mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-03-15 14:50:25 +01:00
110 lines
3.3 KiB
Python
110 lines
3.3 KiB
Python
import autograd.numpy as np
|
|
import pyerrors as pe
|
|
import pytest
|
|
|
|
np.random.seed(0)
|
|
|
|
|
|
def test_covobs():
|
|
val = 1.123124
|
|
cov = .243423
|
|
name = 'Covariance'
|
|
co = pe.cov_Obs(val, cov, name)
|
|
co.gamma_method()
|
|
co.details()
|
|
assert (co.dvalue == np.sqrt(cov))
|
|
assert (co.value == val)
|
|
|
|
do = 2 * co
|
|
assert (do.covobs[name].grad[0] == 2)
|
|
|
|
do = co * co
|
|
assert (do.covobs[name].grad[0] == 2 * val)
|
|
assert np.array_equal(do.covobs[name].cov, co.covobs[name].cov)
|
|
|
|
pi = [16.7457, -19.0475]
|
|
cov = [[3.49591, -6.07560], [-6.07560, 10.5834]]
|
|
|
|
cl = pe.cov_Obs(pi, cov, 'rAP')
|
|
pl = pe.misc.gen_correlated_data(pi, np.asarray(cov), 'rAPpseudo')
|
|
|
|
def rAP(p, g0sq):
|
|
return -0.0010666 * g0sq * (1 + np.exp(p[0] + p[1] / g0sq))
|
|
|
|
for g0sq in [1, 1.5, 1.8]:
|
|
oc = rAP(cl, g0sq)
|
|
oc.gamma_method()
|
|
op = rAP(pl, g0sq)
|
|
op.gamma_method()
|
|
assert(np.isclose(oc.value, op.value, rtol=1e-14, atol=1e-14))
|
|
|
|
[o.gamma_method() for o in cl]
|
|
assert(pe.covariance(cl[0], cl[1]) == cov[0][1])
|
|
assert(pe.covariance(cl[0], cl[1]) == cov[1][0])
|
|
|
|
do = cl[0] * cl[1]
|
|
assert(np.array_equal(do.covobs['rAP'].grad, np.transpose([pi[1], pi[0]]).reshape(2, 1)))
|
|
|
|
|
|
def test_covobs_overloading():
|
|
covobs = pe.cov_Obs([0.5, 0.5], np.array([[0.02, 0.02], [0.02, 0.02]]), 'test')
|
|
assert (covobs[0] / covobs[1]) == 1
|
|
assert (covobs[0] - covobs[1]) == 0
|
|
|
|
my_obs = pe.pseudo_Obs(2.3, 0.2, 'obs')
|
|
|
|
assert (my_obs * covobs[0] / covobs[1]) == my_obs
|
|
|
|
covobs = pe.cov_Obs(0.0, 0.3, 'test')
|
|
assert not covobs.is_zero()
|
|
|
|
|
|
def test_covobs_name_collision():
|
|
covobs = pe.cov_Obs(0.5, 0.002, 'test')
|
|
my_obs = pe.pseudo_Obs(2.3, 0.2, 'test')
|
|
with pytest.raises(Exception):
|
|
summed_obs = my_obs + covobs
|
|
covobs2 = pe.cov_Obs(0.3, 0.001, 'test')
|
|
with pytest.raises(Exception):
|
|
summed_obs = covobs + covobs2
|
|
|
|
|
|
def test_covobs_replica_separator():
|
|
with pytest.raises(Exception):
|
|
covobs = pe.cov_Obs(0.5, 0.002, 'test|r2')
|
|
|
|
|
|
def test_covobs_init():
|
|
covobs = pe.cov_Obs(0.5, 0.002, 'test')
|
|
covobs = pe.cov_Obs([1, 2], [0.1, 0.2], 'test')
|
|
covobs = pe.cov_Obs([1, 2], np.array([0.1, 0.2]), 'test')
|
|
covobs = pe.cov_Obs([1, 2], [[0.21, 0.2], [0.2, 0.21]], 'test')
|
|
covobs = pe.cov_Obs([1, 2], np.array([[0.21, 0.2], [0.2, 0.21]]), 'test')
|
|
|
|
|
|
def test_covobs_covariance():
|
|
a = pe.cov_Obs(2.47, 0.03 ** 2, "Cov_obs 1")
|
|
b = pe.cov_Obs(-4.3, 0.335 ** 2, "Cov_obs 2")
|
|
|
|
x = [a + b, a - b]
|
|
[o.gamma_method() for o in x]
|
|
|
|
covariance = pe.fits.covariance_matrix(x)
|
|
|
|
assert covariance[0, 0] == covariance[1, 1]
|
|
assert covariance[0, 1] == a.dvalue ** 2 - b.dvalue ** 2
|
|
|
|
|
|
def test_covobs_exceptions():
|
|
with pytest.raises(Exception):
|
|
covobs = pe.cov_Obs(0.1, [[0.1, 0.2], [0.1, 0.2]], 'test')
|
|
with pytest.raises(Exception):
|
|
covobs = pe.cov_Obs(0.1, np.array([[0.1, 0.2], [0.1, 0.2]]), 'test')
|
|
with pytest.raises(Exception):
|
|
covobs = pe.cov_Obs([0.5, 0.1], np.array([[2, 1, 3], [1, 2, 3]]), 'test')
|
|
with pytest.raises(Exception):
|
|
covobs = pe.cov_Obs([0.5, 0.1], np.random.random((2, 2, 2)), 'test')
|
|
with pytest.raises(Exception):
|
|
covobs = pe.cov_Obs([1.5, 0.1], [[1., .2,], [.3, .5]] , 'test')
|
|
with pytest.raises(Exception):
|
|
covobs = pe.cov_Obs([1.5, 0.1], [[8, 4,], [4, -2]] , 'test')
|