mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-03-15 14:50:25 +01:00
74 lines
2.6 KiB
Python
74 lines
2.6 KiB
Python
import os
|
|
import numpy as np
|
|
import pyerrors as pe
|
|
import pytest
|
|
|
|
np.random.seed(0)
|
|
|
|
|
|
def test_function_overloading():
|
|
corr_content_a = []
|
|
corr_content_b = []
|
|
for t in range(24):
|
|
corr_content_a.append(pe.pseudo_Obs(np.random.normal(1e-10, 1e-8), 1e-4, 't'))
|
|
corr_content_b.append(pe.pseudo_Obs(np.random.normal(1e8, 1e10), 1e7, 't'))
|
|
|
|
corr_a = pe.correlators.Corr(corr_content_a)
|
|
corr_b = pe.correlators.Corr(corr_content_b)
|
|
|
|
fs = [lambda x: x[0] + x[1], lambda x: x[1] + x[0], lambda x: x[0] - x[1], lambda x: x[1] - x[0],
|
|
lambda x: x[0] * x[1], lambda x: x[1] * x[0], lambda x: x[0] / x[1], lambda x: x[1] / x[0],
|
|
lambda x: np.exp(x[0]), lambda x: np.sin(x[0]), lambda x: np.cos(x[0]), lambda x: np.tan(x[0]),
|
|
lambda x: np.log(x[0] + 0.1), lambda x: np.sqrt(np.abs(x[0])),
|
|
lambda x: np.sinh(x[0]), lambda x: np.cosh(x[0]), lambda x: np.tanh(x[0])]
|
|
|
|
for i, f in enumerate(fs):
|
|
t1 = f([corr_a, corr_b])
|
|
for o_a, o_b, con in zip(corr_content_a, corr_content_b, t1.content):
|
|
t2 = f([o_a, o_b])
|
|
t2.gamma_method()
|
|
assert np.isclose(con[0].value, t2.value)
|
|
assert np.isclose(con[0].dvalue, t2.dvalue)
|
|
assert np.allclose(con[0].deltas['t'], t2.deltas['t'])
|
|
|
|
def test_modify_correlator():
|
|
corr_content = []
|
|
for t in range(24):
|
|
exponent = np.random.normal(3, 5)
|
|
corr_content.append(pe.pseudo_Obs(2 + 10 ** exponent, 10 ** (exponent - 1), 't'))
|
|
|
|
corr = pe.correlators.Corr(corr_content)
|
|
|
|
with pytest.warns(RuntimeWarning):
|
|
corr.symmetric()
|
|
with pytest.warns(RuntimeWarning):
|
|
corr.anti_symmetric()
|
|
corr.roll(np.random.randint(100))
|
|
corr.deriv(symmetric=True)
|
|
corr.deriv(symmetric=False)
|
|
corr.second_deriv()
|
|
|
|
def test_m_eff():
|
|
my_corr = pe.correlators.Corr([pe.pseudo_Obs(10, 0.1, 't'), pe.pseudo_Obs(9, 0.05, 't'), pe.pseudo_Obs(8, 0.1, 't'), pe.pseudo_Obs(7, 0.05, 't')])
|
|
my_corr.m_eff('log')
|
|
my_corr.m_eff('cosh')
|
|
my_corr.m_eff('sinh')
|
|
|
|
def test_utility():
|
|
corr_content = []
|
|
for t in range(8):
|
|
exponent = np.random.normal(3, 5)
|
|
corr_content.append(pe.pseudo_Obs(2 + 10 ** exponent, 10 ** (exponent - 1), 't'))
|
|
|
|
corr = pe.correlators.Corr(corr_content)
|
|
corr.print()
|
|
corr.print([2, 4])
|
|
corr.show()
|
|
|
|
corr.dump('test_dump')
|
|
new_corr = pe.load_object('test_dump.p')
|
|
os.remove('test_dump.p')
|
|
for o_a, o_b in zip(corr.content, new_corr.content):
|
|
assert np.isclose(o_a[0].value, o_b[0].value)
|
|
assert np.isclose(o_a[0].dvalue, o_b[0].dvalue)
|
|
assert np.allclose(o_a[0].deltas['t'], o_b[0].deltas['t'])
|