) > 1 else ''), const_par)
|
|
|
|
x_f = np.vectorize(lambda o: o.value)(x)
|
|
dx_f = np.vectorize(lambda o: o.dvalue)(x)
|
|
y_f = np.array([o.value for o in y])
|
|
dy_f = np.array([o.dvalue for o in y])
|
|
|
|
if np.any(np.asarray(dx_f) <= 0.0):
|
|
raise Exception('No x errors available, run the gamma method first.')
|
|
|
|
if np.any(np.asarray(dy_f) <= 0.0):
|
|
raise Exception('No y errors available, run the gamma method first.')
|
|
|
|
if 'initial_guess' in kwargs:
|
|
x0 = kwargs.get('initial_guess')
|
|
if len(x0) != n_parms:
|
|
raise Exception('Initial guess does not have the correct length: %d vs. %d' % (len(x0), n_parms))
|
|
else:
|
|
x0 = [1] * n_parms
|
|
|
|
data = RealData(x_f, y_f, sx=dx_f, sy=dy_f)
|
|
model = Model(func)
|
|
odr = ODR(data, model, x0, partol=np.finfo(np.float64).eps)
|
|
odr.set_job(fit_type=0, deriv=1)
|
|
out = odr.run()
|
|
|
|
output.residual_variance = out.res_var
|
|
|
|
output.method = 'ODR'
|
|
|
|
output.message = out.stopreason
|
|
|
|
output.xplus = out.xplus
|
|
|
|
if not silent:
|
|
print('Method: ODR')
|
|
print(*out.stopreason)
|
|
print('Residual variance:', output.residual_variance)
|
|
|
|
if out.info > 3:
|
|
raise Exception('The minimization procedure did not converge.')
|
|
|
|
m = x_f.size
|
|
n_parms_aug = n_parms + len(const_par)
|
|
|
|
def odr_chisquare(p):
|
|
model = func(p[:n_parms], p[n_parms:].reshape(x_shape))
|
|
chisq = anp.sum(((y_f - model) / dy_f) ** 2) + anp.sum(((x_f - p[n_parms:].reshape(x_shape)) / dx_f) ** 2)
|
|
return chisq
|
|
|
|
def odr_chisquare_aug(p):
|
|
model = func_aug(np.concatenate((p[:n_parms_aug], [o.value for o in const_par])), p[n_parms_aug:].reshape(x_shape))
|
|
chisq = anp.sum(((y_f - model) / dy_f) ** 2) + anp.sum(((x_f - p[n_parms_aug:].reshape(x_shape)) / dx_f) ** 2)
|
|
return chisq
|
|
|
|
if kwargs.get('expected_chisquare') is True:
|
|
W = np.diag(1 / np.asarray(np.concatenate((dy_f.ravel(), dx_f.ravel()))))
|
|
|
|
if kwargs.get('covariance') is not None:
|
|
cov = kwargs.get('covariance')
|
|
else:
|
|
cov = covariance_matrix(np.concatenate((y, x.ravel())))
|
|
|
|
number_of_x_parameters = int(m / x_f.shape[-1])
|
|
|
|
old_jac = jacobian(func)(out.beta, out.xplus)
|
|
fused_row1 = np.concatenate((old_jac, np.concatenate((number_of_x_parameters * [np.zeros(old_jac.shape)]), axis=0)))
|
|
fused_row2 = np.concatenate((jacobian(lambda x, y: func(y, x))(out.xplus, out.beta).reshape(x_f.shape[-1], x_f.shape[-1] * number_of_x_parameters), np.identity(number_of_x_parameters * old_jac.shape[0])))
|
|
new_jac = np.concatenate((fused_row1, fused_row2), axis=1)
|
|
|
|
A = W @ new_jac
|
|
P_phi = A @ np.linalg.inv(A.T @ A) @ A.T
|
|
expected_chisquare = np.trace((np.identity(P_phi.shape[0]) - P_phi) @ W @ cov @ W)
|
|
if expected_chisquare <= 0.0:
|
|
warnings.warn("Negative expected_chisquare.", RuntimeWarning)
|
|
expected_chisquare = np.abs(expected_chisquare)
|
|
output.chisquare_by_expected_chisquare = odr_chisquare(np.concatenate((out.beta, out.xplus.ravel()))) / expected_chisquare
|
|
if not silent:
|
|
print('chisquare/expected_chisquare:',
|
|
output.chisquare_by_expected_chisquare)
|
|
|
|
fitp = np.concatenate((out.beta, [o.value for o in const_par]))
|
|
hess_inv = np.linalg.pinv(jacobian(jacobian(odr_chisquare_aug))(np.concatenate((fitp, out.xplus.ravel()))))
|
|
|
|
def odr_chisquare_compact_x(d):
|
|
model = func_aug(d[:n_parms_aug], d[n_parms_aug:n_parms_aug + m].reshape(x_shape))
|
|
chisq = anp.sum(((y_f - model) / dy_f) ** 2) + anp.sum(((d[n_parms_aug + m:].reshape(x_shape) - d[n_parms_aug:n_parms_aug + m].reshape(x_shape)) / dx_f) ** 2)
|
|
return chisq
|
|
|
|
jac_jac_x = jacobian(jacobian(odr_chisquare_compact_x))(np.concatenate((fitp, out.xplus.ravel(), x_f.ravel())))
|
|
|
|
deriv_x = -hess_inv @ jac_jac_x[:n_parms_aug + m, n_parms_aug + m:]
|
|
|
|
def odr_chisquare_compact_y(d):
|
|
model = func_aug(d[:n_parms_aug], d[n_parms_aug:n_parms_aug + m].reshape(x_shape))
|
|
chisq = anp.sum(((d[n_parms_aug + m:] - model) / dy_f) ** 2) + anp.sum(((x_f - d[n_parms_aug:n_parms_aug + m].reshape(x_shape)) / dx_f) ** 2)
|
|
return chisq
|
|
|
|
jac_jac_y = jacobian(jacobian(odr_chisquare_compact_y))(np.concatenate((fitp, out.xplus.ravel(), y_f)))
|
|
|
|
deriv_y = -hess_inv @ jac_jac_y[:n_parms_aug + m, n_parms_aug + m:]
|
|
|
|
result = []
|
|
for i in range(n_parms):
|
|
result.append(derived_observable(lambda my_var, **kwargs: (my_var[0] + np.finfo(np.float64).eps) / (x.ravel()[0].value + np.finfo(np.float64).eps) * out.beta[i], list(x.ravel()) + list(y), man_grad=list(deriv_x[i]) + list(deriv_y[i])))
|
|
|
|
output.fit_parameters = result + const_par
|
|
|
|
output.odr_chisquare = odr_chisquare(np.concatenate((out.beta, out.xplus.ravel())))
|
|
output.dof = x.shape[-1] - n_parms
|
|
|
|
return output
|
|
|
|
|
|
def prior_fit(x, y, func, priors, silent=False, **kwargs):
|
|
warnings.warn("prior_fit renamed to least_squares", DeprecationWarning)
|
|
return least_squares(x, y, func, priors=priors, silent=silent, **kwargs)
|
|
|
|
|
|
def _prior_fit(x, y, func, priors, silent=False, **kwargs):
|
|
output = Fit_result()
|
|
|
|
output.fit_function = func
|
|
|
|
x = np.asarray(x)
|
|
|
|
if not callable(func):
|
|
raise TypeError('func has to be a function.')
|
|
|
|
for i in range(100):
|
|
try:
|
|
func(np.arange(i), 0)
|
|
except Exception:
|
|
pass
|
|
else:
|
|
break
|
|
|
|
n_parms = i
|
|
|
|
if n_parms != len(priors):
|
|
raise Exception('Priors does not have the correct length.')
|
|
|
|
def extract_val_and_dval(string):
|
|
split_string = string.split('(')
|
|
if '.' in split_string[0] and '.' not in split_string[1][:-1]:
|
|
factor = 10 ** -len(split_string[0].partition('.')[2])
|
|
else:
|
|
factor = 1
|
|
return float(split_string[0]), float(split_string[1][:-1]) * factor
|
|
|
|
loc_priors = []
|
|
for i_n, i_prior in enumerate(priors):
|
|
if isinstance(i_prior, Obs):
|
|
loc_priors.append(i_prior)
|
|
else:
|
|
loc_val, loc_dval = extract_val_and_dval(i_prior)
|
|
loc_priors.append(cov_Obs(loc_val, loc_dval ** 2, '#prior' + str(i_n) + f"_{np.random.randint(2147483647):010d}"))
|
|
|
|
output.priors = loc_priors
|
|
|
|
if not silent:
|
|
print('Fit with', n_parms, 'parameters')
|
|
|
|
y_f = [o.value for o in y]
|
|
dy_f = [o.dvalue for o in y]
|
|
|
|
if np.any(np.asarray(dy_f) <= 0.0):
|
|
raise Exception('No y errors available, run the gamma method first.')
|
|
|
|
p_f = [o.value for o in loc_priors]
|
|
dp_f = [o.dvalue for o in loc_priors]
|
|
|
|
if np.any(np.asarray(dp_f) <= 0.0):
|
|
raise Exception('No prior errors available, run the gamma method first.')
|
|
|
|
if 'initial_guess' in kwargs:
|
|
x0 = kwargs.get('initial_guess')
|
|
if len(x0) != n_parms:
|
|
raise Exception('Initial guess does not have the correct length.')
|
|
else:
|
|
x0 = p_f
|
|
|
|
def chisqfunc(p):
|
|
model = func(p, x)
|
|
chisq = anp.sum(((y_f - model) / dy_f) ** 2) + anp.sum(((p_f - p) / dp_f) ** 2)
|
|
return chisq
|
|
|
|
if not silent:
|
|
print('Method: migrad')
|
|
|
|
m = iminuit.Minuit(chisqfunc, x0)
|
|
m.errordef = 1
|
|
m.print_level = 0
|
|
if 'tol' in kwargs:
|
|
m.tol = kwargs.get('tol')
|
|
else:
|
|
m.tol = 1e-4
|
|
m.migrad()
|
|
params = np.asarray(m.values)
|
|
|
|
output.chisquare_by_dof = m.fval / len(x)
|
|
|
|
output.method = 'migrad'
|
|
|
|
if not silent:
|
|
print('chisquare/d.o.f.:', output.chisquare_by_dof)
|
|
|
|
if not m.fmin.is_valid:
|
|
raise Exception('The minimization procedure did not converge.')
|
|
|
|
hess_inv = np.linalg.pinv(jacobian(jacobian(chisqfunc))(params))
|
|
|
|
def chisqfunc_compact(d):
|
|
model = func(d[:n_parms], x)
|
|
chisq = anp.sum(((d[n_parms: n_parms + len(x)] - model) / dy_f) ** 2) + anp.sum(((d[n_parms + len(x):] - d[:n_parms]) / dp_f) ** 2)
|
|
return chisq
|
|
|
|
jac_jac = jacobian(jacobian(chisqfunc_compact))(np.concatenate((params, y_f, p_f)))
|
|
|
|
deriv = -hess_inv @ jac_jac[:n_parms, n_parms:]
|
|
|
|
result = []
|
|
for i in range(n_parms):
|
|
result.append(derived_observable(lambda x, **kwargs: (x[0] + np.finfo(np.float64).eps) / (y[0].value + np.finfo(np.float64).eps) * params[i], list(y) + list(loc_priors), man_grad=list(deriv[i])))
|
|
|
|
output.fit_parameters = result
|
|
output.chisquare = chisqfunc(np.asarray(params))
|
|
|
|
if kwargs.get('resplot') is True:
|
|
residual_plot(x, y, func, result)
|
|
|
|
if kwargs.get('qqplot') is True:
|
|
qqplot(x, y, func, result)
|
|
|
|
return output
|
|
|
|
|
|
def standard_fit(x, y, func, silent=False, **kwargs):
|
|
warnings.warn("standard_fit renamed to least_squares", DeprecationWarning)
|
|
return least_squares(x, y, func, silent=silent, **kwargs)
|
|
|
|
|
|
def _standard_fit(x, y, func, silent=False, **kwargs):
|
|
|
|
output = Fit_result()
|
|
|
|
output.fit_function = func
|
|
|
|
x = np.asarray(x)
|
|
|
|
if x.shape[-1] != len(y):
|
|
raise Exception('x and y input have to have the same length')
|
|
|
|
if len(x.shape) > 2:
|
|
raise Exception('Unknown format for x values')
|
|
|
|
if not callable(func):
|
|
raise TypeError('func has to be a function.')
|
|
|
|
func_aug = func
|
|
if 'const_par' in kwargs:
|
|
const_par = kwargs['const_par']
|
|
if isinstance(const_par, Obs):
|
|
const_par = [const_par]
|
|
|
|
def func(p, x):
|
|
return func_aug(np.concatenate((p, [o.value for o in const_par])), x)
|
|
else:
|
|
const_par = []
|
|
|
|
for i in range(25):
|
|
try:
|
|
func(np.arange(i), x.T[0])
|
|
except Exception:
|
|
pass
|
|
else:
|
|
break
|
|
|
|
n_parms = i
|
|
|
|
if not silent:
|
|
print('Fit with', n_parms, 'parameters')
|
|
if(len(const_par) > 0):
|
|
print('\t and %d constrained parameter%s' % (len(const_par), 's' if len(const_par) > 1 else ''), const_par)
|
|
|
|
y_f = [o.value for o in y]
|
|
dy_f = [o.dvalue for o in y]
|
|
|
|
if np.any(np.asarray(dy_f) <= 0.0):
|
|
raise Exception('No y errors available, run the gamma method first.')
|
|
|
|
if 'initial_guess' in kwargs:
|
|
x0 = kwargs.get('initial_guess')
|
|
if len(x0) != n_parms:
|
|
raise Exception('Initial guess does not have the correct length: %d vs. %d' % (len(x0), n_parms))
|
|
else:
|
|
x0 = [0.1] * n_parms
|
|
|
|
if kwargs.get('correlated_fit') is True:
|
|
cov = covariance_matrix(y)
|
|
covdiag = np.diag(1. / np.sqrt(np.diag(cov)))
|
|
corr = np.copy(cov)
|
|
for i in range(len(y)):
|
|
for j in range(len(y)):
|
|
corr[i][j] = cov[i][j] / np.sqrt(cov[i][i] * cov[j][j])
|
|
condn = np.linalg.cond(corr)
|
|
if condn > 1e4:
|
|
warnings.warn("Correlation matrix may be ill-conditioned! condition number: %1.2e" % (condn), RuntimeWarning)
|
|
chol = np.linalg.cholesky(corr)
|
|
chol_inv = np.linalg.inv(chol)
|
|
chol_inv = np.dot(chol_inv, covdiag)
|
|
|
|
def chisqfunc(p):
|
|
model = func(p, x)
|
|
chisq = anp.sum(anp.dot(chol_inv, (y_f - model)) ** 2)
|
|
return chisq
|
|
|
|
def chisqfunc_aug(p):
|
|
model = func_aug(np.concatenate((p, [o.value for o in const_par])), x)
|
|
chisq = anp.sum(anp.dot(chol_inv, (y_f - model)) ** 2)
|
|
return chisq
|
|
|
|
else:
|
|
def chisqfunc(p):
|
|
model = func(p, x)
|
|
chisq = anp.sum(((y_f - model) / dy_f) ** 2)
|
|
return chisq
|
|
|
|
def chisqfunc_aug(p):
|
|
model = func_aug(np.concatenate((p, [o.value for o in const_par])), x)
|
|
chisq = anp.sum(((y_f - model) / dy_f) ** 2)
|
|
return chisq
|
|
|
|
if 'method' in kwargs:
|
|
output.method = kwargs.get('method')
|
|
if not silent:
|
|
print('Method:', kwargs.get('method'))
|
|
if kwargs.get('method') == 'migrad':
|
|
fit_result = iminuit.minimize(chisqfunc, x0)
|
|
fit_result = iminuit.minimize(chisqfunc, fit_result.x)
|
|
else:
|
|
fit_result = scipy.optimize.minimize(chisqfunc, x0, method=kwargs.get('method'))
|
|
fit_result = scipy.optimize.minimize(chisqfunc, fit_result.x, method=kwargs.get('method'), tol=1e-12)
|
|
|
|
chisquare = fit_result.fun
|
|
|
|
output.iterations = fit_result.nit
|
|
else:
|
|
output.method = 'Levenberg-Marquardt'
|
|
if not silent:
|
|
print('Method: Levenberg-Marquardt')
|
|
|
|
if kwargs.get('correlated_fit') is True:
|
|
def chisqfunc_residuals(p):
|
|
model = func(p, x)
|
|
chisq = anp.dot(chol_inv, (y_f - model))
|
|
return chisq
|
|
|
|
else:
|
|
def chisqfunc_residuals(p):
|
|
model = func(p, x)
|
|
chisq = ((y_f - model) / dy_f)
|
|
return chisq
|
|
|
|
fit_result = scipy.optimize.least_squares(chisqfunc_residuals, x0, method='lm', ftol=1e-15, gtol=1e-15, xtol=1e-15)
|
|
|
|
chisquare = np.sum(fit_result.fun ** 2)
|
|
|
|
output.iterations = fit_result.nfev
|
|
|
|
if not fit_result.success:
|
|
raise Exception('The minimization procedure did not converge.')
|
|
|
|
if x.shape[-1] - n_parms > 0:
|
|
output.chisquare_by_dof = chisquare / (x.shape[-1] - n_parms)
|
|
else:
|
|
output.chisquare_by_dof = float('nan')
|
|
|
|
output.message = fit_result.message
|
|
if not silent:
|
|
print(fit_result.message)
|
|
print('chisquare/d.o.f.:', output.chisquare_by_dof)
|
|
|
|
if kwargs.get('expected_chisquare') is True:
|
|
if kwargs.get('correlated_fit') is not True:
|
|
W = np.diag(1 / np.asarray(dy_f))
|
|
cov = covariance_matrix(y)
|
|
A = W @ jacobian(func)(fit_result.x, x)
|
|
P_phi = A @ np.linalg.inv(A.T @ A) @ A.T
|
|
expected_chisquare = np.trace((np.identity(x.shape[-1]) - P_phi) @ W @ cov @ W)
|
|
output.chisquare_by_expected_chisquare = chisquare / expected_chisquare
|
|
if not silent:
|
|
print('chisquare/expected_chisquare:',
|
|
output.chisquare_by_expected_chisquare)
|
|
|
|
fitp = np.concatenate((fit_result.x, [o.value for o in const_par]))
|
|
hess_inv = np.linalg.pinv(jacobian(jacobian(chisqfunc_aug))(fitp))
|
|
|
|
n_parms_aug = n_parms + len(const_par)
|
|
if kwargs.get('correlated_fit') is True:
|
|
def chisqfunc_compact(d):
|
|
model = func_aug(d[:n_parms_aug], x)
|
|
chisq = anp.sum(anp.dot(chol_inv, (d[n_parms_aug:] - model)) ** 2)
|
|
return chisq
|
|
|
|
else:
|
|
def chisqfunc_compact(d):
|
|
model = func_aug(d[:n_parms_aug], x)
|
|
chisq = anp.sum(((d[n_parms_aug:] - model) / dy_f) ** 2)
|
|
return chisq
|
|
|
|
jac_jac = jacobian(jacobian(chisqfunc_compact))(np.concatenate((fitp, y_f)))
|
|
|
|
deriv = -hess_inv @ jac_jac[:n_parms_aug, n_parms_aug:]
|
|
|
|
result = []
|
|
for i in range(n_parms):
|
|
result.append(derived_observable(lambda x, **kwargs: (x[0] + np.finfo(np.float64).eps) / (y[0].value + np.finfo(np.float64).eps) * fit_result.x[i], list(y), man_grad=list(deriv[i])))
|
|
|
|
output.fit_parameters = result + const_par
|
|
|
|
output.chisquare = chisqfunc(fit_result.x)
|
|
output.dof = x.shape[-1] - n_parms
|
|
|
|
if kwargs.get('resplot') is True:
|
|
residual_plot(x, y, func, result)
|
|
|
|
if kwargs.get('qqplot') is True:
|
|
qqplot(x, y, func, result)
|
|
|
|
return output
|
|
|
|
|
|
def odr_fit(x, y, func, silent=False, **kwargs):
|
|
warnings.warn("odr_fit renamed to total_least_squares", DeprecationWarning)
|
|
return total_least_squares(x, y, func, silent=silent, **kwargs)
|
|
|
|
|
|
def fit_lin(x, y, **kwargs):
|
|
"""Performs a linear fit to y = n + m * x and returns two Obs n, m.
|
|
|
|
y has to be a list of Obs, the dvalues of the Obs are used as yerror for the fit.
|
|
x can either be a list of floats in which case no xerror is assumed, or
|
|
a list of Obs, where the dvalues of the Obs are used as xerror for the fit.
|
|
"""
|
|
|
|
def f(a, x):
|
|
y = a[0] + a[1] * x
|
|
return y
|
|
|
|
if all(isinstance(n, Obs) for n in x):
|
|
out = total_least_squares(x, y, f, **kwargs)
|
|
return out.fit_parameters
|
|
elif all(isinstance(n, float) or isinstance(n, int) for n in x) or isinstance(x, np.ndarray):
|
|
out = least_squares(x, y, f, **kwargs)
|
|
return out.fit_parameters
|
|
else:
|
|
raise Exception('Unsupported types for x')
|
|
|
|
|
|
def qqplot(x, o_y, func, p):
|
|
""" Generates a quantile-quantile plot of the fit result which can be used to
|
|
check if the residuals of the fit are gaussian distributed.
|
|
"""
|
|
|
|
residuals = []
|
|
for i_x, i_y in zip(x, o_y):
|
|
residuals.append((i_y - func(p, i_x)) / i_y.dvalue)
|
|
residuals = sorted(residuals)
|
|
my_y = [o.value for o in residuals]
|
|
probplot = scipy.stats.probplot(my_y)
|
|
my_x = probplot[0][0]
|
|
plt.figure(figsize=(8, 8 / 1.618))
|
|
plt.errorbar(my_x, my_y, fmt='o')
|
|
fit_start = my_x[0]
|
|
fit_stop = my_x[-1]
|
|
samples = np.arange(fit_start, fit_stop, 0.01)
|
|
plt.plot(samples, samples, 'k--', zorder=11, label='Standard normal distribution')
|
|
plt.plot(samples, probplot[1][0] * samples + probplot[1][1], zorder=10, label='Least squares fit, r=' + str(np.around(probplot[1][2], 3)))
|
|
|
|
plt.xlabel('Theoretical quantiles')
|
|
plt.ylabel('Ordered Values')
|
|
plt.legend()
|
|
plt.draw()
|
|
|
|
|
|
def residual_plot(x, y, func, fit_res):
|
|
""" Generates a plot which compares the fit to the data and displays the corresponding residuals"""
|
|
xstart = x[0] - 0.5
|
|
xstop = x[-1] + 0.5
|
|
x_samples = np.arange(xstart, xstop, 0.01)
|
|
|
|
plt.figure(figsize=(8, 8 / 1.618))
|
|
gs = gridspec.GridSpec(2, 1, height_ratios=[3, 1], wspace=0.0, hspace=0.0)
|
|
ax0 = plt.subplot(gs[0])
|
|
ax0.errorbar(x, [o.value for o in y], yerr=[o.dvalue for o in y], ls='none', fmt='o', capsize=3, markersize=5, label='Data')
|
|
ax0.plot(x_samples, func([o.value for o in fit_res], x_samples), label='Fit', zorder=10, ls='-', ms=0)
|
|
ax0.set_xticklabels([])
|
|
ax0.set_xlim([xstart, xstop])
|
|
ax0.set_xticklabels([])
|
|
ax0.legend()
|
|
|
|
residuals = (np.asarray([o.value for o in y]) - func([o.value for o in fit_res], x)) / np.asarray([o.dvalue for o in y])
|
|
ax1 = plt.subplot(gs[1])
|
|
ax1.plot(x, residuals, 'ko', ls='none', markersize=5)
|
|
ax1.tick_params(direction='out')
|
|
ax1.tick_params(axis="x", bottom=True, top=True, labelbottom=True)
|
|
ax1.axhline(y=0.0, ls='--', color='k', marker=" ")
|
|
ax1.fill_between(x_samples, -1.0, 1.0, alpha=0.1, facecolor='k')
|
|
ax1.set_xlim([xstart, xstop])
|
|
ax1.set_ylabel('Residuals')
|
|
plt.subplots_adjust(wspace=None, hspace=None)
|
|
plt.draw()
|
|
|
|
|
|
def covariance_matrix(y):
|
|
"""Returns the covariance matrix of y."""
|
|
length = len(y)
|
|
cov = np.zeros((length, length))
|
|
for i, item in enumerate(y):
|
|
for j, jtem in enumerate(y[:i + 1]):
|
|
if i == j:
|
|
cov[i, j] = item.dvalue ** 2
|
|
else:
|
|
cov[i, j] = covariance(item, jtem)
|
|
return cov + cov.T - np.diag(np.diag(cov))
|
|
|
|
|
|
def error_band(x, func, beta):
|
|
"""Returns the error band for an array of sample values x, for given fit function func with optimized parameters beta."""
|
|
cov = covariance_matrix(beta)
|
|
if np.any(np.abs(cov - cov.T) > 1000 * np.finfo(np.float64).eps):
|
|
warnings.warn("Covariance matrix is not symmetric within floating point precision", RuntimeWarning)
|
|
|
|
deriv = []
|
|
for i, item in enumerate(x):
|
|
deriv.append(np.array(egrad(func)([o.value for o in beta], item)))
|
|
|
|
err = []
|
|
for i, item in enumerate(x):
|
|
err.append(np.sqrt(deriv[i] @ cov @ deriv[i]))
|
|
err = np.array(err)
|
|
|
|
return err
|