pyerrors/pyerrors/linalg.py
2021-10-18 14:37:09 +01:00

377 lines
12 KiB
Python

#!/usr/bin/env python
# coding: utf-8
import numpy as np
import autograd.numpy as anp # Thinly-wrapped numpy
from .pyerrors import derived_observable, CObs
# This code block is directly taken from the current master branch of autograd and remains
# only until the new version is released on PyPi
from functools import partial
from autograd.extend import defvjp
_dot = partial(anp.einsum, '...ij,...jk->...ik')
# batched diag
def _diag(a):
return anp.eye(a.shape[-1]) * a
# batched diagonal, similar to matrix_diag in tensorflow
def _matrix_diag(a):
reps = anp.array(a.shape)
reps[:-1] = 1
reps[-1] = a.shape[-1]
newshape = list(a.shape) + [a.shape[-1]]
return _diag(anp.tile(a, reps).reshape(newshape))
# https://arxiv.org/pdf/1701.00392.pdf Eq(4.77)
# Note the formula from Sec3.1 in https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf is incomplete
def grad_eig(ans, x):
"""Gradient of a general square (complex valued) matrix"""
e, u = ans # eigenvalues as 1d array, eigenvectors in columns
n = e.shape[-1]
def vjp(g):
ge, gu = g
ge = _matrix_diag(ge)
f = 1 / (e[..., anp.newaxis, :] - e[..., :, anp.newaxis] + 1.e-20)
f -= _diag(f)
ut = anp.swapaxes(u, -1, -2)
r1 = f * _dot(ut, gu)
r2 = -f * (_dot(_dot(ut, anp.conj(u)), anp.real(_dot(ut, gu)) * anp.eye(n)))
r = _dot(_dot(anp.linalg.inv(ut), ge + r1 + r2), ut)
if not anp.iscomplexobj(x):
r = anp.real(r)
# the derivative is still complex for real input (imaginary delta is allowed), real output
# but the derivative should be real in real input case when imaginary delta is forbidden
return r
return vjp
defvjp(anp.linalg.eig, grad_eig)
# End of the code block from autograd.master
def scalar_mat_op(op, obs, **kwargs):
"""Computes the matrix to scalar operation op to a given matrix of Obs."""
def _mat(x, **kwargs):
dim = int(np.sqrt(len(x)))
if np.sqrt(len(x)) != dim:
raise Exception('Input has to have dim**2 entries')
mat = []
for i in range(dim):
row = []
for j in range(dim):
row.append(x[j + dim * i])
mat.append(row)
return op(anp.array(mat))
if isinstance(obs, np.ndarray):
raveled_obs = (1 * (obs.ravel())).tolist()
elif isinstance(obs, list):
raveled_obs = obs
else:
raise TypeError('Unproper type of input.')
return derived_observable(_mat, raveled_obs, **kwargs)
def mat_mat_op(op, obs, **kwargs):
"""Computes the matrix to matrix operation op to a given matrix of Obs."""
# Use real representation to calculate matrix operations for complex matrices
if isinstance(obs.ravel()[0], CObs):
A = np.empty_like(obs)
B = np.empty_like(obs)
for (n, m), entry in np.ndenumerate(obs):
if hasattr(entry, 'real') and hasattr(entry, 'imag'):
A[n, m] = entry.real
B[n, m] = entry.imag
else:
A[n, m] = entry
B[n, m] = 0.0
big_matrix = np.block([[A, -B], [B, A]])
if kwargs.get('num_grad') is True:
op_big_matrix = _num_diff_mat_mat_op(op, big_matrix, **kwargs)
else:
op_big_matrix = derived_observable(lambda x, **kwargs: op(x), big_matrix)
dim = op_big_matrix.shape[0]
op_A = op_big_matrix[0: dim // 2, 0: dim // 2]
op_B = op_big_matrix[dim // 2:, 0: dim // 2]
return (1 + 0j) * op_A + 1j * op_B
else:
if kwargs.get('num_grad') is True:
return _num_diff_mat_mat_op(op, obs, **kwargs)
return derived_observable(lambda x, **kwargs: op(x), obs)
def eigh(obs, **kwargs):
"""Computes the eigenvalues and eigenvectors of a given hermitian matrix of Obs according to np.linalg.eigh."""
if kwargs.get('num_grad') is True:
return _num_diff_eigh(obs, **kwargs)
w = derived_observable(lambda x, **kwargs: anp.linalg.eigh(x)[0], obs)
v = derived_observable(lambda x, **kwargs: anp.linalg.eigh(x)[1], obs)
return w, v
def eig(obs, **kwargs):
"""Computes the eigenvalues of a given matrix of Obs according to np.linalg.eig."""
if kwargs.get('num_grad') is True:
return _num_diff_eig(obs, **kwargs)
# Note: Automatic differentiation of eig is implemented in the git of autograd
# but not yet released to PyPi (1.3)
w = derived_observable(lambda x, **kwargs: anp.real(anp.linalg.eig(x)[0]), obs)
return w
def pinv(obs, **kwargs):
"""Computes the Moore-Penrose pseudoinverse of a matrix of Obs."""
if kwargs.get('num_grad') is True:
return _num_diff_pinv(obs, **kwargs)
return derived_observable(lambda x, **kwargs: anp.linalg.pinv(x), obs)
def svd(obs, **kwargs):
"""Computes the singular value decomposition of a matrix of Obs."""
if kwargs.get('num_grad') is True:
return _num_diff_svd(obs, **kwargs)
u = derived_observable(lambda x, **kwargs: anp.linalg.svd(x, full_matrices=False)[0], obs)
s = derived_observable(lambda x, **kwargs: anp.linalg.svd(x, full_matrices=False)[1], obs)
vh = derived_observable(lambda x, **kwargs: anp.linalg.svd(x, full_matrices=False)[2], obs)
return (u, s, vh)
def slog_det(obs, **kwargs):
"""Computes the determinant of a matrix of Obs via np.linalg.slogdet."""
def _mat(x):
dim = int(np.sqrt(len(x)))
if np.sqrt(len(x)) != dim:
raise Exception('Input has to have dim**2 entries')
mat = []
for i in range(dim):
row = []
for j in range(dim):
row.append(x[j + dim * i])
mat.append(row)
(sign, logdet) = anp.linalg.slogdet(np.array(mat))
return sign * anp.exp(logdet)
if isinstance(obs, np.ndarray):
return derived_observable(_mat, (1 * (obs.ravel())).tolist(), **kwargs)
elif isinstance(obs, list):
return derived_observable(_mat, obs, **kwargs)
else:
raise TypeError('Unproper type of input.')
# Variants for numerical differentiation
def _num_diff_mat_mat_op(op, obs, **kwargs):
"""Computes the matrix to matrix operation op to a given matrix of Obs elementwise
which is suitable for numerical differentiation."""
def _mat(x, **kwargs):
dim = int(np.sqrt(len(x)))
if np.sqrt(len(x)) != dim:
raise Exception('Input has to have dim**2 entries')
mat = []
for i in range(dim):
row = []
for j in range(dim):
row.append(x[j + dim * i])
mat.append(row)
return op(np.array(mat))[kwargs.get('i')][kwargs.get('j')]
if isinstance(obs, np.ndarray):
raveled_obs = (1 * (obs.ravel())).tolist()
elif isinstance(obs, list):
raveled_obs = obs
else:
raise TypeError('Unproper type of input.')
dim = int(np.sqrt(len(raveled_obs)))
res_mat = []
for i in range(dim):
row = []
for j in range(dim):
row.append(derived_observable(_mat, raveled_obs, i=i, j=j, **kwargs))
res_mat.append(row)
return np.array(res_mat) @ np.identity(dim)
def _num_diff_eigh(obs, **kwargs):
"""Computes the eigenvalues and eigenvectors of a given hermitian matrix of Obs according to np.linalg.eigh
elementwise which is suitable for numerical differentiation."""
def _mat(x, **kwargs):
dim = int(np.sqrt(len(x)))
if np.sqrt(len(x)) != dim:
raise Exception('Input has to have dim**2 entries')
mat = []
for i in range(dim):
row = []
for j in range(dim):
row.append(x[j + dim * i])
mat.append(row)
n = kwargs.get('n')
res = np.linalg.eigh(np.array(mat))[n]
if n == 0:
return res[kwargs.get('i')]
else:
return res[kwargs.get('i')][kwargs.get('j')]
if isinstance(obs, np.ndarray):
raveled_obs = (1 * (obs.ravel())).tolist()
elif isinstance(obs, list):
raveled_obs = obs
else:
raise TypeError('Unproper type of input.')
dim = int(np.sqrt(len(raveled_obs)))
res_vec = []
for i in range(dim):
res_vec.append(derived_observable(_mat, raveled_obs, n=0, i=i, **kwargs))
res_mat = []
for i in range(dim):
row = []
for j in range(dim):
row.append(derived_observable(_mat, raveled_obs, n=1, i=i, j=j, **kwargs))
res_mat.append(row)
return (np.array(res_vec) @ np.identity(dim), np.array(res_mat) @ np.identity(dim))
def _num_diff_eig(obs, **kwargs):
"""Computes the eigenvalues of a given matrix of Obs according to np.linalg.eig
elementwise which is suitable for numerical differentiation."""
def _mat(x, **kwargs):
dim = int(np.sqrt(len(x)))
if np.sqrt(len(x)) != dim:
raise Exception('Input has to have dim**2 entries')
mat = []
for i in range(dim):
row = []
for j in range(dim):
row.append(x[j + dim * i])
mat.append(row)
n = kwargs.get('n')
res = np.linalg.eig(np.array(mat))[n]
if n == 0:
# Discard imaginary part of eigenvalue here
return np.real(res[kwargs.get('i')])
else:
return res[kwargs.get('i')][kwargs.get('j')]
if isinstance(obs, np.ndarray):
raveled_obs = (1 * (obs.ravel())).tolist()
elif isinstance(obs, list):
raveled_obs = obs
else:
raise TypeError('Unproper type of input.')
dim = int(np.sqrt(len(raveled_obs)))
res_vec = []
for i in range(dim):
# Note: Automatic differentiation of eig is implemented in the git of autograd
# but not yet released to PyPi (1.3)
res_vec.append(derived_observable(_mat, raveled_obs, n=0, i=i, **kwargs))
return np.array(res_vec) @ np.identity(dim)
def _num_diff_pinv(obs, **kwargs):
"""Computes the Moore-Penrose pseudoinverse of a matrix of Obs elementwise which is suitable
for numerical differentiation."""
def _mat(x, **kwargs):
shape = kwargs.get('shape')
mat = []
for i in range(shape[0]):
row = []
for j in range(shape[1]):
row.append(x[j + shape[1] * i])
mat.append(row)
return np.linalg.pinv(np.array(mat))[kwargs.get('i')][kwargs.get('j')]
if isinstance(obs, np.ndarray):
shape = obs.shape
raveled_obs = (1 * (obs.ravel())).tolist()
else:
raise TypeError('Unproper type of input.')
res_mat = []
for i in range(shape[1]):
row = []
for j in range(shape[0]):
row.append(derived_observable(_mat, raveled_obs, shape=shape, i=i, j=j, **kwargs))
res_mat.append(row)
return np.array(res_mat) @ np.identity(shape[0])
def _num_diff_svd(obs, **kwargs):
"""Computes the singular value decomposition of a matrix of Obs elementwise which
is suitable for numerical differentiation."""
def _mat(x, **kwargs):
shape = kwargs.get('shape')
mat = []
for i in range(shape[0]):
row = []
for j in range(shape[1]):
row.append(x[j + shape[1] * i])
mat.append(row)
res = np.linalg.svd(np.array(mat), full_matrices=False)
if kwargs.get('n') == 1:
return res[1][kwargs.get('i')]
else:
return res[kwargs.get('n')][kwargs.get('i')][kwargs.get('j')]
if isinstance(obs, np.ndarray):
shape = obs.shape
raveled_obs = (1 * (obs.ravel())).tolist()
else:
raise TypeError('Unproper type of input.')
mid_index = min(shape[0], shape[1])
res_mat0 = []
for i in range(shape[0]):
row = []
for j in range(mid_index):
row.append(derived_observable(_mat, raveled_obs, shape=shape, n=0, i=i, j=j, **kwargs))
res_mat0.append(row)
res_mat1 = []
for i in range(mid_index):
res_mat1.append(derived_observable(_mat, raveled_obs, shape=shape, n=1, i=i, **kwargs))
res_mat2 = []
for i in range(mid_index):
row = []
for j in range(shape[1]):
row.append(derived_observable(_mat, raveled_obs, shape=shape, n=2, i=i, j=j, **kwargs))
res_mat2.append(row)
return (np.array(res_mat0) @ np.identity(mid_index), np.array(res_mat1) @ np.identity(mid_index), np.array(res_mat2) @ np.identity(shape[1]))