pyerrors/pyerrors/input/misc.py
Fabian Joswig 1184a0fe76
t0 extractions for new Hadrons module (#171)
* feat: first version of read flow observables for new hadrons module.

* feat: refactored t0 fit in seperate function and added extract_t0_hd5 to
hadrons submodule.
2023-04-25 08:25:33 +01:00

178 lines
6.3 KiB
Python

import os
import fnmatch
import re
import struct
import numpy as np # Thinly-wrapped numpy
import matplotlib.pyplot as plt
from matplotlib import gridspec
from ..obs import Obs
from ..fits import fit_lin
def fit_t0(t2E_dict, fit_range, plot_fit=False):
zero_crossing = np.argmax(np.array(
[o.value for o in t2E_dict.values()]) > 0.0)
x = list(t2E_dict.keys())[zero_crossing - fit_range:
zero_crossing + fit_range]
y = list(t2E_dict.values())[zero_crossing - fit_range:
zero_crossing + fit_range]
[o.gamma_method() for o in y]
fit_result = fit_lin(x, y)
if plot_fit is True:
plt.figure()
gs = gridspec.GridSpec(2, 1, height_ratios=[3, 1], wspace=0.0, hspace=0.0)
ax0 = plt.subplot(gs[0])
xmore = list(t2E_dict.keys())[zero_crossing - fit_range - 2: zero_crossing + fit_range + 2]
ymore = list(t2E_dict.values())[zero_crossing - fit_range - 2: zero_crossing + fit_range + 2]
[o.gamma_method() for o in ymore]
ax0.errorbar(xmore, [yi.value for yi in ymore], yerr=[yi.dvalue for yi in ymore], fmt='x')
xplot = np.linspace(np.min(x), np.max(x))
yplot = [fit_result[0] + fit_result[1] * xi for xi in xplot]
[yi.gamma_method() for yi in yplot]
ax0.fill_between(xplot, y1=[yi.value - yi.dvalue for yi in yplot], y2=[yi.value + yi.dvalue for yi in yplot])
retval = (-fit_result[0] / fit_result[1])
retval.gamma_method()
ylim = ax0.get_ylim()
ax0.fill_betweenx(ylim, x1=retval.value - retval.dvalue, x2=retval.value + retval.dvalue, color='gray', alpha=0.4)
ax0.set_ylim(ylim)
ax0.set_ylabel(r'$t^2 \langle E(t) \rangle - 0.3 $')
xlim = ax0.get_xlim()
fit_res = [fit_result[0] + fit_result[1] * xi for xi in x]
residuals = (np.asarray([o.value for o in y]) - [o.value for o in fit_res]) / np.asarray([o.dvalue for o in y])
ax1 = plt.subplot(gs[1])
ax1.plot(x, residuals, 'ko', ls='none', markersize=5)
ax1.tick_params(direction='out')
ax1.tick_params(axis="x", bottom=True, top=True, labelbottom=True)
ax1.axhline(y=0.0, ls='--', color='k')
ax1.fill_between(xlim, -1.0, 1.0, alpha=0.1, facecolor='k')
ax1.set_xlim(xlim)
ax1.set_ylabel('Residuals')
ax1.set_xlabel(r'$t/a^2$')
plt.draw()
return -fit_result[0] / fit_result[1]
def read_pbp(path, prefix, **kwargs):
"""Read pbp format from given folder structure.
Parameters
----------
r_start : list
list which contains the first config to be read for each replicum
r_stop : list
list which contains the last config to be read for each replicum
Returns
-------
result : list[Obs]
list of observables read
"""
ls = []
for (dirpath, dirnames, filenames) in os.walk(path):
ls.extend(filenames)
break
if not ls:
raise Exception('Error, directory not found')
# Exclude files with different names
for exc in ls:
if not fnmatch.fnmatch(exc, prefix + '*.dat'):
ls = list(set(ls) - set([exc]))
if len(ls) > 1:
ls.sort(key=lambda x: int(re.findall(r'\d+', x[len(prefix):])[0]))
replica = len(ls)
if 'r_start' in kwargs:
r_start = kwargs.get('r_start')
if len(r_start) != replica:
raise Exception('r_start does not match number of replicas')
# Adjust Configuration numbering to python index
r_start = [o - 1 if o else None for o in r_start]
else:
r_start = [None] * replica
if 'r_stop' in kwargs:
r_stop = kwargs.get('r_stop')
if len(r_stop) != replica:
raise Exception('r_stop does not match number of replicas')
else:
r_stop = [None] * replica
print(r'Read <bar{psi}\psi> from', prefix[:-1], ',', replica, 'replica', end='')
print_err = 0
if 'print_err' in kwargs:
print_err = 1
print()
deltas = []
for rep in range(replica):
tmp_array = []
with open(path + '/' + ls[rep], 'rb') as fp:
t = fp.read(4) # number of reweighting factors
if rep == 0:
nrw = struct.unpack('i', t)[0]
for k in range(nrw):
deltas.append([])
else:
if nrw != struct.unpack('i', t)[0]:
raise Exception('Error: different number of factors for replicum', rep)
for k in range(nrw):
tmp_array.append([])
# This block is necessary for openQCD1.6 ms1 files
nfct = []
for i in range(nrw):
t = fp.read(4)
nfct.append(struct.unpack('i', t)[0])
print('nfct: ', nfct) # Hasenbusch factor, 1 for rat reweighting
nsrc = []
for i in range(nrw):
t = fp.read(4)
nsrc.append(struct.unpack('i', t)[0])
# body
while True:
t = fp.read(4)
if len(t) < 4:
break
if print_err:
config_no = struct.unpack('i', t)
for i in range(nrw):
tmp_nfct = 1.0
for j in range(nfct[i]):
t = fp.read(8 * nsrc[i])
t = fp.read(8 * nsrc[i])
tmp_rw = struct.unpack('d' * nsrc[i], t)
tmp_nfct *= np.mean(np.asarray(tmp_rw))
if print_err:
print(config_no, i, j, np.mean(np.asarray(tmp_rw)), np.std(np.asarray(tmp_rw)))
print('Sources:', np.asarray(tmp_rw))
print('Partial factor:', tmp_nfct)
tmp_array[i].append(tmp_nfct)
for k in range(nrw):
deltas[k].append(tmp_array[k][r_start[rep]:r_stop[rep]])
rep_names = []
for entry in ls:
truncated_entry = entry.split('.')[0]
idx = truncated_entry.index('r')
rep_names.append(truncated_entry[:idx] + '|' + truncated_entry[idx:])
print(',', nrw, r'<bar{psi}\psi> with', nsrc, 'sources')
result = []
for t in range(nrw):
result.append(Obs(deltas[t], rep_names))
return result