pyerrors/pyerrors/fits.py
2022-12-19 14:03:45 +01:00

1000 lines
35 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import gc
from collections.abc import Sequence
import warnings
import numpy as np
import autograd.numpy as anp
import scipy.optimize
import scipy.stats
import matplotlib.pyplot as plt
from matplotlib import gridspec
from scipy.odr import ODR, Model, RealData
import iminuit
from autograd import jacobian as auto_jacobian
from autograd import hessian as auto_hessian
from autograd import elementwise_grad as egrad
from numdifftools import Jacobian as num_jacobian
from numdifftools import Hessian as num_hessian
from .obs import Obs, derived_observable, covariance, cov_Obs
class Fit_result(Sequence):
"""Represents fit results.
Attributes
----------
fit_parameters : list
results for the individual fit parameters,
also accessible via indices.
chisquare_by_dof : float
reduced chisquare.
p_value : float
p-value of the fit
t2_p_value : float
Hotelling t-squared p-value for correlated fits.
"""
def __init__(self):
self.fit_parameters = None
def __getitem__(self, idx):
return self.fit_parameters[idx]
def __len__(self):
return len(self.fit_parameters)
def gamma_method(self, **kwargs):
"""Apply the gamma method to all fit parameters"""
[o.gamma_method(**kwargs) for o in self.fit_parameters]
def __str__(self):
my_str = 'Goodness of fit:\n'
if hasattr(self, 'chisquare_by_dof'):
my_str += '\u03C7\u00b2/d.o.f. = ' + f'{self.chisquare_by_dof:2.6f}' + '\n'
elif hasattr(self, 'residual_variance'):
my_str += 'residual variance = ' + f'{self.residual_variance:2.6f}' + '\n'
if hasattr(self, 'chisquare_by_expected_chisquare'):
my_str += '\u03C7\u00b2/\u03C7\u00b2exp = ' + f'{self.chisquare_by_expected_chisquare:2.6f}' + '\n'
if hasattr(self, 'p_value'):
my_str += 'p-value = ' + f'{self.p_value:2.4f}' + '\n'
if hasattr(self, 't2_p_value'):
my_str += 't\u00B2p-value = ' + f'{self.t2_p_value:2.4f}' + '\n'
my_str += 'Fit parameters:\n'
for i_par, par in enumerate(self.fit_parameters):
my_str += str(i_par) + '\t' + ' ' * int(par >= 0) + str(par).rjust(int(par < 0.0)) + '\n'
return my_str
def __repr__(self):
m = max(map(len, list(self.__dict__.keys()))) + 1
return '\n'.join([key.rjust(m) + ': ' + repr(value) for key, value in sorted(self.__dict__.items())])
def least_squares(x, y, func, priors=None, silent=False, **kwargs):
r'''Performs a non-linear fit to y = func(x).
```
Parameters
----------
For an uncombined fit:
x : list
list of floats.
y : list
list of Obs.
func : object
fit function, has to be of the form
```python
import autograd.numpy as anp
def func(a, x):
return a[0] + a[1] * x + a[2] * anp.sinh(x)
```
For multiple x values func can be of the form
```python
def func(a, x):
(x1, x2) = x
return a[0] * x1 ** 2 + a[1] * x2
```
It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation
will not work.
OR For a combined fit:
Do not need to use ordered dictionaries: python version >= 3.7: Dictionary order is guaranteed to be insertion order.
(https://docs.python.org/3/library/stdtypes.html#dict-views) Ensures that x, y and func values are mapped correctly.
x : dict
dict of lists.
y : dict
dict of lists of Obs.
funcs : dict
dict of objects
fit functions have to be of the form (here a[0] is the common fit parameter)
```python
import autograd.numpy as anp
funcs = {"a": func_a,
"b": func_b}
def func_a(a, x):
return a[1] * anp.exp(-a[0] * x)
def func_b(a, x):
return a[2] * anp.exp(-a[0] * x)
It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation
will not work.
priors : list, optional
priors has to be a list with an entry for every parameter in the fit. The entries can either be
Obs (e.g. results from a previous fit) or strings containing a value and an error formatted like
0.548(23), 500(40) or 0.5(0.4)
silent : bool, optional
If true all output to the console is omitted (default False).
initial_guess : list
can provide an initial guess for the input parameters. Relevant for
non-linear fits with many parameters. In case of correlated fits the guess is used to perform
an uncorrelated fit which then serves as guess for the correlated fit.
method : str, optional
can be used to choose an alternative method for the minimization of chisquare.
The possible methods are the ones which can be used for scipy.optimize.minimize and
migrad of iminuit. If no method is specified, Levenberg-Marquard is used.
Reliable alternatives are migrad (default for combined fit), Powell and Nelder-Mead.
correlated_fit : bool
If True, use the full inverse covariance matrix in the definition of the chisquare cost function.
For details about how the covariance matrix is estimated see `pyerrors.obs.covariance`.
In practice the correlation matrix is Cholesky decomposed and inverted (instead of the covariance matrix).
This procedure should be numerically more stable as the correlation matrix is typically better conditioned (Jacobi preconditioning).
At the moment this option only works for `prior==None` and when no `method` is given.
expected_chisquare : bool
If True estimates the expected chisquare which is
corrected by effects caused by correlated input data (default False).
resplot : bool
If True, a plot which displays fit, data and residuals is generated (default False).
qqplot : bool
If True, a quantile-quantile plot of the fit result is generated (default False).
num_grad : bool
Use numerical differentation instead of automatic differentiation to perform the error propagation (default False).
'''
if priors is not None:
return _prior_fit(x, y, func, priors, silent=silent, **kwargs)
elif (type(x) == dict and type(y) == dict and type(func) == dict):
return _combined_fit(x, y, func, silent=silent, **kwargs)
else:
return _standard_fit(x, y, func, silent=silent, **kwargs)
def total_least_squares(x, y, func, silent=False, **kwargs):
r'''Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.
Parameters
----------
x : list
list of Obs, or a tuple of lists of Obs
y : list
list of Obs. The dvalues of the Obs are used as x- and yerror for the fit.
func : object
func has to be of the form
```python
import autograd.numpy as anp
def func(a, x):
return a[0] + a[1] * x + a[2] * anp.sinh(x)
```
For multiple x values func can be of the form
```python
def func(a, x):
(x1, x2) = x
return a[0] * x1 ** 2 + a[1] * x2
```
It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation
will not work.
silent : bool, optional
If true all output to the console is omitted (default False).
initial_guess : list
can provide an initial guess for the input parameters. Relevant for non-linear
fits with many parameters.
expected_chisquare : bool
If true prints the expected chisquare which is
corrected by effects caused by correlated input data.
This can take a while as the full correlation matrix
has to be calculated (default False).
num_grad : bool
Use numerical differentation instead of automatic differentiation to perform the error propagation (default False).
Notes
-----
Based on the orthogonal distance regression module of scipy
'''
output = Fit_result()
output.fit_function = func
x = np.array(x)
x_shape = x.shape
if kwargs.get('num_grad') is True:
jacobian = num_jacobian
hessian = num_hessian
else:
jacobian = auto_jacobian
hessian = auto_hessian
if not callable(func):
raise TypeError('func has to be a function.')
for i in range(42):
try:
func(np.arange(i), x.T[0])
except TypeError:
continue
except IndexError:
continue
else:
break
else:
raise RuntimeError("Fit function is not valid.")
n_parms = i
if not silent:
print('Fit with', n_parms, 'parameter' + 's' * (n_parms > 1))
x_f = np.vectorize(lambda o: o.value)(x)
dx_f = np.vectorize(lambda o: o.dvalue)(x)
y_f = np.array([o.value for o in y])
dy_f = np.array([o.dvalue for o in y])
if np.any(np.asarray(dx_f) <= 0.0):
raise Exception('No x errors available, run the gamma method first.')
if np.any(np.asarray(dy_f) <= 0.0):
raise Exception('No y errors available, run the gamma method first.')
if 'initial_guess' in kwargs:
x0 = kwargs.get('initial_guess')
if len(x0) != n_parms:
raise Exception('Initial guess does not have the correct length: %d vs. %d' % (len(x0), n_parms))
else:
x0 = [1] * n_parms
data = RealData(x_f, y_f, sx=dx_f, sy=dy_f)
model = Model(func)
odr = ODR(data, model, x0, partol=np.finfo(np.float64).eps)
odr.set_job(fit_type=0, deriv=1)
out = odr.run()
output.residual_variance = out.res_var
output.method = 'ODR'
output.message = out.stopreason
output.xplus = out.xplus
if not silent:
print('Method: ODR')
print(*out.stopreason)
print('Residual variance:', output.residual_variance)
if out.info > 3:
raise Exception('The minimization procedure did not converge.')
m = x_f.size
def odr_chisquare(p):
model = func(p[:n_parms], p[n_parms:].reshape(x_shape))
chisq = anp.sum(((y_f - model) / dy_f) ** 2) + anp.sum(((x_f - p[n_parms:].reshape(x_shape)) / dx_f) ** 2)
return chisq
if kwargs.get('expected_chisquare') is True:
W = np.diag(1 / np.asarray(np.concatenate((dy_f.ravel(), dx_f.ravel()))))
if kwargs.get('covariance') is not None:
cov = kwargs.get('covariance')
else:
cov = covariance(np.concatenate((y, x.ravel())))
number_of_x_parameters = int(m / x_f.shape[-1])
old_jac = jacobian(func)(out.beta, out.xplus)
fused_row1 = np.concatenate((old_jac, np.concatenate((number_of_x_parameters * [np.zeros(old_jac.shape)]), axis=0)))
fused_row2 = np.concatenate((jacobian(lambda x, y: func(y, x))(out.xplus, out.beta).reshape(x_f.shape[-1], x_f.shape[-1] * number_of_x_parameters), np.identity(number_of_x_parameters * old_jac.shape[0])))
new_jac = np.concatenate((fused_row1, fused_row2), axis=1)
A = W @ new_jac
P_phi = A @ np.linalg.pinv(A.T @ A) @ A.T
expected_chisquare = np.trace((np.identity(P_phi.shape[0]) - P_phi) @ W @ cov @ W)
if expected_chisquare <= 0.0:
warnings.warn("Negative expected_chisquare.", RuntimeWarning)
expected_chisquare = np.abs(expected_chisquare)
output.chisquare_by_expected_chisquare = odr_chisquare(np.concatenate((out.beta, out.xplus.ravel()))) / expected_chisquare
if not silent:
print('chisquare/expected_chisquare:',
output.chisquare_by_expected_chisquare)
fitp = out.beta
try:
hess = hessian(odr_chisquare)(np.concatenate((fitp, out.xplus.ravel())))
except TypeError:
raise Exception("It is required to use autograd.numpy instead of numpy within fit functions, see the documentation for details.") from None
def odr_chisquare_compact_x(d):
model = func(d[:n_parms], d[n_parms:n_parms + m].reshape(x_shape))
chisq = anp.sum(((y_f - model) / dy_f) ** 2) + anp.sum(((d[n_parms + m:].reshape(x_shape) - d[n_parms:n_parms + m].reshape(x_shape)) / dx_f) ** 2)
return chisq
jac_jac_x = hessian(odr_chisquare_compact_x)(np.concatenate((fitp, out.xplus.ravel(), x_f.ravel())))
# Compute hess^{-1} @ jac_jac_x[:n_parms + m, n_parms + m:] using LAPACK dgesv
try:
deriv_x = -scipy.linalg.solve(hess, jac_jac_x[:n_parms + m, n_parms + m:])
except np.linalg.LinAlgError:
raise Exception("Cannot invert hessian matrix.")
def odr_chisquare_compact_y(d):
model = func(d[:n_parms], d[n_parms:n_parms + m].reshape(x_shape))
chisq = anp.sum(((d[n_parms + m:] - model) / dy_f) ** 2) + anp.sum(((x_f - d[n_parms:n_parms + m].reshape(x_shape)) / dx_f) ** 2)
return chisq
jac_jac_y = hessian(odr_chisquare_compact_y)(np.concatenate((fitp, out.xplus.ravel(), y_f)))
# Compute hess^{-1} @ jac_jac_y[:n_parms + m, n_parms + m:] using LAPACK dgesv
try:
deriv_y = -scipy.linalg.solve(hess, jac_jac_y[:n_parms + m, n_parms + m:])
except np.linalg.LinAlgError:
raise Exception("Cannot invert hessian matrix.")
result = []
for i in range(n_parms):
result.append(derived_observable(lambda my_var, **kwargs: (my_var[0] + np.finfo(np.float64).eps) / (x.ravel()[0].value + np.finfo(np.float64).eps) * out.beta[i], list(x.ravel()) + list(y), man_grad=list(deriv_x[i]) + list(deriv_y[i])))
output.fit_parameters = result
output.odr_chisquare = odr_chisquare(np.concatenate((out.beta, out.xplus.ravel())))
output.dof = x.shape[-1] - n_parms
output.p_value = 1 - scipy.stats.chi2.cdf(output.odr_chisquare, output.dof)
return output
def _prior_fit(x, y, func, priors, silent=False, **kwargs):
output = Fit_result()
output.fit_function = func
x = np.asarray(x)
if kwargs.get('num_grad') is True:
hessian = num_hessian
else:
hessian = auto_hessian
if not callable(func):
raise TypeError('func has to be a function.')
for i in range(100):
try:
func(np.arange(i), 0)
except TypeError:
continue
except IndexError:
continue
else:
break
else:
raise RuntimeError("Fit function is not valid.")
n_parms = i
if n_parms != len(priors):
raise Exception('Priors does not have the correct length.')
def extract_val_and_dval(string):
split_string = string.split('(')
if '.' in split_string[0] and '.' not in split_string[1][:-1]:
factor = 10 ** -len(split_string[0].partition('.')[2])
else:
factor = 1
return float(split_string[0]), float(split_string[1][:-1]) * factor
loc_priors = []
for i_n, i_prior in enumerate(priors):
if isinstance(i_prior, Obs):
loc_priors.append(i_prior)
else:
loc_val, loc_dval = extract_val_and_dval(i_prior)
loc_priors.append(cov_Obs(loc_val, loc_dval ** 2, '#prior' + str(i_n) + f"_{np.random.randint(2147483647):010d}"))
output.priors = loc_priors
if not silent:
print('Fit with', n_parms, 'parameter' + 's' * (n_parms > 1))
y_f = [o.value for o in y]
dy_f = [o.dvalue for o in y]
if np.any(np.asarray(dy_f) <= 0.0):
raise Exception('No y errors available, run the gamma method first.')
p_f = [o.value for o in loc_priors]
dp_f = [o.dvalue for o in loc_priors]
if np.any(np.asarray(dp_f) <= 0.0):
raise Exception('No prior errors available, run the gamma method first.')
if 'initial_guess' in kwargs:
x0 = kwargs.get('initial_guess')
if len(x0) != n_parms:
raise Exception('Initial guess does not have the correct length.')
else:
x0 = p_f
def chisqfunc(p):
model = func(p, x)
chisq = anp.sum(((y_f - model) / dy_f) ** 2) + anp.sum(((p_f - p) / dp_f) ** 2)
return chisq
if not silent:
print('Method: migrad')
m = iminuit.Minuit(chisqfunc, x0)
m.errordef = 1
m.print_level = 0
if 'tol' in kwargs:
m.tol = kwargs.get('tol')
else:
m.tol = 1e-4
m.migrad()
params = np.asarray(m.values)
output.chisquare_by_dof = m.fval / len(x)
output.method = 'migrad'
if not silent:
print('chisquare/d.o.f.:', output.chisquare_by_dof)
if not m.fmin.is_valid:
raise Exception('The minimization procedure did not converge.')
hess = hessian(chisqfunc)(params)
hess_inv = np.linalg.pinv(hess)
def chisqfunc_compact(d):
model = func(d[:n_parms], x)
chisq = anp.sum(((d[n_parms: n_parms + len(x)] - model) / dy_f) ** 2) + anp.sum(((d[n_parms + len(x):] - d[:n_parms]) / dp_f) ** 2)
return chisq
jac_jac = hessian(chisqfunc_compact)(np.concatenate((params, y_f, p_f)))
deriv = -hess_inv @ jac_jac[:n_parms, n_parms:]
result = []
for i in range(n_parms):
result.append(derived_observable(lambda x, **kwargs: (x[0] + np.finfo(np.float64).eps) / (y[0].value + np.finfo(np.float64).eps) * params[i], list(y) + list(loc_priors), man_grad=list(deriv[i])))
output.fit_parameters = result
output.chisquare = chisqfunc(np.asarray(params))
if kwargs.get('resplot') is True:
residual_plot(x, y, func, result)
if kwargs.get('qqplot') is True:
qqplot(x, y, func, result)
return output
def _standard_fit(x, y, func, silent=False, **kwargs):
output = Fit_result()
output.fit_function = func
x = np.asarray(x)
if kwargs.get('num_grad') is True:
jacobian = num_jacobian
hessian = num_hessian
else:
jacobian = auto_jacobian
hessian = auto_hessian
if x.shape[-1] != len(y):
raise Exception('x and y input have to have the same length')
if len(x.shape) > 2:
raise Exception('Unknown format for x values')
if not callable(func):
raise TypeError('func has to be a function.')
for i in range(42):
try:
func(np.arange(i), x.T[0])
except TypeError:
continue
except IndexError:
continue
else:
break
else:
raise RuntimeError("Fit function is not valid.")
n_parms = i
if not silent:
print('Fit with', n_parms, 'parameter' + 's' * (n_parms > 1))
y_f = [o.value for o in y]
dy_f = [o.dvalue for o in y]
if np.any(np.asarray(dy_f) <= 0.0):
raise Exception('No y errors available, run the gamma method first.')
if 'initial_guess' in kwargs:
x0 = kwargs.get('initial_guess')
if len(x0) != n_parms:
raise Exception('Initial guess does not have the correct length: %d vs. %d' % (len(x0), n_parms))
else:
x0 = [0.1] * n_parms
if kwargs.get('correlated_fit') is True:
corr = covariance(y, correlation=True, **kwargs)
covdiag = np.diag(1 / np.asarray(dy_f))
condn = np.linalg.cond(corr)
if condn > 0.1 / np.finfo(float).eps:
raise Exception(f"Cannot invert correlation matrix as its condition number exceeds machine precision ({condn:1.2e})")
if condn > 1e13:
warnings.warn("Correlation matrix may be ill-conditioned, condition number: {%1.2e}" % (condn), RuntimeWarning)
chol = np.linalg.cholesky(corr)
chol_inv = scipy.linalg.solve_triangular(chol, covdiag, lower=True)
def chisqfunc_corr(p):
model = func(p, x)
chisq = anp.sum(anp.dot(chol_inv, (y_f - model)) ** 2)
return chisq
def chisqfunc(p):
model = func(p, x)
chisq = anp.sum(((y_f - model) / dy_f) ** 2)
return chisq
output.method = kwargs.get('method', 'Levenberg-Marquardt')
if not silent:
print('Method:', output.method)
if output.method != 'Levenberg-Marquardt':
if output.method == 'migrad':
fit_result = iminuit.minimize(chisqfunc, x0, tol=1e-4) # Stopping criterion 0.002 * tol * errordef
if kwargs.get('correlated_fit') is True:
fit_result = iminuit.minimize(chisqfunc_corr, fit_result.x, tol=1e-4) # Stopping criterion 0.002 * tol * errordef
output.iterations = fit_result.nfev
else:
fit_result = scipy.optimize.minimize(chisqfunc, x0, method=kwargs.get('method'), tol=1e-12)
if kwargs.get('correlated_fit') is True:
fit_result = scipy.optimize.minimize(chisqfunc_corr, fit_result.x, method=kwargs.get('method'), tol=1e-12)
output.iterations = fit_result.nit
chisquare = fit_result.fun
else:
if kwargs.get('correlated_fit') is True:
def chisqfunc_residuals_corr(p):
model = func(p, x)
chisq = anp.dot(chol_inv, (y_f - model))
return chisq
def chisqfunc_residuals(p):
model = func(p, x)
chisq = ((y_f - model) / dy_f)
return chisq
fit_result = scipy.optimize.least_squares(chisqfunc_residuals, x0, method='lm', ftol=1e-15, gtol=1e-15, xtol=1e-15)
if kwargs.get('correlated_fit') is True:
fit_result = scipy.optimize.least_squares(chisqfunc_residuals_corr, fit_result.x, method='lm', ftol=1e-15, gtol=1e-15, xtol=1e-15)
chisquare = np.sum(fit_result.fun ** 2)
if kwargs.get('correlated_fit') is True:
assert np.isclose(chisquare, chisqfunc_corr(fit_result.x), atol=1e-14)
else:
assert np.isclose(chisquare, chisqfunc(fit_result.x), atol=1e-14)
output.iterations = fit_result.nfev
if not fit_result.success:
raise Exception('The minimization procedure did not converge.')
if x.shape[-1] - n_parms > 0:
output.chisquare_by_dof = chisquare / (x.shape[-1] - n_parms)
else:
output.chisquare_by_dof = float('nan')
output.message = fit_result.message
if not silent:
print(fit_result.message)
print('chisquare/d.o.f.:', output.chisquare_by_dof)
if kwargs.get('expected_chisquare') is True:
if kwargs.get('correlated_fit') is not True:
W = np.diag(1 / np.asarray(dy_f))
cov = covariance(y)
A = W @ jacobian(func)(fit_result.x, x)
P_phi = A @ np.linalg.pinv(A.T @ A) @ A.T
expected_chisquare = np.trace((np.identity(x.shape[-1]) - P_phi) @ W @ cov @ W)
output.chisquare_by_expected_chisquare = chisquare / expected_chisquare
if not silent:
print('chisquare/expected_chisquare:',
output.chisquare_by_expected_chisquare)
fitp = fit_result.x
try:
if kwargs.get('correlated_fit') is True:
hess = hessian(chisqfunc_corr)(fitp)
else:
hess = hessian(chisqfunc)(fitp)
except TypeError:
raise Exception("It is required to use autograd.numpy instead of numpy within fit functions, see the documentation for details.") from None
if kwargs.get('correlated_fit') is True:
def chisqfunc_compact(d):
model = func(d[:n_parms], x)
chisq = anp.sum(anp.dot(chol_inv, (d[n_parms:] - model)) ** 2)
return chisq
else:
def chisqfunc_compact(d):
model = func(d[:n_parms], x)
chisq = anp.sum(((d[n_parms:] - model) / dy_f) ** 2)
return chisq
jac_jac = hessian(chisqfunc_compact)(np.concatenate((fitp, y_f)))
# Compute hess^{-1} @ jac_jac[:n_parms, n_parms:] using LAPACK dgesv
try:
deriv = -scipy.linalg.solve(hess, jac_jac[:n_parms, n_parms:])
except np.linalg.LinAlgError:
raise Exception("Cannot invert hessian matrix.")
result = []
for i in range(n_parms):
result.append(derived_observable(lambda x, **kwargs: (x[0] + np.finfo(np.float64).eps) / (y[0].value + np.finfo(np.float64).eps) * fit_result.x[i], list(y), man_grad=list(deriv[i])))
output.fit_parameters = result
output.chisquare = chisquare
output.dof = x.shape[-1] - n_parms
output.p_value = 1 - scipy.stats.chi2.cdf(output.chisquare, output.dof)
# Hotelling t-squared p-value for correlated fits.
if kwargs.get('correlated_fit') is True:
n_cov = np.min(np.vectorize(lambda x: x.N)(y))
output.t2_p_value = 1 - scipy.stats.f.cdf((n_cov - output.dof) / (output.dof * (n_cov - 1)) * output.chisquare,
output.dof, n_cov - output.dof)
if kwargs.get('resplot') is True:
residual_plot(x, y, func, result)
if kwargs.get('qqplot') is True:
qqplot(x, y, func, result)
return output
def _combined_fit(x, y, func, silent=False, **kwargs):
if kwargs.get('correlated_fit') is True:
raise Exception("Correlated fit has not been implemented yet")
output = Fit_result()
output.fit_function = func
if kwargs.get('num_grad') is True:
jacobian = num_jacobian
hessian = num_hessian
else:
jacobian = auto_jacobian
hessian = auto_hessian
x_all = []
y_all = []
for key in x.keys():
x_all += x[key]
y_all += y[key]
x_all = np.asarray(x_all)
if len(x_all.shape) > 2:
raise Exception('Unknown format for x values')
# number of fit parameters
n_parms_ls = []
for key in func.keys():
if not callable(func[key]):
raise TypeError('func (key=' + key + ') is not a function.')
if len(x[key]) != len(y[key]):
raise Exception('x and y input (key=' + key + ') do not have the same length')
for i in range(42):
try:
func[key](np.arange(i), x_all.T[0])
except TypeError:
continue
except IndexError:
continue
else:
break
else:
raise RuntimeError("Fit function (key=" + key + ") is not valid.")
n_parms = i
n_parms_ls.append(n_parms)
n_parms = max(n_parms_ls)
if not silent:
print('Fit with', n_parms, 'parameter' + 's' * (n_parms > 1))
if 'initial_guess' in kwargs:
x0 = kwargs.get('initial_guess')
if len(x0) != n_parms:
raise Exception('Initial guess does not have the correct length: %d vs. %d' % (len(x0), n_parms))
else:
x0 = [0.1] * n_parms
output.method = kwargs.get('method', 'migrad')
if not silent:
print('Method:', output.method)
def chisqfunc(p):
chisq = 0.0
for key in func.keys():
x_array = np.asarray(x[key])
model = anp.array(func[key](p, x_array))
y_obs = y[key]
y_f = [o.value for o in y_obs]
dy_f = [o.dvalue for o in y_obs]
C_inv = np.diag(np.diag(np.ones((len(x_array), len(x_array))))) / dy_f / dy_f
chisq += anp.sum((y_f - model) @ C_inv @ (y_f - model))
return chisq
if output.method == 'migrad':
tolerance = 1e-4
if 'tol' in kwargs:
tolerance = kwargs.get('tol')
fit_result = iminuit.minimize(chisqfunc, x0, tol=tolerance) # Stopping criterion 0.002 * tol * errordef
output.iterations = fit_result.nfev
else:
tolerance = 1e-12
if 'tol' in kwargs:
tolerance = kwargs.get('tol')
fit_result = scipy.optimize.minimize(chisqfunc, x0, method=kwargs.get('method'), tol=tolerance)
output.iterations = fit_result.nit
chisquare = fit_result.fun
output.message = fit_result.message
if not fit_result.success:
raise Exception('The minimization procedure did not converge.')
if x_all.shape[-1] - n_parms > 0:
output.chisquare = chisqfunc(fit_result.x)
output.dof = x_all.shape[-1] - n_parms
output.chisquare_by_dof = output.chisquare / output.dof
output.p_value = 1 - scipy.stats.chi2.cdf(output.chisquare, output.dof)
else:
output.chisquare_by_dof = float('nan')
if not silent:
print(fit_result.message)
print('chisquare/d.o.f.:', output.chisquare_by_dof)
print('fit parameters', fit_result.x)
def chisqfunc_compact(d):
chisq = 0.0
list_tmp = []
c1 = 0
c2 = 0
for key in func.keys():
x_array = np.asarray(x[key])
c2 += len(x_array)
model = anp.array(func[key](d[:n_parms], x_array))
y_obs = y[key]
dy_f = [o.dvalue for o in y_obs]
C_inv = np.diag(np.diag(np.ones((len(x_array), len(x_array))))) / dy_f / dy_f
list_tmp.append(anp.sum((d[n_parms + c1:n_parms + c2] - model) @ C_inv @ (d[n_parms + c1:n_parms + c2] - model)))
c1 += len(x_array)
chisq = anp.sum(list_tmp)
return chisq
def prepare_hat_matrix():
hat_vector = []
for key in func.keys():
x_array = np.asarray(x[key])
if (len(x_array) != 0):
hat_vector.append(jacobian(func[key])(fit_result.x, x_array))
hat_vector = [item for sublist in hat_vector for item in sublist]
return hat_vector
fitp = fit_result.x
y_f = [o.value for o in y_all]
dy_f = [o.dvalue for o in y_all]
if np.any(np.asarray(dy_f) <= 0.0):
raise Exception('No y errors available, run the gamma method first.')
try:
hess = hessian(chisqfunc)(fitp)
except TypeError:
raise Exception("It is required to use autograd.numpy instead of numpy within fit functions, see the documentation for details.") from None
jac_jac_y = hessian(chisqfunc_compact)(np.concatenate((fitp, y_f)))
# Compute hess^{-1} @ jac_jac_y[:n_parms + m, n_parms + m:] using LAPACK dgesv
try:
deriv_y = -scipy.linalg.solve(hess, jac_jac_y[:n_parms, n_parms:])
except np.linalg.LinAlgError:
raise Exception("Cannot invert hessian matrix.")
if kwargs.get('expected_chisquare') is True:
if kwargs.get('correlated_fit') is not True:
W = np.diag(1 / np.asarray(dy_f))
cov = covariance(y_all)
hat_vector = prepare_hat_matrix()
A = W @ hat_vector # hat_vector = 'jacobian(func)(fit_result.x, x)'
P_phi = A @ np.linalg.pinv(A.T @ A) @ A.T
expected_chisquare = np.trace((np.identity(x_all.shape[-1]) - P_phi) @ W @ cov @ W)
output.chisquare_by_expected_chisquare = chisquare / expected_chisquare
if not silent:
print('chisquare/expected_chisquare:', output.chisquare_by_expected_chisquare)
result = []
for i in range(n_parms):
result.append(derived_observable(lambda x_all, **kwargs: (x_all[0] + np.finfo(np.float64).eps) / (y_all[0].value + np.finfo(np.float64).eps) * fitp[i], list(y_all), man_grad=list(deriv_y[i])))
output.fit_parameters = result
return output
def fit_lin(x, y, **kwargs):
"""Performs a linear fit to y = n + m * x and returns two Obs n, m.
Parameters
----------
x : list
Can either be a list of floats in which case no xerror is assumed, or
a list of Obs, where the dvalues of the Obs are used as xerror for the fit.
y : list
List of Obs, the dvalues of the Obs are used as yerror for the fit.
"""
def f(a, x):
y = a[0] + a[1] * x
return y
if all(isinstance(n, Obs) for n in x):
out = total_least_squares(x, y, f, **kwargs)
return out.fit_parameters
elif all(isinstance(n, float) or isinstance(n, int) for n in x) or isinstance(x, np.ndarray):
out = least_squares(x, y, f, **kwargs)
return out.fit_parameters
else:
raise Exception('Unsupported types for x')
def qqplot(x, o_y, func, p):
"""Generates a quantile-quantile plot of the fit result which can be used to
check if the residuals of the fit are gaussian distributed.
"""
residuals = []
for i_x, i_y in zip(x, o_y):
residuals.append((i_y - func(p, i_x)) / i_y.dvalue)
residuals = sorted(residuals)
my_y = [o.value for o in residuals]
probplot = scipy.stats.probplot(my_y)
my_x = probplot[0][0]
plt.figure(figsize=(8, 8 / 1.618))
plt.errorbar(my_x, my_y, fmt='o')
fit_start = my_x[0]
fit_stop = my_x[-1]
samples = np.arange(fit_start, fit_stop, 0.01)
plt.plot(samples, samples, 'k--', zorder=11, label='Standard normal distribution')
plt.plot(samples, probplot[1][0] * samples + probplot[1][1], zorder=10, label='Least squares fit, r=' + str(np.around(probplot[1][2], 3)), marker='', ls='-')
plt.xlabel('Theoretical quantiles')
plt.ylabel('Ordered Values')
plt.legend()
plt.draw()
def residual_plot(x, y, func, fit_res):
""" Generates a plot which compares the fit to the data and displays the corresponding residuals"""
sorted_x = sorted(x)
xstart = sorted_x[0] - 0.5 * (sorted_x[1] - sorted_x[0])
xstop = sorted_x[-1] + 0.5 * (sorted_x[-1] - sorted_x[-2])
x_samples = np.arange(xstart, xstop + 0.01, 0.01)
plt.figure(figsize=(8, 8 / 1.618))
gs = gridspec.GridSpec(2, 1, height_ratios=[3, 1], wspace=0.0, hspace=0.0)
ax0 = plt.subplot(gs[0])
ax0.errorbar(x, [o.value for o in y], yerr=[o.dvalue for o in y], ls='none', fmt='o', capsize=3, markersize=5, label='Data')
ax0.plot(x_samples, func([o.value for o in fit_res], x_samples), label='Fit', zorder=10, ls='-', ms=0)
ax0.set_xticklabels([])
ax0.set_xlim([xstart, xstop])
ax0.set_xticklabels([])
ax0.legend()
residuals = (np.asarray([o.value for o in y]) - func([o.value for o in fit_res], x)) / np.asarray([o.dvalue for o in y])
ax1 = plt.subplot(gs[1])
ax1.plot(x, residuals, 'ko', ls='none', markersize=5)
ax1.tick_params(direction='out')
ax1.tick_params(axis="x", bottom=True, top=True, labelbottom=True)
ax1.axhline(y=0.0, ls='--', color='k', marker=" ")
ax1.fill_between(x_samples, -1.0, 1.0, alpha=0.1, facecolor='k')
ax1.set_xlim([xstart, xstop])
ax1.set_ylabel('Residuals')
plt.subplots_adjust(wspace=None, hspace=None)
plt.draw()
def error_band(x, func, beta):
"""Returns the error band for an array of sample values x, for given fit function func with optimized parameters beta."""
cov = covariance(beta)
if np.any(np.abs(cov - cov.T) > 1000 * np.finfo(np.float64).eps):
warnings.warn("Covariance matrix is not symmetric within floating point precision", RuntimeWarning)
deriv = []
for i, item in enumerate(x):
deriv.append(np.array(egrad(func)([o.value for o in beta], item)))
err = []
for i, item in enumerate(x):
err.append(np.sqrt(deriv[i] @ cov @ deriv[i]))
err = np.array(err)
return err
def ks_test(objects=None):
"""Performs a KolmogorovSmirnov test for the p-values of all fit object.
Parameters
----------
objects : list
List of fit results to include in the analysis (optional).
"""
if objects is None:
obs_list = []
for obj in gc.get_objects():
if isinstance(obj, Fit_result):
obs_list.append(obj)
else:
obs_list = objects
p_values = [o.p_value for o in obs_list]
bins = len(p_values)
x = np.arange(0, 1.001, 0.001)
plt.plot(x, x, 'k', zorder=1)
plt.xlim(0, 1)
plt.ylim(0, 1)
plt.xlabel('p-value')
plt.ylabel('Cumulative probability')
plt.title(str(bins) + ' p-values')
n = np.arange(1, bins + 1) / np.float64(bins)
Xs = np.sort(p_values)
plt.step(Xs, n)
diffs = n - Xs
loc_max_diff = np.argmax(np.abs(diffs))
loc = Xs[loc_max_diff]
plt.annotate('', xy=(loc, loc), xytext=(loc, loc + diffs[loc_max_diff]), arrowprops=dict(arrowstyle='<->', shrinkA=0, shrinkB=0))
plt.draw()
print(scipy.stats.kstest(p_values, 'uniform'))