mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-03-16 23:30:24 +01:00
1785 lines
No EOL
269 KiB
HTML
1785 lines
No EOL
269 KiB
HTML
<!doctype html>
|
|
<html lang="en">
|
|
<head>
|
|
<meta charset="utf-8">
|
|
<meta name="viewport" content="width=device-width, initial-scale=1">
|
|
<meta name="generator" content="pdoc 8.2.0" />
|
|
<title>pyerrors.fits API documentation</title>
|
|
<link rel="icon" type="image/svg+xml" href="data:image/svg+xml,%3Csvg%20xmlns%3D%22http%3A//www.w3.org/2000/svg%22%20width%3D%2264%22%20height%3D%2264%22%20viewBox%3D%2244.5%202.5%2015%2015%22%3E%3Cpath%20d%3D%22M49.351%2021.041c-.233-.721-.546-2.408-.772-4.076-.042-.09-.067-.187-.046-.288-.166-1.347-.277-2.625-.241-3.351-1.378-1.008-2.271-2.586-2.271-4.362%200-.976.272-1.935.788-2.774.057-.094.122-.18.184-.268-.033-.167-.052-.339-.052-.516%200-1.477%201.202-2.679%202.679-2.679.791%200%201.496.352%201.987.9a6.3%206.3%200%200%201%201.001.029c.492-.564%201.207-.929%202.012-.929%201.477%200%202.679%201.202%202.679%202.679a2.65%202.65%200%200%201-.269%201.148c.383.747.595%201.572.595%202.41%200%202.311-1.507%204.29-3.635%205.107.037.699.147%202.27.423%203.294l.137.461c.156%202.136-4.612%205.166-5.199%203.215zm.127-4.919a4.78%204.78%200%200%200%20.775-.584c-.172-.115-.505-.254-.88-.378zm.331%202.302l.828-.502c-.202-.143-.576-.328-.984-.49zm.45%202.157l.701-.403c-.214-.115-.536-.249-.891-.376l.19.779zM49.13%204.141c0%20.152.123.276.276.276s.275-.124.275-.276-.123-.276-.276-.276-.275.124-.275.276zm.735-.389a1.15%201.15%200%200%201%20.314.783%201.16%201.16%200%200%201-1.162%201.162c-.457%200-.842-.27-1.032-.653-.026.117-.042.238-.042.362a1.68%201.68%200%200%200%201.679%201.679%201.68%201.68%200%200%200%201.679-1.679c0-.843-.626-1.535-1.436-1.654zm3.076%201.654a1.68%201.68%200%200%200%201.679%201.679%201.68%201.68%200%200%200%201.679-1.679c0-.037-.009-.072-.011-.109-.21.3-.541.508-.935.508a1.16%201.16%200%200%201-1.162-1.162%201.14%201.14%200%200%201%20.474-.912c-.015%200-.03-.005-.045-.005-.926.001-1.679.754-1.679%201.68zm1.861-1.265c0%20.152.123.276.276.276s.275-.124.275-.276-.123-.276-.276-.276-.275.124-.275.276zm1.823%204.823c0-.52-.103-1.035-.288-1.52-.466.394-1.06.64-1.717.64-1.144%200-2.116-.725-2.499-1.738-.383%201.012-1.355%201.738-2.499%201.738-.867%200-1.631-.421-2.121-1.062-.307.605-.478%201.267-.478%201.942%200%202.486%202.153%204.51%204.801%204.51s4.801-2.023%204.801-4.51zm-3.032%209.156l-.146-.492c-.276-1.02-.395-2.457-.444-3.268a6.11%206.11%200%200%201-1.18.115%206.01%206.01%200%200%201-2.536-.562l.006.175c.802.215%201.848.612%202.021%201.25.079.295-.021.601-.274.837l-.598.501c.667.304%201.243.698%201.311%201.179.02.144.022.507-.393.787l-.564.365c1.285.521%201.361.96%201.381%201.126.018.142.011.496-.427.746l-.854.489c.064-1.19%201.985-2.585%202.697-3.248zM49.34%209.925c0-.667%201-.667%201%200%200%20.653.818%201.205%201.787%201.205s1.787-.552%201.787-1.205c0-.667%201-.667%201%200%200%201.216-1.25%202.205-2.787%202.205s-2.787-.989-2.787-2.205zm-.887-7.633c-.093.077-.205.114-.317.114a.5.5%200%200%201-.318-.886L49.183.397a.5.5%200%200%201%20.703.068.5.5%200%200%201-.069.703zm7.661-.065c-.086%200-.173-.022-.253-.068l-1.523-.893c-.575-.337-.069-1.2.506-.863l1.523.892a.5.5%200%200%201%20.179.685c-.094.158-.261.247-.432.247z%22%20fill%3D%22%233bb300%22/%3E%3C/svg%3E"/>
|
|
|
|
<script>
|
|
window.MathJax = {
|
|
tex: {
|
|
inlineMath: [['$', '$'], ['\\(', '\\)']]
|
|
}
|
|
};
|
|
</script>
|
|
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
|
|
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
|
|
<script>
|
|
/* Re-invoke MathJax when DOM content changes, for example during search. */
|
|
document.addEventListener("DOMContentLoaded", () => {
|
|
new MutationObserver(() => MathJax.typeset()).observe(
|
|
document.querySelector("main.pdoc").parentNode,
|
|
{childList: true}
|
|
);
|
|
})
|
|
</script>
|
|
<style>/*! * Bootstrap Reboot v5.0.0 (https://getbootstrap.com/) * Copyright 2011-2021 The Bootstrap Authors * Copyright 2011-2021 Twitter, Inc. * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE) * Forked from Normalize.css, licensed MIT (https://github.com/necolas/normalize.css/blob/master/LICENSE.md) */*,::after,::before{box-sizing:border-box}@media (prefers-reduced-motion:no-preference){:root{scroll-behavior:smooth}}body{margin:0;font-family:system-ui,-apple-system,"Segoe UI",Roboto,"Helvetica Neue",Arial,"Noto Sans","Liberation Sans",sans-serif,"Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol","Noto Color Emoji";font-size:1rem;font-weight:400;line-height:1.5;color:#212529;background-color:#fff;-webkit-text-size-adjust:100%;-webkit-tap-highlight-color:transparent}hr{margin:1rem 0;color:inherit;background-color:currentColor;border:0;opacity:.25}hr:not([size]){height:1px}h1,h2,h3,h4,h5,h6{margin-top:0;margin-bottom:.5rem;font-weight:500;line-height:1.2}h1{font-size:calc(1.375rem + 1.5vw)}@media (min-width:1200px){h1{font-size:2.5rem}}h2{font-size:calc(1.325rem + .9vw)}@media (min-width:1200px){h2{font-size:2rem}}h3{font-size:calc(1.3rem + .6vw)}@media (min-width:1200px){h3{font-size:1.75rem}}h4{font-size:calc(1.275rem + .3vw)}@media (min-width:1200px){h4{font-size:1.5rem}}h5{font-size:1.25rem}h6{font-size:1rem}p{margin-top:0;margin-bottom:1rem}abbr[data-bs-original-title],abbr[title]{-webkit-text-decoration:underline dotted;text-decoration:underline dotted;cursor:help;-webkit-text-decoration-skip-ink:none;text-decoration-skip-ink:none}address{margin-bottom:1rem;font-style:normal;line-height:inherit}ol,ul{padding-left:2rem}dl,ol,ul{margin-top:0;margin-bottom:1rem}ol ol,ol ul,ul ol,ul ul{margin-bottom:0}dt{font-weight:700}dd{margin-bottom:.5rem;margin-left:0}blockquote{margin:0 0 1rem}b,strong{font-weight:bolder}small{font-size:.875em}mark{padding:.2em;background-color:#fcf8e3}sub,sup{position:relative;font-size:.75em;line-height:0;vertical-align:baseline}sub{bottom:-.25em}sup{top:-.5em}a{color:#0d6efd;text-decoration:underline}a:hover{color:#0a58ca}a:not([href]):not([class]),a:not([href]):not([class]):hover{color:inherit;text-decoration:none}code,kbd,pre,samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",monospace;font-size:1em;direction:ltr;unicode-bidi:bidi-override}pre{display:block;margin-top:0;margin-bottom:1rem;overflow:auto;font-size:.875em}pre code{font-size:inherit;color:inherit;word-break:normal}code{font-size:.875em;color:#d63384;word-wrap:break-word}a>code{color:inherit}kbd{padding:.2rem .4rem;font-size:.875em;color:#fff;background-color:#212529;border-radius:.2rem}kbd kbd{padding:0;font-size:1em;font-weight:700}figure{margin:0 0 1rem}img,svg{vertical-align:middle}table{caption-side:bottom;border-collapse:collapse}caption{padding-top:.5rem;padding-bottom:.5rem;color:#6c757d;text-align:left}th{text-align:inherit;text-align:-webkit-match-parent}tbody,td,tfoot,th,thead,tr{border-color:inherit;border-style:solid;border-width:0}label{display:inline-block}button{border-radius:0}button:focus:not(:focus-visible){outline:0}button,input,optgroup,select,textarea{margin:0;font-family:inherit;font-size:inherit;line-height:inherit}button,select{text-transform:none}[role=button]{cursor:pointer}select{word-wrap:normal}select:disabled{opacity:1}[list]::-webkit-calendar-picker-indicator{display:none}[type=button],[type=reset],[type=submit],button{-webkit-appearance:button}[type=button]:not(:disabled),[type=reset]:not(:disabled),[type=submit]:not(:disabled),button:not(:disabled){cursor:pointer}::-moz-focus-inner{padding:0;border-style:none}textarea{resize:vertical}fieldset{min-width:0;padding:0;margin:0;border:0}legend{float:left;width:100%;padding:0;margin-bottom:.5rem;font-size:calc(1.275rem + .3vw);line-height:inherit}@media (min-width:1200px){legend{font-size:1.5rem}}legend+*{clear:left}::-webkit-datetime-edit-day-field,::-webkit-datetime-edit-fields-wrapper,::-webkit-datetime-edit-hour-field,::-webkit-datetime-edit-minute,::-webkit-datetime-edit-month-field,::-webkit-datetime-edit-text,::-webkit-datetime-edit-year-field{padding:0}::-webkit-inner-spin-button{height:auto}[type=search]{outline-offset:-2px;-webkit-appearance:textfield}::-webkit-search-decoration{-webkit-appearance:none}::-webkit-color-swatch-wrapper{padding:0}::file-selector-button{font:inherit}::-webkit-file-upload-button{font:inherit;-webkit-appearance:button}output{display:inline-block}iframe{border:0}summary{display:list-item;cursor:pointer}progress{vertical-align:baseline}[hidden]{display:none!important}</style>
|
|
<style>/*! pygments syntax highlighting */pre{line-height:125%;}td.linenos pre{color:#000000; background-color:#f0f0f0; padding-left:5px; padding-right:5px;}span.linenos{color:#000000; background-color:#f0f0f0; padding-left:5px; padding-right:5px;}td.linenos pre.special{color:#000000; background-color:#ffffc0; padding-left:5px; padding-right:5px;}span.linenos.special{color:#000000; background-color:#ffffc0; padding-left:5px; padding-right:5px;}.pdoc .hll{background-color:#ffffcc}.pdoc{background:#f8f8f8;}.pdoc .c{color:#408080; font-style:italic}.pdoc .err{border:1px solid #FF0000}.pdoc .k{color:#008000; font-weight:bold}.pdoc .o{color:#666666}.pdoc .ch{color:#408080; font-style:italic}.pdoc .cm{color:#408080; font-style:italic}.pdoc .cp{color:#BC7A00}.pdoc .cpf{color:#408080; font-style:italic}.pdoc .c1{color:#408080; font-style:italic}.pdoc .cs{color:#408080; font-style:italic}.pdoc .gd{color:#A00000}.pdoc .ge{font-style:italic}.pdoc .gr{color:#FF0000}.pdoc .gh{color:#000080; font-weight:bold}.pdoc .gi{color:#00A000}.pdoc .go{color:#888888}.pdoc .gp{color:#000080; font-weight:bold}.pdoc .gs{font-weight:bold}.pdoc .gu{color:#800080; font-weight:bold}.pdoc .gt{color:#0044DD}.pdoc .kc{color:#008000; font-weight:bold}.pdoc .kd{color:#008000; font-weight:bold}.pdoc .kn{color:#008000; font-weight:bold}.pdoc .kp{color:#008000}.pdoc .kr{color:#008000; font-weight:bold}.pdoc .kt{color:#B00040}.pdoc .m{color:#666666}.pdoc .s{color:#BA2121}.pdoc .na{color:#7D9029}.pdoc .nb{color:#008000}.pdoc .nc{color:#0000FF; font-weight:bold}.pdoc .no{color:#880000}.pdoc .nd{color:#AA22FF}.pdoc .ni{color:#999999; font-weight:bold}.pdoc .ne{color:#D2413A; font-weight:bold}.pdoc .nf{color:#0000FF}.pdoc .nl{color:#A0A000}.pdoc .nn{color:#0000FF; font-weight:bold}.pdoc .nt{color:#008000; font-weight:bold}.pdoc .nv{color:#19177C}.pdoc .ow{color:#AA22FF; font-weight:bold}.pdoc .w{color:#bbbbbb}.pdoc .mb{color:#666666}.pdoc .mf{color:#666666}.pdoc .mh{color:#666666}.pdoc .mi{color:#666666}.pdoc .mo{color:#666666}.pdoc .sa{color:#BA2121}.pdoc .sb{color:#BA2121}.pdoc .sc{color:#BA2121}.pdoc .dl{color:#BA2121}.pdoc .sd{color:#BA2121; font-style:italic}.pdoc .s2{color:#BA2121}.pdoc .se{color:#BB6622; font-weight:bold}.pdoc .sh{color:#BA2121}.pdoc .si{color:#BB6688; font-weight:bold}.pdoc .sx{color:#008000}.pdoc .sr{color:#BB6688}.pdoc .s1{color:#BA2121}.pdoc .ss{color:#19177C}.pdoc .bp{color:#008000}.pdoc .fm{color:#0000FF}.pdoc .vc{color:#19177C}.pdoc .vg{color:#19177C}.pdoc .vi{color:#19177C}.pdoc .vm{color:#19177C}.pdoc .il{color:#666666}</style>
|
|
<style>/*! pdoc */:root{--pdoc-background:#fff;}.pdoc{--text:#212529;--muted:#6c757d;--link:#3660a5;--link-hover:#1659c5;--code:#f7f7f7;--active:#fff598;--accent:#eee;--accent2:#c1c1c1;--nav-hover:rgba(255, 255, 255, 0.5);--name:#0066BB;--def:#008800;--annotation:#007020;}body{background-color:var(--pdoc-background);}html, body{width:100%;height:100%;}@media (max-width:769px){#navtoggle{cursor:pointer;position:absolute;width:50px;height:40px;top:1rem;right:1rem;border-color:var(--text);color:var(--text);display:flex;opacity:0.8;}#navtoggle:hover{opacity:1;}#togglestate + div{display:none;}#togglestate:checked + div{display:inherit;}main, header{padding:2rem 3vw;}.git-button{display:none !important;}nav input[type="search"]:valid ~ *{display:none !important;}}@media (min-width:770px){:root{--sidebar-width:clamp(12.5rem, 28vw, 22rem);}nav{position:fixed;overflow:auto;height:100vh;width:var(--sidebar-width);}main, header{padding:3rem 2rem 3rem calc(var(--sidebar-width) + 3rem);width:calc(54rem + var(--sidebar-width));max-width:100%;}#navtoggle{display:none;}}#togglestate{display:none;}nav.pdoc{--pad:1.75rem;--indent:1.5rem;background-color:var(--accent);border-right:1px solid var(--accent2);box-shadow:0 0 20px rgba(50, 50, 50, .2) inset;padding:0 0 0 var(--pad);overflow-wrap:anywhere;scrollbar-width:thin; scrollbar-color:var(--accent2) transparent }nav.pdoc::-webkit-scrollbar{width:.4rem; }nav.pdoc::-webkit-scrollbar-thumb{background-color:var(--accent2); }nav.pdoc > div{padding:var(--pad) 0;}nav.pdoc .module-list-button{display:inline-flex;align-items:center;color:var(--text);border-color:var(--muted);margin-bottom:1rem;}nav.pdoc .module-list-button:hover{border-color:var(--text);}nav.pdoc input[type=search]{display:block;outline-offset:0;width:calc(100% - var(--pad));}nav.pdoc .logo{max-width:calc(100% - var(--pad));max-height:35vh;display:block;margin:0 auto 1rem;transform:translate(calc(-.5 * var(--pad)), 0);}nav.pdoc ul{list-style:none;padding-left:0;}nav.pdoc li{display:block;margin:0;padding:.2rem 0 .2rem var(--indent);transition:all 100ms;}nav.pdoc > div > ul > li{padding-left:0;}nav.pdoc li:hover{background-color:var(--nav-hover);}nav.pdoc a, nav.pdoc a:hover{color:var(--text);}nav.pdoc a{display:block;}nav.pdoc > h2:first-of-type{margin-top:1.5rem;}nav.pdoc .class:before{content:"class ";color:var(--muted);}nav.pdoc .function:after{content:"()";color:var(--muted);}nav.pdoc footer:before{content:"";display:block;width:calc(100% - var(--pad));border-top:solid var(--accent2) 1px;margin-top:1.5rem;padding-top:.5rem;}nav.pdoc footer{font-size:small;}html, main{scroll-behavior:smooth;}.pdoc{color:var(--text);box-sizing:border-box;line-height:1.5;background:none;}.pdoc .pdoc-button{display:inline-block;border:solid black 1px;border-radius:2px;font-size:.75rem;padding:calc(0.5em - 1px) 1em;transition:100ms all;}.pdoc .visually-hidden{position:absolute !important;width:1px !important;height:1px !important;padding:0 !important;margin:-1px !important;overflow:hidden !important;clip:rect(0, 0, 0, 0) !important;white-space:nowrap !important;border:0 !important;}.pdoc h1, .pdoc h2, .pdoc h3{font-weight:300;margin:.3em 0;padding:.2em 0;}.pdoc a{text-decoration:none;color:var(--link);}.pdoc a:hover{color:var(--link-hover);}.pdoc blockquote{margin-left:2rem;}.pdoc pre{background-color:var(--code);border-top:1px solid var(--accent2);border-bottom:1px solid var(--accent2);margin-bottom:1em;padding:.5rem 0 .5rem .5rem;overflow-x:auto;}.pdoc code{color:var(--text);padding:.2em .4em;margin:0;font-size:85%;background-color:var(--code);border-radius:6px;}.pdoc a > code{color:inherit;}.pdoc pre > code{display:inline-block;font-size:inherit;background:none;border:none;padding:0;}.pdoc .modulename{margin-top:0;font-weight:bold;}.pdoc .modulename a{color:var(--link);transition:100ms all;}.pdoc .git-button{float:right;border:solid var(--link) 1px;}.pdoc .git-button:hover{background-color:var(--link);color:var(--pdoc-background);}.pdoc details{--shift:-40px;text-align:right;margin-top:var(--shift);margin-bottom:calc(0px - var(--shift));clear:both;filter:opacity(1);}.pdoc details:not([open]){height:0;overflow:visible;}.pdoc details > summary{font-size:.75rem;cursor:pointer;color:var(--muted);border-width:0;padding:0 .7em;display:inline-block;display:inline list-item;user-select:none;}.pdoc details > summary:focus{outline:0;}.pdoc details > div{margin-top:calc(0px - var(--shift) / 2);text-align:left;}.pdoc .docstring{margin-bottom:1.5rem;}.pdoc > section:first-of-type > .docstring{margin-bottom:3rem;}.pdoc .docstring pre{margin-left:1em;margin-right:1em;}.pdoc h1:target,.pdoc h2:target,.pdoc h3:target,.pdoc h4:target,.pdoc h5:target,.pdoc h6:target{background-color:var(--active);box-shadow:-1rem 0 0 0 var(--active);}.pdoc div:target > .attr,.pdoc section:target > .attr,.pdoc dd:target > a{background-color:var(--active);}.pdoc .attr:hover{filter:contrast(0.95);}.pdoc .headerlink{position:absolute;width:0;margin-left:-1.5rem;line-height:1.4rem;font-size:1.5rem;font-weight:normal;transition:all 100ms ease-in-out;opacity:0;}.pdoc .attr > .headerlink{margin-left:-2.5rem;}.pdoc *:hover > .headerlink,.pdoc *:target > .attr > .headerlink{opacity:1;}.pdoc .attr{display:block;color:var(--text);margin:1rem 0 .5rem;padding:.4rem 5rem .4rem 1rem;background-color:var(--accent);}.pdoc .classattr{margin-left:2rem;}.pdoc .name{color:var(--name);font-weight:bold;}.pdoc .def{color:var(--def);font-weight:bold;}.pdoc .signature{white-space:pre-wrap;}.pdoc .annotation{color:var(--annotation);}.pdoc .inherited{margin-left:2rem;}.pdoc .inherited dt{font-weight:700;}.pdoc .inherited dt, .pdoc .inherited dd{display:inline;margin-left:0;margin-bottom:.5rem;}.pdoc .inherited dd:not(:last-child):after{content:", ";}.pdoc .inherited .class:before{content:"class ";}.pdoc .inherited .function a:after{content:"()";}.pdoc .search-result .docstring{overflow:auto;max-height:25vh;}.pdoc .search-result.focused > .attr{background-color:var(--active);}.pdoc .attribution{margin-top:2rem;display:block;opacity:0.5;transition:all 200ms;filter:grayscale(100%);}.pdoc .attribution:hover{opacity:1;filter:grayscale(0%);}.pdoc .attribution img{margin-left:5px;height:35px;vertical-align:middle;width:70px;transition:all 200ms;}.pdoc table{display:block;width:max-content;max-width:100%;overflow:auto;margin-bottom:1rem;}.pdoc table th{font-weight:600;}.pdoc table th, .pdoc table td{padding:6px 13px;border:1px solid var(--accent2);}</style>
|
|
</head>
|
|
<body> <nav class="pdoc">
|
|
<label id="navtoggle" for="togglestate" class="pdoc-button"><svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 30 30'><path stroke-linecap='round' stroke="currentColor" stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/></svg></label>
|
|
<input id="togglestate" type="checkbox">
|
|
<div>
|
|
<a class="pdoc-button module-list-button" href="../pyerrors.html">
|
|
<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-box-arrow-in-left" viewBox="0 0 16 16">
|
|
<path fill-rule="evenodd" d="M10 3.5a.5.5 0 0 0-.5-.5h-8a.5.5 0 0 0-.5.5v9a.5.5 0 0 0 .5.5h8a.5.5 0 0 0 .5-.5v-2a.5.5 0 0 1 1 0v2A1.5 1.5 0 0 1 9.5 14h-8A1.5 1.5 0 0 1 0 12.5v-9A1.5 1.5 0 0 1 1.5 2h8A1.5 1.5 0 0 1 11 3.5v2a.5.5 0 0 1-1 0v-2z"/>
|
|
<path fill-rule="evenodd" d="M4.146 8.354a.5.5 0 0 1 0-.708l3-3a.5.5 0 1 1 .708.708L5.707 7.5H14.5a.5.5 0 0 1 0 1H5.707l2.147 2.146a.5.5 0 0 1-.708.708l-3-3z"/>
|
|
</svg> pyerrors</a>
|
|
|
|
|
|
<input type="search" placeholder="Search..." role="searchbox" aria-label="search"
|
|
pattern=".+" required>
|
|
|
|
|
|
|
|
<h2>API Documentation</h2>
|
|
<ul class="memberlist">
|
|
<li>
|
|
<a class="class" href="#Fit_result">Fit_result</a>
|
|
<ul class="memberlist">
|
|
<li>
|
|
<a class="function" href="#Fit_result.__init__">Fit_result</a>
|
|
</li>
|
|
<li>
|
|
<a class="function" href="#Fit_result.gamma_method">gamma_method</a>
|
|
</li>
|
|
</ul>
|
|
|
|
</li>
|
|
<li>
|
|
<a class="function" href="#least_squares">least_squares</a>
|
|
</li>
|
|
<li>
|
|
<a class="function" href="#total_least_squares">total_least_squares</a>
|
|
</li>
|
|
<li>
|
|
<a class="function" href="#prior_fit">prior_fit</a>
|
|
</li>
|
|
<li>
|
|
<a class="function" href="#standard_fit">standard_fit</a>
|
|
</li>
|
|
<li>
|
|
<a class="function" href="#odr_fit">odr_fit</a>
|
|
</li>
|
|
<li>
|
|
<a class="function" href="#fit_lin">fit_lin</a>
|
|
</li>
|
|
<li>
|
|
<a class="function" href="#qqplot">qqplot</a>
|
|
</li>
|
|
<li>
|
|
<a class="function" href="#residual_plot">residual_plot</a>
|
|
</li>
|
|
<li>
|
|
<a class="function" href="#covariance_matrix">covariance_matrix</a>
|
|
</li>
|
|
<li>
|
|
<a class="function" href="#error_band">error_band</a>
|
|
</li>
|
|
</ul>
|
|
|
|
|
|
|
|
<a class="attribution" title="pdoc: Python API documentation generator" href="https://pdoc.dev">
|
|
built with <span class="visually-hidden">pdoc</span><img
|
|
alt="pdoc logo"
|
|
src="data:image/svg+xml,%3Csvg%20xmlns%3D%22http%3A//www.w3.org/2000/svg%22%20role%3D%22img%22%20aria-label%3D%22pdoc%20logo%22%20width%3D%22300%22%20height%3D%22150%22%20viewBox%3D%22-1%200%2060%2030%22%3E%3Ctitle%3Epdoc%3C/title%3E%3Cpath%20d%3D%22M29.621%2021.293c-.011-.273-.214-.475-.511-.481a.5.5%200%200%200-.489.503l-.044%201.393c-.097.551-.695%201.215-1.566%201.704-.577.428-1.306.486-2.193.182-1.426-.617-2.467-1.654-3.304-2.487l-.173-.172a3.43%203.43%200%200%200-.365-.306.49.49%200%200%200-.286-.196c-1.718-1.06-4.931-1.47-7.353.191l-.219.15c-1.707%201.187-3.413%202.131-4.328%201.03-.02-.027-.49-.685-.141-1.763.233-.721.546-2.408.772-4.076.042-.09.067-.187.046-.288.166-1.347.277-2.625.241-3.351%201.378-1.008%202.271-2.586%202.271-4.362%200-.976-.272-1.935-.788-2.774-.057-.094-.122-.18-.184-.268.033-.167.052-.339.052-.516%200-1.477-1.202-2.679-2.679-2.679-.791%200-1.496.352-1.987.9a6.3%206.3%200%200%200-1.001.029c-.492-.564-1.207-.929-2.012-.929-1.477%200-2.679%201.202-2.679%202.679A2.65%202.65%200%200%200%20.97%206.554c-.383.747-.595%201.572-.595%202.41%200%202.311%201.507%204.29%203.635%205.107-.037.699-.147%202.27-.423%203.294l-.137.461c-.622%202.042-2.515%208.257%201.727%2010.643%201.614.908%203.06%201.248%204.317%201.248%202.665%200%204.492-1.524%205.322-2.401%201.476-1.559%202.886-1.854%206.491.82%201.877%201.393%203.514%201.753%204.861%201.068%202.223-1.713%202.811-3.867%203.399-6.374.077-.846.056-1.469.054-1.537zm-4.835%204.313c-.054.305-.156.586-.242.629-.034-.007-.131-.022-.307-.157-.145-.111-.314-.478-.456-.908.221.121.432.25.675.355.115.039.219.051.33.081zm-2.251-1.238c-.05.33-.158.648-.252.694-.022.001-.125-.018-.307-.157-.217-.166-.488-.906-.639-1.573.358.344.754.693%201.198%201.036zm-3.887-2.337c-.006-.116-.018-.231-.041-.342.635.145%201.189.368%201.599.625.097.231.166.481.174.642-.03.049-.055.101-.067.158-.046.013-.128.026-.298.004-.278-.037-.901-.57-1.367-1.087zm-1.127-.497c.116.306.176.625.12.71-.019.014-.117.045-.345.016-.206-.027-.604-.332-.986-.695.41-.051.816-.056%201.211-.031zm-4.535%201.535c.209.22.379.47.358.598-.006.041-.088.138-.351.234-.144.055-.539-.063-.979-.259a11.66%2011.66%200%200%200%20.972-.573zm.983-.664c.359-.237.738-.418%201.126-.554.25.237.479.548.457.694-.006.042-.087.138-.351.235-.174.064-.694-.105-1.232-.375zm-3.381%201.794c-.022.145-.061.29-.149.401-.133.166-.358.248-.69.251h-.002c-.133%200-.306-.26-.45-.621.417.091.854.07%201.291-.031zm-2.066-8.077a4.78%204.78%200%200%201-.775-.584c.172-.115.505-.254.88-.378l-.105.962zm-.331%202.302a10.32%2010.32%200%200%201-.828-.502c.202-.143.576-.328.984-.49l-.156.992zm-.45%202.157l-.701-.403c.214-.115.536-.249.891-.376a11.57%2011.57%200%200%201-.19.779zm-.181%201.716c.064.398.194.702.298.893-.194-.051-.435-.162-.736-.398.061-.119.224-.3.438-.495zM8.87%204.141c0%20.152-.123.276-.276.276s-.275-.124-.275-.276.123-.276.276-.276.275.124.275.276zm-.735-.389a1.15%201.15%200%200%200-.314.783%201.16%201.16%200%200%200%201.162%201.162c.457%200%20.842-.27%201.032-.653.026.117.042.238.042.362a1.68%201.68%200%200%201-1.679%201.679%201.68%201.68%200%200%201-1.679-1.679c0-.843.626-1.535%201.436-1.654zM5.059%205.406A1.68%201.68%200%200%201%203.38%207.085a1.68%201.68%200%200%201-1.679-1.679c0-.037.009-.072.011-.109.21.3.541.508.935.508a1.16%201.16%200%200%200%201.162-1.162%201.14%201.14%200%200%200-.474-.912c.015%200%20.03-.005.045-.005.926.001%201.679.754%201.679%201.68zM3.198%204.141c0%20.152-.123.276-.276.276s-.275-.124-.275-.276.123-.276.276-.276.275.124.275.276zM1.375%208.964c0-.52.103-1.035.288-1.52.466.394%201.06.64%201.717.64%201.144%200%202.116-.725%202.499-1.738.383%201.012%201.355%201.738%202.499%201.738.867%200%201.631-.421%202.121-1.062.307.605.478%201.267.478%201.942%200%202.486-2.153%204.51-4.801%204.51s-4.801-2.023-4.801-4.51zm24.342%2019.349c-.985.498-2.267.168-3.813-.979-3.073-2.281-5.453-3.199-7.813-.705-1.315%201.391-4.163%203.365-8.423.97-3.174-1.786-2.239-6.266-1.261-9.479l.146-.492c.276-1.02.395-2.457.444-3.268a6.11%206.11%200%200%200%201.18.115%206.01%206.01%200%200%200%202.536-.562l-.006.175c-.802.215-1.848.612-2.021%201.25-.079.295.021.601.274.837.219.203.415.364.598.501-.667.304-1.243.698-1.311%201.179-.02.144-.022.507.393.787.213.144.395.26.564.365-1.285.521-1.361.96-1.381%201.126-.018.142-.011.496.427.746l.854.489c-.473.389-.971.914-.999%201.429-.018.278.095.532.316.713.675.556%201.231.721%201.653.721.059%200%20.104-.014.158-.02.207.707.641%201.64%201.513%201.64h.013c.8-.008%201.236-.345%201.462-.626.173-.216.268-.457.325-.692.424.195.93.374%201.372.374.151%200%20.294-.021.423-.068.732-.27.944-.704.993-1.021.009-.061.003-.119.002-.179.266.086.538.147.789.147.15%200%20.294-.021.423-.069.542-.2.797-.489.914-.754.237.147.478.258.704.288.106.014.205.021.296.021.356%200%20.595-.101.767-.229.438.435%201.094.992%201.656%201.067.106.014.205.021.296.021a1.56%201.56%200%200%200%20.323-.035c.17.575.453%201.289.866%201.605.358.273.665.362.914.362a.99.99%200%200%200%20.421-.093%201.03%201.03%200%200%200%20.245-.164c.168.428.39.846.68%201.068.358.273.665.362.913.362a.99.99%200%200%200%20.421-.093c.317-.148.512-.448.639-.762.251.157.495.257.726.257.127%200%20.25-.024.37-.071.427-.17.706-.617.841-1.314.022-.015.047-.022.068-.038.067-.051.133-.104.196-.159-.443%201.486-1.107%202.761-2.086%203.257zM8.66%209.925a.5.5%200%201%200-1%200c0%20.653-.818%201.205-1.787%201.205s-1.787-.552-1.787-1.205a.5.5%200%201%200-1%200c0%201.216%201.25%202.205%202.787%202.205s2.787-.989%202.787-2.205zm4.4%2015.965l-.208.097c-2.661%201.258-4.708%201.436-6.086.527-1.542-1.017-1.88-3.19-1.844-4.198a.4.4%200%200%200-.385-.414c-.242-.029-.406.164-.414.385-.046%201.249.367%203.686%202.202%204.896.708.467%201.547.7%202.51.7%201.248%200%202.706-.392%204.362-1.174l.185-.086a.4.4%200%200%200%20.205-.527c-.089-.204-.326-.291-.527-.206zM9.547%202.292c.093.077.205.114.317.114a.5.5%200%200%200%20.318-.886L8.817.397a.5.5%200%200%200-.703.068.5.5%200%200%200%20.069.703l1.364%201.124zm-7.661-.065c.086%200%20.173-.022.253-.068l1.523-.893a.5.5%200%200%200-.506-.863l-1.523.892a.5.5%200%200%200-.179.685c.094.158.261.247.432.247z%22%20transform%3D%22matrix%28-1%200%200%201%2058%200%29%22%20fill%3D%22%233bb300%22/%3E%3Cpath%20d%3D%22M.3%2021.86V10.18q0-.46.02-.68.04-.22.18-.5.28-.54%201.34-.54%201.06%200%201.42.28.38.26.44.78.76-1.04%202.38-1.04%201.64%200%203.1%201.54%201.46%201.54%201.46%203.58%200%202.04-1.46%203.58-1.44%201.54-3.08%201.54-1.64%200-2.38-.92v4.04q0%20.46-.04.68-.02.22-.18.5-.14.3-.5.42-.36.12-.98.12-.62%200-1-.12-.36-.12-.52-.4-.14-.28-.18-.5-.02-.22-.02-.68zm3.96-9.42q-.46.54-.46%201.18%200%20.64.46%201.18.48.52%201.2.52.74%200%201.24-.52.52-.52.52-1.18%200-.66-.48-1.18-.48-.54-1.26-.54-.76%200-1.22.54zm14.741-8.36q.16-.3.54-.42.38-.12%201-.12.64%200%201.02.12.38.12.52.42.16.3.18.54.04.22.04.68v11.94q0%20.46-.04.7-.02.22-.18.5-.3.54-1.7.54-1.38%200-1.54-.98-.84.96-2.34.96-1.8%200-3.28-1.56-1.48-1.58-1.48-3.66%200-2.1%201.48-3.68%201.5-1.58%203.28-1.58%201.48%200%202.3%201v-4.2q0-.46.02-.68.04-.24.18-.52zm-3.24%2010.86q.52.54%201.26.54.74%200%201.22-.54.5-.54.5-1.18%200-.66-.48-1.22-.46-.56-1.26-.56-.8%200-1.28.56-.48.54-.48%201.2%200%20.66.52%201.2zm7.833-1.2q0-2.4%201.68-3.96%201.68-1.56%203.84-1.56%202.16%200%203.82%201.56%201.66%201.54%201.66%203.94%200%201.66-.86%202.96-.86%201.28-2.1%201.9-1.22.6-2.54.6-1.32%200-2.56-.64-1.24-.66-2.1-1.92-.84-1.28-.84-2.88zm4.18%201.44q.64.48%201.3.48.66%200%201.32-.5.66-.5.66-1.48%200-.98-.62-1.46-.62-.48-1.34-.48-.72%200-1.34.5-.62.5-.62%201.48%200%20.96.64%201.46zm11.412-1.44q0%20.84.56%201.32.56.46%201.18.46.64%200%201.18-.36.56-.38.9-.38.6%200%201.46%201.06.46.58.46%201.04%200%20.76-1.1%201.42-1.14.8-2.8.8-1.86%200-3.58-1.34-.82-.64-1.34-1.7-.52-1.08-.52-2.36%200-1.3.52-2.34.52-1.06%201.34-1.7%201.66-1.32%203.54-1.32.76%200%201.48.22.72.2%201.06.4l.32.2q.36.24.56.38.52.4.52.92%200%20.5-.42%201.14-.72%201.1-1.38%201.1-.38%200-1.08-.44-.36-.34-1.04-.34-.66%200-1.24.48-.58.48-.58%201.34z%22%20fill%3D%22green%22/%3E%3C/svg%3E"/>
|
|
</a>
|
|
</div>
|
|
</nav>
|
|
<main class="pdoc">
|
|
<section>
|
|
<h1 class="modulename">
|
|
<a href="./../pyerrors.html">pyerrors</a><wbr>.fits </h1>
|
|
|
|
|
|
<details>
|
|
<summary>View Source</summary>
|
|
<div class="codehilite"><pre><span></span><span class="kn">from</span> <span class="nn">collections.abc</span> <span class="kn">import</span> <span class="n">Sequence</span>
|
|
<span class="kn">import</span> <span class="nn">warnings</span>
|
|
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
|
|
<span class="kn">import</span> <span class="nn">autograd.numpy</span> <span class="k">as</span> <span class="nn">anp</span>
|
|
<span class="kn">import</span> <span class="nn">scipy.optimize</span>
|
|
<span class="kn">import</span> <span class="nn">scipy.stats</span>
|
|
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
|
|
<span class="kn">from</span> <span class="nn">matplotlib</span> <span class="kn">import</span> <span class="n">gridspec</span>
|
|
<span class="kn">from</span> <span class="nn">scipy.odr</span> <span class="kn">import</span> <span class="n">ODR</span><span class="p">,</span> <span class="n">Model</span><span class="p">,</span> <span class="n">RealData</span>
|
|
<span class="kn">import</span> <span class="nn">iminuit</span>
|
|
<span class="kn">from</span> <span class="nn">autograd</span> <span class="kn">import</span> <span class="n">jacobian</span>
|
|
<span class="kn">from</span> <span class="nn">autograd</span> <span class="kn">import</span> <span class="n">elementwise_grad</span> <span class="k">as</span> <span class="n">egrad</span>
|
|
<span class="kn">from</span> <span class="nn">.obs</span> <span class="kn">import</span> <span class="n">Obs</span><span class="p">,</span> <span class="n">derived_observable</span><span class="p">,</span> <span class="n">covariance</span><span class="p">,</span> <span class="n">cov_Obs</span>
|
|
|
|
|
|
<span class="k">class</span> <span class="nc">Fit_result</span><span class="p">(</span><span class="n">Sequence</span><span class="p">):</span>
|
|
<span class="sd">"""Represents fit results.</span>
|
|
|
|
<span class="sd"> Attributes</span>
|
|
<span class="sd"> ----------</span>
|
|
<span class="sd"> fit_parameters : list</span>
|
|
<span class="sd"> results for the individual fit parameters,</span>
|
|
<span class="sd"> also accessible via indices.</span>
|
|
<span class="sd"> """</span>
|
|
|
|
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">fit_parameters</span> <span class="o">=</span> <span class="kc">None</span>
|
|
|
|
<span class="k">def</span> <span class="fm">__getitem__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">idx</span><span class="p">):</span>
|
|
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">fit_parameters</span><span class="p">[</span><span class="n">idx</span><span class="p">]</span>
|
|
|
|
<span class="k">def</span> <span class="fm">__len__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
|
<span class="k">return</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">fit_parameters</span><span class="p">)</span>
|
|
|
|
<span class="k">def</span> <span class="nf">gamma_method</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
|
<span class="sd">"""Apply the gamma method to all fit parameters"""</span>
|
|
<span class="p">[</span><span class="n">o</span><span class="o">.</span><span class="n">gamma_method</span><span class="p">()</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">fit_parameters</span><span class="p">]</span>
|
|
|
|
<span class="k">def</span> <span class="fm">__str__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">gamma_method</span><span class="p">()</span>
|
|
<span class="n">my_str</span> <span class="o">=</span> <span class="s1">'Goodness of fit:</span><span class="se">\n</span><span class="s1">'</span>
|
|
<span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="s1">'chisquare_by_dof'</span><span class="p">):</span>
|
|
<span class="n">my_str</span> <span class="o">+=</span> <span class="s1">'</span><span class="se">\u03C7\u00b2</span><span class="s1">/d.o.f. = '</span> <span class="o">+</span> <span class="sa">f</span><span class="s1">'</span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">chisquare_by_dof</span><span class="si">:</span><span class="s1">2.6f</span><span class="si">}</span><span class="s1">'</span> <span class="o">+</span> <span class="s1">'</span><span class="se">\n</span><span class="s1">'</span>
|
|
<span class="k">elif</span> <span class="nb">hasattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="s1">'residual_variance'</span><span class="p">):</span>
|
|
<span class="n">my_str</span> <span class="o">+=</span> <span class="s1">'residual variance = '</span> <span class="o">+</span> <span class="sa">f</span><span class="s1">'</span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">residual_variance</span><span class="si">:</span><span class="s1">2.6f</span><span class="si">}</span><span class="s1">'</span> <span class="o">+</span> <span class="s1">'</span><span class="se">\n</span><span class="s1">'</span>
|
|
<span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="s1">'chisquare_by_expected_chisquare'</span><span class="p">):</span>
|
|
<span class="n">my_str</span> <span class="o">+=</span> <span class="s1">'</span><span class="se">\u03C7\u00b2</span><span class="s1">/</span><span class="se">\u03C7\u00b2</span><span class="s1">exp = '</span> <span class="o">+</span> <span class="sa">f</span><span class="s1">'</span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">chisquare_by_expected_chisquare</span><span class="si">:</span><span class="s1">2.6f</span><span class="si">}</span><span class="s1">'</span> <span class="o">+</span> <span class="s1">'</span><span class="se">\n</span><span class="s1">'</span>
|
|
<span class="n">my_str</span> <span class="o">+=</span> <span class="s1">'Fit parameters:</span><span class="se">\n</span><span class="s1">'</span>
|
|
<span class="k">for</span> <span class="n">i_par</span><span class="p">,</span> <span class="n">par</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">fit_parameters</span><span class="p">):</span>
|
|
<span class="n">my_str</span> <span class="o">+=</span> <span class="nb">str</span><span class="p">(</span><span class="n">i_par</span><span class="p">)</span> <span class="o">+</span> <span class="s1">'</span><span class="se">\t</span><span class="s1">'</span> <span class="o">+</span> <span class="s1">' '</span> <span class="o">*</span> <span class="nb">int</span><span class="p">(</span><span class="n">par</span> <span class="o">>=</span> <span class="mi">0</span><span class="p">)</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">par</span><span class="p">)</span><span class="o">.</span><span class="n">rjust</span><span class="p">(</span><span class="nb">int</span><span class="p">(</span><span class="n">par</span> <span class="o"><</span> <span class="mf">0.0</span><span class="p">))</span> <span class="o">+</span> <span class="s1">'</span><span class="se">\n</span><span class="s1">'</span>
|
|
<span class="k">return</span> <span class="n">my_str</span>
|
|
|
|
<span class="k">def</span> <span class="fm">__repr__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
|
<span class="n">m</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="nb">len</span><span class="p">,</span> <span class="nb">list</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="vm">__dict__</span><span class="o">.</span><span class="n">keys</span><span class="p">())))</span> <span class="o">+</span> <span class="mi">1</span>
|
|
<span class="k">return</span> <span class="s1">'</span><span class="se">\n</span><span class="s1">'</span><span class="o">.</span><span class="n">join</span><span class="p">([</span><span class="n">key</span><span class="o">.</span><span class="n">rjust</span><span class="p">(</span><span class="n">m</span><span class="p">)</span> <span class="o">+</span> <span class="s1">': '</span> <span class="o">+</span> <span class="nb">repr</span><span class="p">(</span><span class="n">value</span><span class="p">)</span> <span class="k">for</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="ow">in</span> <span class="nb">sorted</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="vm">__dict__</span><span class="o">.</span><span class="n">items</span><span class="p">())])</span>
|
|
|
|
|
|
<span class="k">def</span> <span class="nf">least_squares</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">priors</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">silent</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
|
<span class="sa">r</span><span class="sd">'''Performs a non-linear fit to y = func(x).</span>
|
|
|
|
<span class="sd"> Parameters</span>
|
|
<span class="sd"> ----------</span>
|
|
<span class="sd"> x : list</span>
|
|
<span class="sd"> list of floats.</span>
|
|
<span class="sd"> y : list</span>
|
|
<span class="sd"> list of Obs.</span>
|
|
<span class="sd"> func : object</span>
|
|
<span class="sd"> fit function, has to be of the form</span>
|
|
|
|
<span class="sd"> ```python</span>
|
|
<span class="sd"> def func(a, x):</span>
|
|
<span class="sd"> y = a[0] + a[1] * x + a[2] * anp.sinh(x)</span>
|
|
<span class="sd"> return y</span>
|
|
<span class="sd"> ```</span>
|
|
|
|
<span class="sd"> For multiple x values func can be of the form</span>
|
|
|
|
<span class="sd"> ```python</span>
|
|
<span class="sd"> def func(a, x):</span>
|
|
<span class="sd"> (x1, x2) = x</span>
|
|
<span class="sd"> return a[0] * x1 ** 2 + a[1] * x2</span>
|
|
<span class="sd"> ```</span>
|
|
|
|
<span class="sd"> It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation</span>
|
|
<span class="sd"> will not work</span>
|
|
<span class="sd"> priors : list, optional</span>
|
|
<span class="sd"> priors has to be a list with an entry for every parameter in the fit. The entries can either be</span>
|
|
<span class="sd"> Obs (e.g. results from a previous fit) or strings containing a value and an error formatted like</span>
|
|
<span class="sd"> 0.548(23), 500(40) or 0.5(0.4)</span>
|
|
<span class="sd"> silent : bool, optional</span>
|
|
<span class="sd"> If true all output to the console is omitted (default False).</span>
|
|
<span class="sd"> initial_guess : list</span>
|
|
<span class="sd"> can provide an initial guess for the input parameters. Relevant for</span>
|
|
<span class="sd"> non-linear fits with many parameters.</span>
|
|
<span class="sd"> method : str</span>
|
|
<span class="sd"> can be used to choose an alternative method for the minimization of chisquare.</span>
|
|
<span class="sd"> The possible methods are the ones which can be used for scipy.optimize.minimize and</span>
|
|
<span class="sd"> migrad of iminuit. If no method is specified, Levenberg-Marquard is used.</span>
|
|
<span class="sd"> Reliable alternatives are migrad, Powell and Nelder-Mead.</span>
|
|
<span class="sd"> resplot : bool</span>
|
|
<span class="sd"> If true, a plot which displays fit, data and residuals is generated (default False).</span>
|
|
<span class="sd"> qqplot : bool</span>
|
|
<span class="sd"> If true, a quantile-quantile plot of the fit result is generated (default False).</span>
|
|
<span class="sd"> expected_chisquare : bool</span>
|
|
<span class="sd"> If true prints the expected chisquare which is</span>
|
|
<span class="sd"> corrected by effects caused by correlated input data.</span>
|
|
<span class="sd"> This can take a while as the full correlation matrix</span>
|
|
<span class="sd"> has to be calculated (default False).</span>
|
|
<span class="sd"> correlated_fit : bool</span>
|
|
<span class="sd"> If true, use the full correlation matrix in the definition of the chisquare</span>
|
|
<span class="sd"> (only works for prior==None and when no method is given, at the moment).</span>
|
|
<span class="sd"> const_par : list, optional</span>
|
|
<span class="sd"> List of N Obs that are used to constrain the last N fit parameters of func.</span>
|
|
<span class="sd"> '''</span>
|
|
<span class="k">if</span> <span class="n">priors</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
|
|
<span class="k">return</span> <span class="n">_prior_fit</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">priors</span><span class="p">,</span> <span class="n">silent</span><span class="o">=</span><span class="n">silent</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="k">return</span> <span class="n">_standard_fit</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">silent</span><span class="o">=</span><span class="n">silent</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
|
|
|
|
|
|
<span class="k">def</span> <span class="nf">total_least_squares</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">silent</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
|
<span class="sa">r</span><span class="sd">'''Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.</span>
|
|
|
|
<span class="sd"> Parameters</span>
|
|
<span class="sd"> ----------</span>
|
|
<span class="sd"> x : list</span>
|
|
<span class="sd"> list of Obs, or a tuple of lists of Obs</span>
|
|
<span class="sd"> y : list</span>
|
|
<span class="sd"> list of Obs. The dvalues of the Obs are used as x- and yerror for the fit.</span>
|
|
<span class="sd"> func : object</span>
|
|
<span class="sd"> func has to be of the form</span>
|
|
|
|
<span class="sd"> ```python</span>
|
|
<span class="sd"> def func(a, x):</span>
|
|
<span class="sd"> y = a[0] + a[1] * x + a[2] * anp.sinh(x)</span>
|
|
<span class="sd"> return y</span>
|
|
<span class="sd"> ```</span>
|
|
|
|
<span class="sd"> For multiple x values func can be of the form</span>
|
|
|
|
<span class="sd"> ```python</span>
|
|
<span class="sd"> def func(a, x):</span>
|
|
<span class="sd"> (x1, x2) = x</span>
|
|
<span class="sd"> return a[0] * x1 ** 2 + a[1] * x2</span>
|
|
<span class="sd"> ```</span>
|
|
|
|
<span class="sd"> It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation</span>
|
|
<span class="sd"> will not work.</span>
|
|
<span class="sd"> silent : bool, optional</span>
|
|
<span class="sd"> If true all output to the console is omitted (default False).</span>
|
|
<span class="sd"> initial_guess : list</span>
|
|
<span class="sd"> can provide an initial guess for the input parameters. Relevant for non-linear</span>
|
|
<span class="sd"> fits with many parameters.</span>
|
|
<span class="sd"> expected_chisquare : bool</span>
|
|
<span class="sd"> If true prints the expected chisquare which is</span>
|
|
<span class="sd"> corrected by effects caused by correlated input data.</span>
|
|
<span class="sd"> This can take a while as the full correlation matrix</span>
|
|
<span class="sd"> has to be calculated (default False).</span>
|
|
<span class="sd"> const_par : list, optional</span>
|
|
<span class="sd"> List of N Obs that are used to constrain the last N fit parameters of func.</span>
|
|
|
|
<span class="sd"> Based on the orthogonal distance regression module of scipy</span>
|
|
<span class="sd"> '''</span>
|
|
|
|
<span class="n">output</span> <span class="o">=</span> <span class="n">Fit_result</span><span class="p">()</span>
|
|
|
|
<span class="n">output</span><span class="o">.</span><span class="n">fit_function</span> <span class="o">=</span> <span class="n">func</span>
|
|
|
|
<span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
|
|
|
|
<span class="n">x_shape</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">shape</span>
|
|
|
|
<span class="k">if</span> <span class="ow">not</span> <span class="n">callable</span><span class="p">(</span><span class="n">func</span><span class="p">):</span>
|
|
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'func has to be a function.'</span><span class="p">)</span>
|
|
|
|
<span class="n">func_aug</span> <span class="o">=</span> <span class="n">func</span>
|
|
<span class="k">if</span> <span class="s1">'const_par'</span> <span class="ow">in</span> <span class="n">kwargs</span><span class="p">:</span>
|
|
<span class="n">const_par</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span><span class="s1">'const_par'</span><span class="p">]</span>
|
|
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">const_par</span><span class="p">,</span> <span class="n">Obs</span><span class="p">):</span>
|
|
<span class="n">const_par</span> <span class="o">=</span> <span class="p">[</span><span class="n">const_par</span><span class="p">]</span>
|
|
|
|
<span class="k">def</span> <span class="nf">func</span><span class="p">(</span><span class="n">p</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
|
|
<span class="k">return</span> <span class="n">func_aug</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">p</span><span class="p">,</span> <span class="p">[</span><span class="n">o</span><span class="o">.</span><span class="n">value</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">const_par</span><span class="p">])),</span> <span class="n">x</span><span class="p">)</span>
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="n">const_par</span> <span class="o">=</span> <span class="p">[]</span>
|
|
|
|
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">25</span><span class="p">):</span>
|
|
<span class="k">try</span><span class="p">:</span>
|
|
<span class="n">func</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">i</span><span class="p">),</span> <span class="n">x</span><span class="o">.</span><span class="n">T</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
|
|
<span class="k">except</span> <span class="ne">Exception</span><span class="p">:</span>
|
|
<span class="k">pass</span>
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="k">break</span>
|
|
|
|
<span class="n">n_parms</span> <span class="o">=</span> <span class="n">i</span>
|
|
<span class="k">if</span> <span class="ow">not</span> <span class="n">silent</span><span class="p">:</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="s1">'Fit with'</span><span class="p">,</span> <span class="n">n_parms</span><span class="p">,</span> <span class="s1">'parameters'</span><span class="p">)</span>
|
|
<span class="k">if</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">const_par</span><span class="p">)</span> <span class="o">></span> <span class="mi">0</span><span class="p">):</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="s1">'</span><span class="se">\t</span><span class="s1"> and </span><span class="si">%d</span><span class="s1"> constrained parameter</span><span class="si">%s</span><span class="s1">'</span> <span class="o">%</span> <span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">const_par</span><span class="p">),</span> <span class="s1">'s'</span> <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">const_par</span><span class="p">)</span> <span class="o">></span> <span class="mi">1</span> <span class="k">else</span> <span class="s1">''</span><span class="p">),</span> <span class="n">const_par</span><span class="p">)</span>
|
|
|
|
<span class="n">x_f</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">vectorize</span><span class="p">(</span><span class="k">lambda</span> <span class="n">o</span><span class="p">:</span> <span class="n">o</span><span class="o">.</span><span class="n">value</span><span class="p">)(</span><span class="n">x</span><span class="p">)</span>
|
|
<span class="n">dx_f</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">vectorize</span><span class="p">(</span><span class="k">lambda</span> <span class="n">o</span><span class="p">:</span> <span class="n">o</span><span class="o">.</span><span class="n">dvalue</span><span class="p">)(</span><span class="n">x</span><span class="p">)</span>
|
|
<span class="n">y_f</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="n">o</span><span class="o">.</span><span class="n">value</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">y</span><span class="p">])</span>
|
|
<span class="n">dy_f</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="n">o</span><span class="o">.</span><span class="n">dvalue</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">y</span><span class="p">])</span>
|
|
|
|
<span class="k">if</span> <span class="n">np</span><span class="o">.</span><span class="n">any</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span><span class="n">dx_f</span><span class="p">)</span> <span class="o"><=</span> <span class="mf">0.0</span><span class="p">):</span>
|
|
<span class="k">raise</span> <span class="ne">Exception</span><span class="p">(</span><span class="s1">'No x errors available, run the gamma method first.'</span><span class="p">)</span>
|
|
|
|
<span class="k">if</span> <span class="n">np</span><span class="o">.</span><span class="n">any</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span><span class="n">dy_f</span><span class="p">)</span> <span class="o"><=</span> <span class="mf">0.0</span><span class="p">):</span>
|
|
<span class="k">raise</span> <span class="ne">Exception</span><span class="p">(</span><span class="s1">'No y errors available, run the gamma method first.'</span><span class="p">)</span>
|
|
|
|
<span class="k">if</span> <span class="s1">'initial_guess'</span> <span class="ow">in</span> <span class="n">kwargs</span><span class="p">:</span>
|
|
<span class="n">x0</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'initial_guess'</span><span class="p">)</span>
|
|
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">x0</span><span class="p">)</span> <span class="o">!=</span> <span class="n">n_parms</span><span class="p">:</span>
|
|
<span class="k">raise</span> <span class="ne">Exception</span><span class="p">(</span><span class="s1">'Initial guess does not have the correct length: </span><span class="si">%d</span><span class="s1"> vs. </span><span class="si">%d</span><span class="s1">'</span> <span class="o">%</span> <span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">x0</span><span class="p">),</span> <span class="n">n_parms</span><span class="p">))</span>
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="n">x0</span> <span class="o">=</span> <span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="n">n_parms</span>
|
|
|
|
<span class="n">data</span> <span class="o">=</span> <span class="n">RealData</span><span class="p">(</span><span class="n">x_f</span><span class="p">,</span> <span class="n">y_f</span><span class="p">,</span> <span class="n">sx</span><span class="o">=</span><span class="n">dx_f</span><span class="p">,</span> <span class="n">sy</span><span class="o">=</span><span class="n">dy_f</span><span class="p">)</span>
|
|
<span class="n">model</span> <span class="o">=</span> <span class="n">Model</span><span class="p">(</span><span class="n">func</span><span class="p">)</span>
|
|
<span class="n">odr</span> <span class="o">=</span> <span class="n">ODR</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">model</span><span class="p">,</span> <span class="n">x0</span><span class="p">,</span> <span class="n">partol</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">finfo</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">float64</span><span class="p">)</span><span class="o">.</span><span class="n">eps</span><span class="p">)</span>
|
|
<span class="n">odr</span><span class="o">.</span><span class="n">set_job</span><span class="p">(</span><span class="n">fit_type</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">deriv</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
|
|
<span class="n">out</span> <span class="o">=</span> <span class="n">odr</span><span class="o">.</span><span class="n">run</span><span class="p">()</span>
|
|
|
|
<span class="n">output</span><span class="o">.</span><span class="n">residual_variance</span> <span class="o">=</span> <span class="n">out</span><span class="o">.</span><span class="n">res_var</span>
|
|
|
|
<span class="n">output</span><span class="o">.</span><span class="n">method</span> <span class="o">=</span> <span class="s1">'ODR'</span>
|
|
|
|
<span class="n">output</span><span class="o">.</span><span class="n">message</span> <span class="o">=</span> <span class="n">out</span><span class="o">.</span><span class="n">stopreason</span>
|
|
|
|
<span class="n">output</span><span class="o">.</span><span class="n">xplus</span> <span class="o">=</span> <span class="n">out</span><span class="o">.</span><span class="n">xplus</span>
|
|
|
|
<span class="k">if</span> <span class="ow">not</span> <span class="n">silent</span><span class="p">:</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="s1">'Method: ODR'</span><span class="p">)</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="o">*</span><span class="n">out</span><span class="o">.</span><span class="n">stopreason</span><span class="p">)</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="s1">'Residual variance:'</span><span class="p">,</span> <span class="n">output</span><span class="o">.</span><span class="n">residual_variance</span><span class="p">)</span>
|
|
|
|
<span class="k">if</span> <span class="n">out</span><span class="o">.</span><span class="n">info</span> <span class="o">></span> <span class="mi">3</span><span class="p">:</span>
|
|
<span class="k">raise</span> <span class="ne">Exception</span><span class="p">(</span><span class="s1">'The minimization procedure did not converge.'</span><span class="p">)</span>
|
|
|
|
<span class="n">m</span> <span class="o">=</span> <span class="n">x_f</span><span class="o">.</span><span class="n">size</span>
|
|
<span class="n">n_parms_aug</span> <span class="o">=</span> <span class="n">n_parms</span> <span class="o">+</span> <span class="nb">len</span><span class="p">(</span><span class="n">const_par</span><span class="p">)</span>
|
|
|
|
<span class="k">def</span> <span class="nf">odr_chisquare</span><span class="p">(</span><span class="n">p</span><span class="p">):</span>
|
|
<span class="n">model</span> <span class="o">=</span> <span class="n">func</span><span class="p">(</span><span class="n">p</span><span class="p">[:</span><span class="n">n_parms</span><span class="p">],</span> <span class="n">p</span><span class="p">[</span><span class="n">n_parms</span><span class="p">:]</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">x_shape</span><span class="p">))</span>
|
|
<span class="n">chisq</span> <span class="o">=</span> <span class="n">anp</span><span class="o">.</span><span class="n">sum</span><span class="p">(((</span><span class="n">y_f</span> <span class="o">-</span> <span class="n">model</span><span class="p">)</span> <span class="o">/</span> <span class="n">dy_f</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">anp</span><span class="o">.</span><span class="n">sum</span><span class="p">(((</span><span class="n">x_f</span> <span class="o">-</span> <span class="n">p</span><span class="p">[</span><span class="n">n_parms</span><span class="p">:]</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">x_shape</span><span class="p">))</span> <span class="o">/</span> <span class="n">dx_f</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span>
|
|
<span class="k">return</span> <span class="n">chisq</span>
|
|
|
|
<span class="k">def</span> <span class="nf">odr_chisquare_aug</span><span class="p">(</span><span class="n">p</span><span class="p">):</span>
|
|
<span class="n">model</span> <span class="o">=</span> <span class="n">func_aug</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">p</span><span class="p">[:</span><span class="n">n_parms_aug</span><span class="p">],</span> <span class="p">[</span><span class="n">o</span><span class="o">.</span><span class="n">value</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">const_par</span><span class="p">])),</span> <span class="n">p</span><span class="p">[</span><span class="n">n_parms_aug</span><span class="p">:]</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">x_shape</span><span class="p">))</span>
|
|
<span class="n">chisq</span> <span class="o">=</span> <span class="n">anp</span><span class="o">.</span><span class="n">sum</span><span class="p">(((</span><span class="n">y_f</span> <span class="o">-</span> <span class="n">model</span><span class="p">)</span> <span class="o">/</span> <span class="n">dy_f</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">anp</span><span class="o">.</span><span class="n">sum</span><span class="p">(((</span><span class="n">x_f</span> <span class="o">-</span> <span class="n">p</span><span class="p">[</span><span class="n">n_parms_aug</span><span class="p">:]</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">x_shape</span><span class="p">))</span> <span class="o">/</span> <span class="n">dx_f</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span>
|
|
<span class="k">return</span> <span class="n">chisq</span>
|
|
|
|
<span class="k">if</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'expected_chisquare'</span><span class="p">)</span> <span class="ow">is</span> <span class="kc">True</span><span class="p">:</span>
|
|
<span class="n">W</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">diag</span><span class="p">(</span><span class="mi">1</span> <span class="o">/</span> <span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">dy_f</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">dx_f</span><span class="o">.</span><span class="n">ravel</span><span class="p">()))))</span>
|
|
|
|
<span class="k">if</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'covariance'</span><span class="p">)</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
|
|
<span class="n">cov</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'covariance'</span><span class="p">)</span>
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="n">cov</span> <span class="o">=</span> <span class="n">covariance_matrix</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">y</span><span class="p">,</span> <span class="n">x</span><span class="o">.</span><span class="n">ravel</span><span class="p">())))</span>
|
|
|
|
<span class="n">number_of_x_parameters</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="n">m</span> <span class="o">/</span> <span class="n">x_f</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span>
|
|
|
|
<span class="n">old_jac</span> <span class="o">=</span> <span class="n">jacobian</span><span class="p">(</span><span class="n">func</span><span class="p">)(</span><span class="n">out</span><span class="o">.</span><span class="n">beta</span><span class="p">,</span> <span class="n">out</span><span class="o">.</span><span class="n">xplus</span><span class="p">)</span>
|
|
<span class="n">fused_row1</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">old_jac</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">number_of_x_parameters</span> <span class="o">*</span> <span class="p">[</span><span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">old_jac</span><span class="o">.</span><span class="n">shape</span><span class="p">)]),</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)))</span>
|
|
<span class="n">fused_row2</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">jacobian</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">:</span> <span class="n">func</span><span class="p">(</span><span class="n">y</span><span class="p">,</span> <span class="n">x</span><span class="p">))(</span><span class="n">out</span><span class="o">.</span><span class="n">xplus</span><span class="p">,</span> <span class="n">out</span><span class="o">.</span><span class="n">beta</span><span class="p">)</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">x_f</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span> <span class="n">x_f</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="n">number_of_x_parameters</span><span class="p">),</span> <span class="n">np</span><span class="o">.</span><span class="n">identity</span><span class="p">(</span><span class="n">number_of_x_parameters</span> <span class="o">*</span> <span class="n">old_jac</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">])))</span>
|
|
<span class="n">new_jac</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">fused_row1</span><span class="p">,</span> <span class="n">fused_row2</span><span class="p">),</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
|
|
|
|
<span class="n">A</span> <span class="o">=</span> <span class="n">W</span> <span class="o">@</span> <span class="n">new_jac</span>
|
|
<span class="n">P_phi</span> <span class="o">=</span> <span class="n">A</span> <span class="o">@</span> <span class="n">np</span><span class="o">.</span><span class="n">linalg</span><span class="o">.</span><span class="n">inv</span><span class="p">(</span><span class="n">A</span><span class="o">.</span><span class="n">T</span> <span class="o">@</span> <span class="n">A</span><span class="p">)</span> <span class="o">@</span> <span class="n">A</span><span class="o">.</span><span class="n">T</span>
|
|
<span class="n">expected_chisquare</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">trace</span><span class="p">((</span><span class="n">np</span><span class="o">.</span><span class="n">identity</span><span class="p">(</span><span class="n">P_phi</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span> <span class="o">-</span> <span class="n">P_phi</span><span class="p">)</span> <span class="o">@</span> <span class="n">W</span> <span class="o">@</span> <span class="n">cov</span> <span class="o">@</span> <span class="n">W</span><span class="p">)</span>
|
|
<span class="k">if</span> <span class="n">expected_chisquare</span> <span class="o"><=</span> <span class="mf">0.0</span><span class="p">:</span>
|
|
<span class="n">warnings</span><span class="o">.</span><span class="n">warn</span><span class="p">(</span><span class="s2">"Negative expected_chisquare."</span><span class="p">,</span> <span class="ne">RuntimeWarning</span><span class="p">)</span>
|
|
<span class="n">expected_chisquare</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="n">expected_chisquare</span><span class="p">)</span>
|
|
<span class="n">output</span><span class="o">.</span><span class="n">chisquare_by_expected_chisquare</span> <span class="o">=</span> <span class="n">odr_chisquare</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">out</span><span class="o">.</span><span class="n">beta</span><span class="p">,</span> <span class="n">out</span><span class="o">.</span><span class="n">xplus</span><span class="o">.</span><span class="n">ravel</span><span class="p">())))</span> <span class="o">/</span> <span class="n">expected_chisquare</span>
|
|
<span class="k">if</span> <span class="ow">not</span> <span class="n">silent</span><span class="p">:</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="s1">'chisquare/expected_chisquare:'</span><span class="p">,</span>
|
|
<span class="n">output</span><span class="o">.</span><span class="n">chisquare_by_expected_chisquare</span><span class="p">)</span>
|
|
|
|
<span class="n">fitp</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">out</span><span class="o">.</span><span class="n">beta</span><span class="p">,</span> <span class="p">[</span><span class="n">o</span><span class="o">.</span><span class="n">value</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">const_par</span><span class="p">]))</span>
|
|
<span class="n">hess_inv</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linalg</span><span class="o">.</span><span class="n">pinv</span><span class="p">(</span><span class="n">jacobian</span><span class="p">(</span><span class="n">jacobian</span><span class="p">(</span><span class="n">odr_chisquare_aug</span><span class="p">))(</span><span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">fitp</span><span class="p">,</span> <span class="n">out</span><span class="o">.</span><span class="n">xplus</span><span class="o">.</span><span class="n">ravel</span><span class="p">()))))</span>
|
|
|
|
<span class="k">def</span> <span class="nf">odr_chisquare_compact_x</span><span class="p">(</span><span class="n">d</span><span class="p">):</span>
|
|
<span class="n">model</span> <span class="o">=</span> <span class="n">func_aug</span><span class="p">(</span><span class="n">d</span><span class="p">[:</span><span class="n">n_parms_aug</span><span class="p">],</span> <span class="n">d</span><span class="p">[</span><span class="n">n_parms_aug</span><span class="p">:</span><span class="n">n_parms_aug</span> <span class="o">+</span> <span class="n">m</span><span class="p">]</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">x_shape</span><span class="p">))</span>
|
|
<span class="n">chisq</span> <span class="o">=</span> <span class="n">anp</span><span class="o">.</span><span class="n">sum</span><span class="p">(((</span><span class="n">y_f</span> <span class="o">-</span> <span class="n">model</span><span class="p">)</span> <span class="o">/</span> <span class="n">dy_f</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">anp</span><span class="o">.</span><span class="n">sum</span><span class="p">(((</span><span class="n">d</span><span class="p">[</span><span class="n">n_parms_aug</span> <span class="o">+</span> <span class="n">m</span><span class="p">:]</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">x_shape</span><span class="p">)</span> <span class="o">-</span> <span class="n">d</span><span class="p">[</span><span class="n">n_parms_aug</span><span class="p">:</span><span class="n">n_parms_aug</span> <span class="o">+</span> <span class="n">m</span><span class="p">]</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">x_shape</span><span class="p">))</span> <span class="o">/</span> <span class="n">dx_f</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span>
|
|
<span class="k">return</span> <span class="n">chisq</span>
|
|
|
|
<span class="n">jac_jac_x</span> <span class="o">=</span> <span class="n">jacobian</span><span class="p">(</span><span class="n">jacobian</span><span class="p">(</span><span class="n">odr_chisquare_compact_x</span><span class="p">))(</span><span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">fitp</span><span class="p">,</span> <span class="n">out</span><span class="o">.</span><span class="n">xplus</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">x_f</span><span class="o">.</span><span class="n">ravel</span><span class="p">())))</span>
|
|
|
|
<span class="n">deriv_x</span> <span class="o">=</span> <span class="o">-</span><span class="n">hess_inv</span> <span class="o">@</span> <span class="n">jac_jac_x</span><span class="p">[:</span><span class="n">n_parms_aug</span> <span class="o">+</span> <span class="n">m</span><span class="p">,</span> <span class="n">n_parms_aug</span> <span class="o">+</span> <span class="n">m</span><span class="p">:]</span>
|
|
|
|
<span class="k">def</span> <span class="nf">odr_chisquare_compact_y</span><span class="p">(</span><span class="n">d</span><span class="p">):</span>
|
|
<span class="n">model</span> <span class="o">=</span> <span class="n">func_aug</span><span class="p">(</span><span class="n">d</span><span class="p">[:</span><span class="n">n_parms_aug</span><span class="p">],</span> <span class="n">d</span><span class="p">[</span><span class="n">n_parms_aug</span><span class="p">:</span><span class="n">n_parms_aug</span> <span class="o">+</span> <span class="n">m</span><span class="p">]</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">x_shape</span><span class="p">))</span>
|
|
<span class="n">chisq</span> <span class="o">=</span> <span class="n">anp</span><span class="o">.</span><span class="n">sum</span><span class="p">(((</span><span class="n">d</span><span class="p">[</span><span class="n">n_parms_aug</span> <span class="o">+</span> <span class="n">m</span><span class="p">:]</span> <span class="o">-</span> <span class="n">model</span><span class="p">)</span> <span class="o">/</span> <span class="n">dy_f</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">anp</span><span class="o">.</span><span class="n">sum</span><span class="p">(((</span><span class="n">x_f</span> <span class="o">-</span> <span class="n">d</span><span class="p">[</span><span class="n">n_parms_aug</span><span class="p">:</span><span class="n">n_parms_aug</span> <span class="o">+</span> <span class="n">m</span><span class="p">]</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">x_shape</span><span class="p">))</span> <span class="o">/</span> <span class="n">dx_f</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span>
|
|
<span class="k">return</span> <span class="n">chisq</span>
|
|
|
|
<span class="n">jac_jac_y</span> <span class="o">=</span> <span class="n">jacobian</span><span class="p">(</span><span class="n">jacobian</span><span class="p">(</span><span class="n">odr_chisquare_compact_y</span><span class="p">))(</span><span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">fitp</span><span class="p">,</span> <span class="n">out</span><span class="o">.</span><span class="n">xplus</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">y_f</span><span class="p">)))</span>
|
|
|
|
<span class="n">deriv_y</span> <span class="o">=</span> <span class="o">-</span><span class="n">hess_inv</span> <span class="o">@</span> <span class="n">jac_jac_y</span><span class="p">[:</span><span class="n">n_parms_aug</span> <span class="o">+</span> <span class="n">m</span><span class="p">,</span> <span class="n">n_parms_aug</span> <span class="o">+</span> <span class="n">m</span><span class="p">:]</span>
|
|
|
|
<span class="n">result</span> <span class="o">=</span> <span class="p">[]</span>
|
|
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n_parms</span><span class="p">):</span>
|
|
<span class="n">result</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">derived_observable</span><span class="p">(</span><span class="k">lambda</span> <span class="n">my_var</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">:</span> <span class="p">(</span><span class="n">my_var</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">+</span> <span class="n">np</span><span class="o">.</span><span class="n">finfo</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">float64</span><span class="p">)</span><span class="o">.</span><span class="n">eps</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">ravel</span><span class="p">()[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">value</span> <span class="o">+</span> <span class="n">np</span><span class="o">.</span><span class="n">finfo</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">float64</span><span class="p">)</span><span class="o">.</span><span class="n">eps</span><span class="p">)</span> <span class="o">*</span> <span class="n">out</span><span class="o">.</span><span class="n">beta</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="nb">list</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">ravel</span><span class="p">())</span> <span class="o">+</span> <span class="nb">list</span><span class="p">(</span><span class="n">y</span><span class="p">),</span> <span class="n">man_grad</span><span class="o">=</span><span class="nb">list</span><span class="p">(</span><span class="n">deriv_x</span><span class="p">[</span><span class="n">i</span><span class="p">])</span> <span class="o">+</span> <span class="nb">list</span><span class="p">(</span><span class="n">deriv_y</span><span class="p">[</span><span class="n">i</span><span class="p">])))</span>
|
|
|
|
<span class="n">output</span><span class="o">.</span><span class="n">fit_parameters</span> <span class="o">=</span> <span class="n">result</span> <span class="o">+</span> <span class="n">const_par</span>
|
|
|
|
<span class="n">output</span><span class="o">.</span><span class="n">odr_chisquare</span> <span class="o">=</span> <span class="n">odr_chisquare</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">out</span><span class="o">.</span><span class="n">beta</span><span class="p">,</span> <span class="n">out</span><span class="o">.</span><span class="n">xplus</span><span class="o">.</span><span class="n">ravel</span><span class="p">())))</span>
|
|
<span class="n">output</span><span class="o">.</span><span class="n">dof</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">n_parms</span>
|
|
|
|
<span class="k">return</span> <span class="n">output</span>
|
|
|
|
|
|
<span class="k">def</span> <span class="nf">prior_fit</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">priors</span><span class="p">,</span> <span class="n">silent</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
|
<span class="n">warnings</span><span class="o">.</span><span class="n">warn</span><span class="p">(</span><span class="s2">"prior_fit renamed to least_squares"</span><span class="p">,</span> <span class="ne">DeprecationWarning</span><span class="p">)</span>
|
|
<span class="k">return</span> <span class="n">least_squares</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">priors</span><span class="o">=</span><span class="n">priors</span><span class="p">,</span> <span class="n">silent</span><span class="o">=</span><span class="n">silent</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
|
|
|
|
|
|
<span class="k">def</span> <span class="nf">_prior_fit</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">priors</span><span class="p">,</span> <span class="n">silent</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
|
<span class="n">output</span> <span class="o">=</span> <span class="n">Fit_result</span><span class="p">()</span>
|
|
|
|
<span class="n">output</span><span class="o">.</span><span class="n">fit_function</span> <span class="o">=</span> <span class="n">func</span>
|
|
|
|
<span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
|
|
|
|
<span class="k">if</span> <span class="ow">not</span> <span class="n">callable</span><span class="p">(</span><span class="n">func</span><span class="p">):</span>
|
|
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'func has to be a function.'</span><span class="p">)</span>
|
|
|
|
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">100</span><span class="p">):</span>
|
|
<span class="k">try</span><span class="p">:</span>
|
|
<span class="n">func</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">i</span><span class="p">),</span> <span class="mi">0</span><span class="p">)</span>
|
|
<span class="k">except</span> <span class="ne">Exception</span><span class="p">:</span>
|
|
<span class="k">pass</span>
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="k">break</span>
|
|
|
|
<span class="n">n_parms</span> <span class="o">=</span> <span class="n">i</span>
|
|
|
|
<span class="k">if</span> <span class="n">n_parms</span> <span class="o">!=</span> <span class="nb">len</span><span class="p">(</span><span class="n">priors</span><span class="p">):</span>
|
|
<span class="k">raise</span> <span class="ne">Exception</span><span class="p">(</span><span class="s1">'Priors does not have the correct length.'</span><span class="p">)</span>
|
|
|
|
<span class="k">def</span> <span class="nf">extract_val_and_dval</span><span class="p">(</span><span class="n">string</span><span class="p">):</span>
|
|
<span class="n">split_string</span> <span class="o">=</span> <span class="n">string</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s1">'('</span><span class="p">)</span>
|
|
<span class="k">if</span> <span class="s1">'.'</span> <span class="ow">in</span> <span class="n">split_string</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="ow">and</span> <span class="s1">'.'</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">split_string</span><span class="p">[</span><span class="mi">1</span><span class="p">][:</span><span class="o">-</span><span class="mi">1</span><span class="p">]:</span>
|
|
<span class="n">factor</span> <span class="o">=</span> <span class="mi">10</span> <span class="o">**</span> <span class="o">-</span><span class="nb">len</span><span class="p">(</span><span class="n">split_string</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">partition</span><span class="p">(</span><span class="s1">'.'</span><span class="p">)[</span><span class="mi">2</span><span class="p">])</span>
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="n">factor</span> <span class="o">=</span> <span class="mi">1</span>
|
|
<span class="k">return</span> <span class="nb">float</span><span class="p">(</span><span class="n">split_string</span><span class="p">[</span><span class="mi">0</span><span class="p">]),</span> <span class="nb">float</span><span class="p">(</span><span class="n">split_string</span><span class="p">[</span><span class="mi">1</span><span class="p">][:</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span> <span class="o">*</span> <span class="n">factor</span>
|
|
|
|
<span class="n">loc_priors</span> <span class="o">=</span> <span class="p">[]</span>
|
|
<span class="k">for</span> <span class="n">i_n</span><span class="p">,</span> <span class="n">i_prior</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">priors</span><span class="p">):</span>
|
|
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">i_prior</span><span class="p">,</span> <span class="n">Obs</span><span class="p">):</span>
|
|
<span class="n">loc_priors</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">i_prior</span><span class="p">)</span>
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="n">loc_val</span><span class="p">,</span> <span class="n">loc_dval</span> <span class="o">=</span> <span class="n">extract_val_and_dval</span><span class="p">(</span><span class="n">i_prior</span><span class="p">)</span>
|
|
<span class="n">loc_priors</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">cov_Obs</span><span class="p">(</span><span class="n">loc_val</span><span class="p">,</span> <span class="n">loc_dval</span> <span class="o">**</span> <span class="mi">2</span><span class="p">,</span> <span class="s1">'#prior'</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">i_n</span><span class="p">)</span> <span class="o">+</span> <span class="sa">f</span><span class="s2">"_</span><span class="si">{</span><span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">2147483647</span><span class="p">)</span><span class="si">:</span><span class="s2">010d</span><span class="si">}</span><span class="s2">"</span><span class="p">))</span>
|
|
|
|
<span class="n">output</span><span class="o">.</span><span class="n">priors</span> <span class="o">=</span> <span class="n">loc_priors</span>
|
|
|
|
<span class="k">if</span> <span class="ow">not</span> <span class="n">silent</span><span class="p">:</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="s1">'Fit with'</span><span class="p">,</span> <span class="n">n_parms</span><span class="p">,</span> <span class="s1">'parameters'</span><span class="p">)</span>
|
|
|
|
<span class="n">y_f</span> <span class="o">=</span> <span class="p">[</span><span class="n">o</span><span class="o">.</span><span class="n">value</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">y</span><span class="p">]</span>
|
|
<span class="n">dy_f</span> <span class="o">=</span> <span class="p">[</span><span class="n">o</span><span class="o">.</span><span class="n">dvalue</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">y</span><span class="p">]</span>
|
|
|
|
<span class="k">if</span> <span class="n">np</span><span class="o">.</span><span class="n">any</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span><span class="n">dy_f</span><span class="p">)</span> <span class="o"><=</span> <span class="mf">0.0</span><span class="p">):</span>
|
|
<span class="k">raise</span> <span class="ne">Exception</span><span class="p">(</span><span class="s1">'No y errors available, run the gamma method first.'</span><span class="p">)</span>
|
|
|
|
<span class="n">p_f</span> <span class="o">=</span> <span class="p">[</span><span class="n">o</span><span class="o">.</span><span class="n">value</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">loc_priors</span><span class="p">]</span>
|
|
<span class="n">dp_f</span> <span class="o">=</span> <span class="p">[</span><span class="n">o</span><span class="o">.</span><span class="n">dvalue</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">loc_priors</span><span class="p">]</span>
|
|
|
|
<span class="k">if</span> <span class="n">np</span><span class="o">.</span><span class="n">any</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span><span class="n">dp_f</span><span class="p">)</span> <span class="o"><=</span> <span class="mf">0.0</span><span class="p">):</span>
|
|
<span class="k">raise</span> <span class="ne">Exception</span><span class="p">(</span><span class="s1">'No prior errors available, run the gamma method first.'</span><span class="p">)</span>
|
|
|
|
<span class="k">if</span> <span class="s1">'initial_guess'</span> <span class="ow">in</span> <span class="n">kwargs</span><span class="p">:</span>
|
|
<span class="n">x0</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'initial_guess'</span><span class="p">)</span>
|
|
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">x0</span><span class="p">)</span> <span class="o">!=</span> <span class="n">n_parms</span><span class="p">:</span>
|
|
<span class="k">raise</span> <span class="ne">Exception</span><span class="p">(</span><span class="s1">'Initial guess does not have the correct length.'</span><span class="p">)</span>
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="n">x0</span> <span class="o">=</span> <span class="n">p_f</span>
|
|
|
|
<span class="k">def</span> <span class="nf">chisqfunc</span><span class="p">(</span><span class="n">p</span><span class="p">):</span>
|
|
<span class="n">model</span> <span class="o">=</span> <span class="n">func</span><span class="p">(</span><span class="n">p</span><span class="p">,</span> <span class="n">x</span><span class="p">)</span>
|
|
<span class="n">chisq</span> <span class="o">=</span> <span class="n">anp</span><span class="o">.</span><span class="n">sum</span><span class="p">(((</span><span class="n">y_f</span> <span class="o">-</span> <span class="n">model</span><span class="p">)</span> <span class="o">/</span> <span class="n">dy_f</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">anp</span><span class="o">.</span><span class="n">sum</span><span class="p">(((</span><span class="n">p_f</span> <span class="o">-</span> <span class="n">p</span><span class="p">)</span> <span class="o">/</span> <span class="n">dp_f</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span>
|
|
<span class="k">return</span> <span class="n">chisq</span>
|
|
|
|
<span class="k">if</span> <span class="ow">not</span> <span class="n">silent</span><span class="p">:</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="s1">'Method: migrad'</span><span class="p">)</span>
|
|
|
|
<span class="n">m</span> <span class="o">=</span> <span class="n">iminuit</span><span class="o">.</span><span class="n">Minuit</span><span class="p">(</span><span class="n">chisqfunc</span><span class="p">,</span> <span class="n">x0</span><span class="p">)</span>
|
|
<span class="n">m</span><span class="o">.</span><span class="n">errordef</span> <span class="o">=</span> <span class="mi">1</span>
|
|
<span class="n">m</span><span class="o">.</span><span class="n">print_level</span> <span class="o">=</span> <span class="mi">0</span>
|
|
<span class="k">if</span> <span class="s1">'tol'</span> <span class="ow">in</span> <span class="n">kwargs</span><span class="p">:</span>
|
|
<span class="n">m</span><span class="o">.</span><span class="n">tol</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'tol'</span><span class="p">)</span>
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="n">m</span><span class="o">.</span><span class="n">tol</span> <span class="o">=</span> <span class="mf">1e-4</span>
|
|
<span class="n">m</span><span class="o">.</span><span class="n">migrad</span><span class="p">()</span>
|
|
<span class="n">params</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span><span class="n">m</span><span class="o">.</span><span class="n">values</span><span class="p">)</span>
|
|
|
|
<span class="n">output</span><span class="o">.</span><span class="n">chisquare_by_dof</span> <span class="o">=</span> <span class="n">m</span><span class="o">.</span><span class="n">fval</span> <span class="o">/</span> <span class="nb">len</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
|
|
|
|
<span class="n">output</span><span class="o">.</span><span class="n">method</span> <span class="o">=</span> <span class="s1">'migrad'</span>
|
|
|
|
<span class="k">if</span> <span class="ow">not</span> <span class="n">silent</span><span class="p">:</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="s1">'chisquare/d.o.f.:'</span><span class="p">,</span> <span class="n">output</span><span class="o">.</span><span class="n">chisquare_by_dof</span><span class="p">)</span>
|
|
|
|
<span class="k">if</span> <span class="ow">not</span> <span class="n">m</span><span class="o">.</span><span class="n">fmin</span><span class="o">.</span><span class="n">is_valid</span><span class="p">:</span>
|
|
<span class="k">raise</span> <span class="ne">Exception</span><span class="p">(</span><span class="s1">'The minimization procedure did not converge.'</span><span class="p">)</span>
|
|
|
|
<span class="n">hess_inv</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linalg</span><span class="o">.</span><span class="n">pinv</span><span class="p">(</span><span class="n">jacobian</span><span class="p">(</span><span class="n">jacobian</span><span class="p">(</span><span class="n">chisqfunc</span><span class="p">))(</span><span class="n">params</span><span class="p">))</span>
|
|
|
|
<span class="k">def</span> <span class="nf">chisqfunc_compact</span><span class="p">(</span><span class="n">d</span><span class="p">):</span>
|
|
<span class="n">model</span> <span class="o">=</span> <span class="n">func</span><span class="p">(</span><span class="n">d</span><span class="p">[:</span><span class="n">n_parms</span><span class="p">],</span> <span class="n">x</span><span class="p">)</span>
|
|
<span class="n">chisq</span> <span class="o">=</span> <span class="n">anp</span><span class="o">.</span><span class="n">sum</span><span class="p">(((</span><span class="n">d</span><span class="p">[</span><span class="n">n_parms</span><span class="p">:</span> <span class="n">n_parms</span> <span class="o">+</span> <span class="nb">len</span><span class="p">(</span><span class="n">x</span><span class="p">)]</span> <span class="o">-</span> <span class="n">model</span><span class="p">)</span> <span class="o">/</span> <span class="n">dy_f</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">anp</span><span class="o">.</span><span class="n">sum</span><span class="p">(((</span><span class="n">d</span><span class="p">[</span><span class="n">n_parms</span> <span class="o">+</span> <span class="nb">len</span><span class="p">(</span><span class="n">x</span><span class="p">):]</span> <span class="o">-</span> <span class="n">d</span><span class="p">[:</span><span class="n">n_parms</span><span class="p">])</span> <span class="o">/</span> <span class="n">dp_f</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span>
|
|
<span class="k">return</span> <span class="n">chisq</span>
|
|
|
|
<span class="n">jac_jac</span> <span class="o">=</span> <span class="n">jacobian</span><span class="p">(</span><span class="n">jacobian</span><span class="p">(</span><span class="n">chisqfunc_compact</span><span class="p">))(</span><span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">params</span><span class="p">,</span> <span class="n">y_f</span><span class="p">,</span> <span class="n">p_f</span><span class="p">)))</span>
|
|
|
|
<span class="n">deriv</span> <span class="o">=</span> <span class="o">-</span><span class="n">hess_inv</span> <span class="o">@</span> <span class="n">jac_jac</span><span class="p">[:</span><span class="n">n_parms</span><span class="p">,</span> <span class="n">n_parms</span><span class="p">:]</span>
|
|
|
|
<span class="n">result</span> <span class="o">=</span> <span class="p">[]</span>
|
|
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n_parms</span><span class="p">):</span>
|
|
<span class="n">result</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">derived_observable</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">:</span> <span class="p">(</span><span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">+</span> <span class="n">np</span><span class="o">.</span><span class="n">finfo</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">float64</span><span class="p">)</span><span class="o">.</span><span class="n">eps</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">y</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">value</span> <span class="o">+</span> <span class="n">np</span><span class="o">.</span><span class="n">finfo</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">float64</span><span class="p">)</span><span class="o">.</span><span class="n">eps</span><span class="p">)</span> <span class="o">*</span> <span class="n">params</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="nb">list</span><span class="p">(</span><span class="n">y</span><span class="p">)</span> <span class="o">+</span> <span class="nb">list</span><span class="p">(</span><span class="n">loc_priors</span><span class="p">),</span> <span class="n">man_grad</span><span class="o">=</span><span class="nb">list</span><span class="p">(</span><span class="n">deriv</span><span class="p">[</span><span class="n">i</span><span class="p">])))</span>
|
|
|
|
<span class="n">output</span><span class="o">.</span><span class="n">fit_parameters</span> <span class="o">=</span> <span class="n">result</span>
|
|
<span class="n">output</span><span class="o">.</span><span class="n">chisquare</span> <span class="o">=</span> <span class="n">chisqfunc</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span><span class="n">params</span><span class="p">))</span>
|
|
|
|
<span class="k">if</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'resplot'</span><span class="p">)</span> <span class="ow">is</span> <span class="kc">True</span><span class="p">:</span>
|
|
<span class="n">residual_plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">result</span><span class="p">)</span>
|
|
|
|
<span class="k">if</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'qqplot'</span><span class="p">)</span> <span class="ow">is</span> <span class="kc">True</span><span class="p">:</span>
|
|
<span class="n">qqplot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">result</span><span class="p">)</span>
|
|
|
|
<span class="k">return</span> <span class="n">output</span>
|
|
|
|
|
|
<span class="k">def</span> <span class="nf">standard_fit</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">silent</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
|
<span class="n">warnings</span><span class="o">.</span><span class="n">warn</span><span class="p">(</span><span class="s2">"standard_fit renamed to least_squares"</span><span class="p">,</span> <span class="ne">DeprecationWarning</span><span class="p">)</span>
|
|
<span class="k">return</span> <span class="n">least_squares</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">silent</span><span class="o">=</span><span class="n">silent</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
|
|
|
|
|
|
<span class="k">def</span> <span class="nf">_standard_fit</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">silent</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
|
|
|
<span class="n">output</span> <span class="o">=</span> <span class="n">Fit_result</span><span class="p">()</span>
|
|
|
|
<span class="n">output</span><span class="o">.</span><span class="n">fit_function</span> <span class="o">=</span> <span class="n">func</span>
|
|
|
|
<span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
|
|
|
|
<span class="k">if</span> <span class="n">x</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">!=</span> <span class="nb">len</span><span class="p">(</span><span class="n">y</span><span class="p">):</span>
|
|
<span class="k">raise</span> <span class="ne">Exception</span><span class="p">(</span><span class="s1">'x and y input have to have the same length'</span><span class="p">)</span>
|
|
|
|
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span> <span class="o">></span> <span class="mi">2</span><span class="p">:</span>
|
|
<span class="k">raise</span> <span class="ne">Exception</span><span class="p">(</span><span class="s1">'Unknown format for x values'</span><span class="p">)</span>
|
|
|
|
<span class="k">if</span> <span class="ow">not</span> <span class="n">callable</span><span class="p">(</span><span class="n">func</span><span class="p">):</span>
|
|
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'func has to be a function.'</span><span class="p">)</span>
|
|
|
|
<span class="n">func_aug</span> <span class="o">=</span> <span class="n">func</span>
|
|
<span class="k">if</span> <span class="s1">'const_par'</span> <span class="ow">in</span> <span class="n">kwargs</span><span class="p">:</span>
|
|
<span class="n">const_par</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span><span class="s1">'const_par'</span><span class="p">]</span>
|
|
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">const_par</span><span class="p">,</span> <span class="n">Obs</span><span class="p">):</span>
|
|
<span class="n">const_par</span> <span class="o">=</span> <span class="p">[</span><span class="n">const_par</span><span class="p">]</span>
|
|
|
|
<span class="k">def</span> <span class="nf">func</span><span class="p">(</span><span class="n">p</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
|
|
<span class="k">return</span> <span class="n">func_aug</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">p</span><span class="p">,</span> <span class="p">[</span><span class="n">o</span><span class="o">.</span><span class="n">value</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">const_par</span><span class="p">])),</span> <span class="n">x</span><span class="p">)</span>
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="n">const_par</span> <span class="o">=</span> <span class="p">[]</span>
|
|
|
|
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">25</span><span class="p">):</span>
|
|
<span class="k">try</span><span class="p">:</span>
|
|
<span class="n">func</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">i</span><span class="p">),</span> <span class="n">x</span><span class="o">.</span><span class="n">T</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
|
|
<span class="k">except</span> <span class="ne">Exception</span><span class="p">:</span>
|
|
<span class="k">pass</span>
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="k">break</span>
|
|
|
|
<span class="n">n_parms</span> <span class="o">=</span> <span class="n">i</span>
|
|
|
|
<span class="k">if</span> <span class="ow">not</span> <span class="n">silent</span><span class="p">:</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="s1">'Fit with'</span><span class="p">,</span> <span class="n">n_parms</span><span class="p">,</span> <span class="s1">'parameters'</span><span class="p">)</span>
|
|
<span class="k">if</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">const_par</span><span class="p">)</span> <span class="o">></span> <span class="mi">0</span><span class="p">):</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="s1">'</span><span class="se">\t</span><span class="s1"> and </span><span class="si">%d</span><span class="s1"> constrained parameter</span><span class="si">%s</span><span class="s1">'</span> <span class="o">%</span> <span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">const_par</span><span class="p">),</span> <span class="s1">'s'</span> <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">const_par</span><span class="p">)</span> <span class="o">></span> <span class="mi">1</span> <span class="k">else</span> <span class="s1">''</span><span class="p">),</span> <span class="n">const_par</span><span class="p">)</span>
|
|
|
|
<span class="n">y_f</span> <span class="o">=</span> <span class="p">[</span><span class="n">o</span><span class="o">.</span><span class="n">value</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">y</span><span class="p">]</span>
|
|
<span class="n">dy_f</span> <span class="o">=</span> <span class="p">[</span><span class="n">o</span><span class="o">.</span><span class="n">dvalue</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">y</span><span class="p">]</span>
|
|
|
|
<span class="k">if</span> <span class="n">np</span><span class="o">.</span><span class="n">any</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span><span class="n">dy_f</span><span class="p">)</span> <span class="o"><=</span> <span class="mf">0.0</span><span class="p">):</span>
|
|
<span class="k">raise</span> <span class="ne">Exception</span><span class="p">(</span><span class="s1">'No y errors available, run the gamma method first.'</span><span class="p">)</span>
|
|
|
|
<span class="k">if</span> <span class="s1">'initial_guess'</span> <span class="ow">in</span> <span class="n">kwargs</span><span class="p">:</span>
|
|
<span class="n">x0</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'initial_guess'</span><span class="p">)</span>
|
|
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">x0</span><span class="p">)</span> <span class="o">!=</span> <span class="n">n_parms</span><span class="p">:</span>
|
|
<span class="k">raise</span> <span class="ne">Exception</span><span class="p">(</span><span class="s1">'Initial guess does not have the correct length: </span><span class="si">%d</span><span class="s1"> vs. </span><span class="si">%d</span><span class="s1">'</span> <span class="o">%</span> <span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">x0</span><span class="p">),</span> <span class="n">n_parms</span><span class="p">))</span>
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="n">x0</span> <span class="o">=</span> <span class="p">[</span><span class="mf">0.1</span><span class="p">]</span> <span class="o">*</span> <span class="n">n_parms</span>
|
|
|
|
<span class="k">if</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'correlated_fit'</span><span class="p">)</span> <span class="ow">is</span> <span class="kc">True</span><span class="p">:</span>
|
|
<span class="n">cov</span> <span class="o">=</span> <span class="n">covariance_matrix</span><span class="p">(</span><span class="n">y</span><span class="p">)</span>
|
|
<span class="n">covdiag</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">diag</span><span class="p">(</span><span class="mf">1.</span> <span class="o">/</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">diag</span><span class="p">(</span><span class="n">cov</span><span class="p">)))</span>
|
|
<span class="n">corr</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">copy</span><span class="p">(</span><span class="n">cov</span><span class="p">)</span>
|
|
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">y</span><span class="p">)):</span>
|
|
<span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">y</span><span class="p">)):</span>
|
|
<span class="n">corr</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span> <span class="o">=</span> <span class="n">cov</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span> <span class="o">/</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">cov</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">i</span><span class="p">]</span> <span class="o">*</span> <span class="n">cov</span><span class="p">[</span><span class="n">j</span><span class="p">][</span><span class="n">j</span><span class="p">])</span>
|
|
<span class="n">condn</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linalg</span><span class="o">.</span><span class="n">cond</span><span class="p">(</span><span class="n">corr</span><span class="p">)</span>
|
|
<span class="k">if</span> <span class="n">condn</span> <span class="o">></span> <span class="mf">1e4</span><span class="p">:</span>
|
|
<span class="n">warnings</span><span class="o">.</span><span class="n">warn</span><span class="p">(</span><span class="s2">"Correlation matrix may be ill-conditioned! condition number: </span><span class="si">%1.2e</span><span class="s2">"</span> <span class="o">%</span> <span class="p">(</span><span class="n">condn</span><span class="p">),</span> <span class="ne">RuntimeWarning</span><span class="p">)</span>
|
|
<span class="n">chol</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linalg</span><span class="o">.</span><span class="n">cholesky</span><span class="p">(</span><span class="n">corr</span><span class="p">)</span>
|
|
<span class="n">chol_inv</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linalg</span><span class="o">.</span><span class="n">inv</span><span class="p">(</span><span class="n">chol</span><span class="p">)</span>
|
|
<span class="n">chol_inv</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">chol_inv</span><span class="p">,</span> <span class="n">covdiag</span><span class="p">)</span>
|
|
|
|
<span class="k">def</span> <span class="nf">chisqfunc</span><span class="p">(</span><span class="n">p</span><span class="p">):</span>
|
|
<span class="n">model</span> <span class="o">=</span> <span class="n">func</span><span class="p">(</span><span class="n">p</span><span class="p">,</span> <span class="n">x</span><span class="p">)</span>
|
|
<span class="n">chisq</span> <span class="o">=</span> <span class="n">anp</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">anp</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">chol_inv</span><span class="p">,</span> <span class="p">(</span><span class="n">y_f</span> <span class="o">-</span> <span class="n">model</span><span class="p">))</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span>
|
|
<span class="k">return</span> <span class="n">chisq</span>
|
|
|
|
<span class="k">def</span> <span class="nf">chisqfunc_aug</span><span class="p">(</span><span class="n">p</span><span class="p">):</span>
|
|
<span class="n">model</span> <span class="o">=</span> <span class="n">func_aug</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">p</span><span class="p">,</span> <span class="p">[</span><span class="n">o</span><span class="o">.</span><span class="n">value</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">const_par</span><span class="p">])),</span> <span class="n">x</span><span class="p">)</span>
|
|
<span class="n">chisq</span> <span class="o">=</span> <span class="n">anp</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">anp</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">chol_inv</span><span class="p">,</span> <span class="p">(</span><span class="n">y_f</span> <span class="o">-</span> <span class="n">model</span><span class="p">))</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span>
|
|
<span class="k">return</span> <span class="n">chisq</span>
|
|
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="k">def</span> <span class="nf">chisqfunc</span><span class="p">(</span><span class="n">p</span><span class="p">):</span>
|
|
<span class="n">model</span> <span class="o">=</span> <span class="n">func</span><span class="p">(</span><span class="n">p</span><span class="p">,</span> <span class="n">x</span><span class="p">)</span>
|
|
<span class="n">chisq</span> <span class="o">=</span> <span class="n">anp</span><span class="o">.</span><span class="n">sum</span><span class="p">(((</span><span class="n">y_f</span> <span class="o">-</span> <span class="n">model</span><span class="p">)</span> <span class="o">/</span> <span class="n">dy_f</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span>
|
|
<span class="k">return</span> <span class="n">chisq</span>
|
|
|
|
<span class="k">def</span> <span class="nf">chisqfunc_aug</span><span class="p">(</span><span class="n">p</span><span class="p">):</span>
|
|
<span class="n">model</span> <span class="o">=</span> <span class="n">func_aug</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">p</span><span class="p">,</span> <span class="p">[</span><span class="n">o</span><span class="o">.</span><span class="n">value</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">const_par</span><span class="p">])),</span> <span class="n">x</span><span class="p">)</span>
|
|
<span class="n">chisq</span> <span class="o">=</span> <span class="n">anp</span><span class="o">.</span><span class="n">sum</span><span class="p">(((</span><span class="n">y_f</span> <span class="o">-</span> <span class="n">model</span><span class="p">)</span> <span class="o">/</span> <span class="n">dy_f</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span>
|
|
<span class="k">return</span> <span class="n">chisq</span>
|
|
|
|
<span class="k">if</span> <span class="s1">'method'</span> <span class="ow">in</span> <span class="n">kwargs</span><span class="p">:</span>
|
|
<span class="n">output</span><span class="o">.</span><span class="n">method</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'method'</span><span class="p">)</span>
|
|
<span class="k">if</span> <span class="ow">not</span> <span class="n">silent</span><span class="p">:</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="s1">'Method:'</span><span class="p">,</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'method'</span><span class="p">))</span>
|
|
<span class="k">if</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'method'</span><span class="p">)</span> <span class="o">==</span> <span class="s1">'migrad'</span><span class="p">:</span>
|
|
<span class="n">fit_result</span> <span class="o">=</span> <span class="n">iminuit</span><span class="o">.</span><span class="n">minimize</span><span class="p">(</span><span class="n">chisqfunc</span><span class="p">,</span> <span class="n">x0</span><span class="p">)</span>
|
|
<span class="n">fit_result</span> <span class="o">=</span> <span class="n">iminuit</span><span class="o">.</span><span class="n">minimize</span><span class="p">(</span><span class="n">chisqfunc</span><span class="p">,</span> <span class="n">fit_result</span><span class="o">.</span><span class="n">x</span><span class="p">)</span>
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="n">fit_result</span> <span class="o">=</span> <span class="n">scipy</span><span class="o">.</span><span class="n">optimize</span><span class="o">.</span><span class="n">minimize</span><span class="p">(</span><span class="n">chisqfunc</span><span class="p">,</span> <span class="n">x0</span><span class="p">,</span> <span class="n">method</span><span class="o">=</span><span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'method'</span><span class="p">))</span>
|
|
<span class="n">fit_result</span> <span class="o">=</span> <span class="n">scipy</span><span class="o">.</span><span class="n">optimize</span><span class="o">.</span><span class="n">minimize</span><span class="p">(</span><span class="n">chisqfunc</span><span class="p">,</span> <span class="n">fit_result</span><span class="o">.</span><span class="n">x</span><span class="p">,</span> <span class="n">method</span><span class="o">=</span><span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'method'</span><span class="p">),</span> <span class="n">tol</span><span class="o">=</span><span class="mf">1e-12</span><span class="p">)</span>
|
|
|
|
<span class="n">chisquare</span> <span class="o">=</span> <span class="n">fit_result</span><span class="o">.</span><span class="n">fun</span>
|
|
|
|
<span class="n">output</span><span class="o">.</span><span class="n">iterations</span> <span class="o">=</span> <span class="n">fit_result</span><span class="o">.</span><span class="n">nit</span>
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="n">output</span><span class="o">.</span><span class="n">method</span> <span class="o">=</span> <span class="s1">'Levenberg-Marquardt'</span>
|
|
<span class="k">if</span> <span class="ow">not</span> <span class="n">silent</span><span class="p">:</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="s1">'Method: Levenberg-Marquardt'</span><span class="p">)</span>
|
|
|
|
<span class="k">if</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'correlated_fit'</span><span class="p">)</span> <span class="ow">is</span> <span class="kc">True</span><span class="p">:</span>
|
|
<span class="k">def</span> <span class="nf">chisqfunc_residuals</span><span class="p">(</span><span class="n">p</span><span class="p">):</span>
|
|
<span class="n">model</span> <span class="o">=</span> <span class="n">func</span><span class="p">(</span><span class="n">p</span><span class="p">,</span> <span class="n">x</span><span class="p">)</span>
|
|
<span class="n">chisq</span> <span class="o">=</span> <span class="n">anp</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">chol_inv</span><span class="p">,</span> <span class="p">(</span><span class="n">y_f</span> <span class="o">-</span> <span class="n">model</span><span class="p">))</span>
|
|
<span class="k">return</span> <span class="n">chisq</span>
|
|
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="k">def</span> <span class="nf">chisqfunc_residuals</span><span class="p">(</span><span class="n">p</span><span class="p">):</span>
|
|
<span class="n">model</span> <span class="o">=</span> <span class="n">func</span><span class="p">(</span><span class="n">p</span><span class="p">,</span> <span class="n">x</span><span class="p">)</span>
|
|
<span class="n">chisq</span> <span class="o">=</span> <span class="p">((</span><span class="n">y_f</span> <span class="o">-</span> <span class="n">model</span><span class="p">)</span> <span class="o">/</span> <span class="n">dy_f</span><span class="p">)</span>
|
|
<span class="k">return</span> <span class="n">chisq</span>
|
|
|
|
<span class="n">fit_result</span> <span class="o">=</span> <span class="n">scipy</span><span class="o">.</span><span class="n">optimize</span><span class="o">.</span><span class="n">least_squares</span><span class="p">(</span><span class="n">chisqfunc_residuals</span><span class="p">,</span> <span class="n">x0</span><span class="p">,</span> <span class="n">method</span><span class="o">=</span><span class="s1">'lm'</span><span class="p">,</span> <span class="n">ftol</span><span class="o">=</span><span class="mf">1e-15</span><span class="p">,</span> <span class="n">gtol</span><span class="o">=</span><span class="mf">1e-15</span><span class="p">,</span> <span class="n">xtol</span><span class="o">=</span><span class="mf">1e-15</span><span class="p">)</span>
|
|
|
|
<span class="n">chisquare</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">fit_result</span><span class="o">.</span><span class="n">fun</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span>
|
|
|
|
<span class="n">output</span><span class="o">.</span><span class="n">iterations</span> <span class="o">=</span> <span class="n">fit_result</span><span class="o">.</span><span class="n">nfev</span>
|
|
|
|
<span class="k">if</span> <span class="ow">not</span> <span class="n">fit_result</span><span class="o">.</span><span class="n">success</span><span class="p">:</span>
|
|
<span class="k">raise</span> <span class="ne">Exception</span><span class="p">(</span><span class="s1">'The minimization procedure did not converge.'</span><span class="p">)</span>
|
|
|
|
<span class="k">if</span> <span class="n">x</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">n_parms</span> <span class="o">></span> <span class="mi">0</span><span class="p">:</span>
|
|
<span class="n">output</span><span class="o">.</span><span class="n">chisquare_by_dof</span> <span class="o">=</span> <span class="n">chisquare</span> <span class="o">/</span> <span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">n_parms</span><span class="p">)</span>
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="n">output</span><span class="o">.</span><span class="n">chisquare_by_dof</span> <span class="o">=</span> <span class="nb">float</span><span class="p">(</span><span class="s1">'nan'</span><span class="p">)</span>
|
|
|
|
<span class="n">output</span><span class="o">.</span><span class="n">message</span> <span class="o">=</span> <span class="n">fit_result</span><span class="o">.</span><span class="n">message</span>
|
|
<span class="k">if</span> <span class="ow">not</span> <span class="n">silent</span><span class="p">:</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="n">fit_result</span><span class="o">.</span><span class="n">message</span><span class="p">)</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="s1">'chisquare/d.o.f.:'</span><span class="p">,</span> <span class="n">output</span><span class="o">.</span><span class="n">chisquare_by_dof</span><span class="p">)</span>
|
|
|
|
<span class="k">if</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'expected_chisquare'</span><span class="p">)</span> <span class="ow">is</span> <span class="kc">True</span><span class="p">:</span>
|
|
<span class="k">if</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'correlated_fit'</span><span class="p">)</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">True</span><span class="p">:</span>
|
|
<span class="n">W</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">diag</span><span class="p">(</span><span class="mi">1</span> <span class="o">/</span> <span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span><span class="n">dy_f</span><span class="p">))</span>
|
|
<span class="n">cov</span> <span class="o">=</span> <span class="n">covariance_matrix</span><span class="p">(</span><span class="n">y</span><span class="p">)</span>
|
|
<span class="n">A</span> <span class="o">=</span> <span class="n">W</span> <span class="o">@</span> <span class="n">jacobian</span><span class="p">(</span><span class="n">func</span><span class="p">)(</span><span class="n">fit_result</span><span class="o">.</span><span class="n">x</span><span class="p">,</span> <span class="n">x</span><span class="p">)</span>
|
|
<span class="n">P_phi</span> <span class="o">=</span> <span class="n">A</span> <span class="o">@</span> <span class="n">np</span><span class="o">.</span><span class="n">linalg</span><span class="o">.</span><span class="n">inv</span><span class="p">(</span><span class="n">A</span><span class="o">.</span><span class="n">T</span> <span class="o">@</span> <span class="n">A</span><span class="p">)</span> <span class="o">@</span> <span class="n">A</span><span class="o">.</span><span class="n">T</span>
|
|
<span class="n">expected_chisquare</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">trace</span><span class="p">((</span><span class="n">np</span><span class="o">.</span><span class="n">identity</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span> <span class="o">-</span> <span class="n">P_phi</span><span class="p">)</span> <span class="o">@</span> <span class="n">W</span> <span class="o">@</span> <span class="n">cov</span> <span class="o">@</span> <span class="n">W</span><span class="p">)</span>
|
|
<span class="n">output</span><span class="o">.</span><span class="n">chisquare_by_expected_chisquare</span> <span class="o">=</span> <span class="n">chisquare</span> <span class="o">/</span> <span class="n">expected_chisquare</span>
|
|
<span class="k">if</span> <span class="ow">not</span> <span class="n">silent</span><span class="p">:</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="s1">'chisquare/expected_chisquare:'</span><span class="p">,</span>
|
|
<span class="n">output</span><span class="o">.</span><span class="n">chisquare_by_expected_chisquare</span><span class="p">)</span>
|
|
|
|
<span class="n">fitp</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">fit_result</span><span class="o">.</span><span class="n">x</span><span class="p">,</span> <span class="p">[</span><span class="n">o</span><span class="o">.</span><span class="n">value</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">const_par</span><span class="p">]))</span>
|
|
<span class="n">hess_inv</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linalg</span><span class="o">.</span><span class="n">pinv</span><span class="p">(</span><span class="n">jacobian</span><span class="p">(</span><span class="n">jacobian</span><span class="p">(</span><span class="n">chisqfunc_aug</span><span class="p">))(</span><span class="n">fitp</span><span class="p">))</span>
|
|
|
|
<span class="n">n_parms_aug</span> <span class="o">=</span> <span class="n">n_parms</span> <span class="o">+</span> <span class="nb">len</span><span class="p">(</span><span class="n">const_par</span><span class="p">)</span>
|
|
<span class="k">if</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'correlated_fit'</span><span class="p">)</span> <span class="ow">is</span> <span class="kc">True</span><span class="p">:</span>
|
|
<span class="k">def</span> <span class="nf">chisqfunc_compact</span><span class="p">(</span><span class="n">d</span><span class="p">):</span>
|
|
<span class="n">model</span> <span class="o">=</span> <span class="n">func_aug</span><span class="p">(</span><span class="n">d</span><span class="p">[:</span><span class="n">n_parms_aug</span><span class="p">],</span> <span class="n">x</span><span class="p">)</span>
|
|
<span class="n">chisq</span> <span class="o">=</span> <span class="n">anp</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">anp</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">chol_inv</span><span class="p">,</span> <span class="p">(</span><span class="n">d</span><span class="p">[</span><span class="n">n_parms_aug</span><span class="p">:]</span> <span class="o">-</span> <span class="n">model</span><span class="p">))</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span>
|
|
<span class="k">return</span> <span class="n">chisq</span>
|
|
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="k">def</span> <span class="nf">chisqfunc_compact</span><span class="p">(</span><span class="n">d</span><span class="p">):</span>
|
|
<span class="n">model</span> <span class="o">=</span> <span class="n">func_aug</span><span class="p">(</span><span class="n">d</span><span class="p">[:</span><span class="n">n_parms_aug</span><span class="p">],</span> <span class="n">x</span><span class="p">)</span>
|
|
<span class="n">chisq</span> <span class="o">=</span> <span class="n">anp</span><span class="o">.</span><span class="n">sum</span><span class="p">(((</span><span class="n">d</span><span class="p">[</span><span class="n">n_parms_aug</span><span class="p">:]</span> <span class="o">-</span> <span class="n">model</span><span class="p">)</span> <span class="o">/</span> <span class="n">dy_f</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span>
|
|
<span class="k">return</span> <span class="n">chisq</span>
|
|
|
|
<span class="n">jac_jac</span> <span class="o">=</span> <span class="n">jacobian</span><span class="p">(</span><span class="n">jacobian</span><span class="p">(</span><span class="n">chisqfunc_compact</span><span class="p">))(</span><span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">fitp</span><span class="p">,</span> <span class="n">y_f</span><span class="p">)))</span>
|
|
|
|
<span class="n">deriv</span> <span class="o">=</span> <span class="o">-</span><span class="n">hess_inv</span> <span class="o">@</span> <span class="n">jac_jac</span><span class="p">[:</span><span class="n">n_parms_aug</span><span class="p">,</span> <span class="n">n_parms_aug</span><span class="p">:]</span>
|
|
|
|
<span class="n">result</span> <span class="o">=</span> <span class="p">[]</span>
|
|
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n_parms</span><span class="p">):</span>
|
|
<span class="n">result</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">derived_observable</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">:</span> <span class="p">(</span><span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">+</span> <span class="n">np</span><span class="o">.</span><span class="n">finfo</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">float64</span><span class="p">)</span><span class="o">.</span><span class="n">eps</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">y</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">value</span> <span class="o">+</span> <span class="n">np</span><span class="o">.</span><span class="n">finfo</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">float64</span><span class="p">)</span><span class="o">.</span><span class="n">eps</span><span class="p">)</span> <span class="o">*</span> <span class="n">fit_result</span><span class="o">.</span><span class="n">x</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="nb">list</span><span class="p">(</span><span class="n">y</span><span class="p">),</span> <span class="n">man_grad</span><span class="o">=</span><span class="nb">list</span><span class="p">(</span><span class="n">deriv</span><span class="p">[</span><span class="n">i</span><span class="p">])))</span>
|
|
|
|
<span class="n">output</span><span class="o">.</span><span class="n">fit_parameters</span> <span class="o">=</span> <span class="n">result</span> <span class="o">+</span> <span class="n">const_par</span>
|
|
|
|
<span class="n">output</span><span class="o">.</span><span class="n">chisquare</span> <span class="o">=</span> <span class="n">chisqfunc</span><span class="p">(</span><span class="n">fit_result</span><span class="o">.</span><span class="n">x</span><span class="p">)</span>
|
|
<span class="n">output</span><span class="o">.</span><span class="n">dof</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">n_parms</span>
|
|
|
|
<span class="k">if</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'resplot'</span><span class="p">)</span> <span class="ow">is</span> <span class="kc">True</span><span class="p">:</span>
|
|
<span class="n">residual_plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">result</span><span class="p">)</span>
|
|
|
|
<span class="k">if</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'qqplot'</span><span class="p">)</span> <span class="ow">is</span> <span class="kc">True</span><span class="p">:</span>
|
|
<span class="n">qqplot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">result</span><span class="p">)</span>
|
|
|
|
<span class="k">return</span> <span class="n">output</span>
|
|
|
|
|
|
<span class="k">def</span> <span class="nf">odr_fit</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">silent</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
|
<span class="n">warnings</span><span class="o">.</span><span class="n">warn</span><span class="p">(</span><span class="s2">"odr_fit renamed to total_least_squares"</span><span class="p">,</span> <span class="ne">DeprecationWarning</span><span class="p">)</span>
|
|
<span class="k">return</span> <span class="n">total_least_squares</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">silent</span><span class="o">=</span><span class="n">silent</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
|
|
|
|
|
|
<span class="k">def</span> <span class="nf">fit_lin</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
|
<span class="sd">"""Performs a linear fit to y = n + m * x and returns two Obs n, m.</span>
|
|
|
|
<span class="sd"> y has to be a list of Obs, the dvalues of the Obs are used as yerror for the fit.</span>
|
|
<span class="sd"> x can either be a list of floats in which case no xerror is assumed, or</span>
|
|
<span class="sd"> a list of Obs, where the dvalues of the Obs are used as xerror for the fit.</span>
|
|
<span class="sd"> """</span>
|
|
|
|
<span class="k">def</span> <span class="nf">f</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
|
|
<span class="n">y</span> <span class="o">=</span> <span class="n">a</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">+</span> <span class="n">a</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="n">x</span>
|
|
<span class="k">return</span> <span class="n">y</span>
|
|
|
|
<span class="k">if</span> <span class="nb">all</span><span class="p">(</span><span class="nb">isinstance</span><span class="p">(</span><span class="n">n</span><span class="p">,</span> <span class="n">Obs</span><span class="p">)</span> <span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="n">x</span><span class="p">):</span>
|
|
<span class="n">out</span> <span class="o">=</span> <span class="n">total_least_squares</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">f</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
|
|
<span class="k">return</span> <span class="n">out</span><span class="o">.</span><span class="n">fit_parameters</span>
|
|
<span class="k">elif</span> <span class="nb">all</span><span class="p">(</span><span class="nb">isinstance</span><span class="p">(</span><span class="n">n</span><span class="p">,</span> <span class="nb">float</span><span class="p">)</span> <span class="ow">or</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">n</span><span class="p">,</span> <span class="nb">int</span><span class="p">)</span> <span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="n">x</span><span class="p">)</span> <span class="ow">or</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">):</span>
|
|
<span class="n">out</span> <span class="o">=</span> <span class="n">least_squares</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">f</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
|
|
<span class="k">return</span> <span class="n">out</span><span class="o">.</span><span class="n">fit_parameters</span>
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="k">raise</span> <span class="ne">Exception</span><span class="p">(</span><span class="s1">'Unsupported types for x'</span><span class="p">)</span>
|
|
|
|
|
|
<span class="k">def</span> <span class="nf">qqplot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">o_y</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">p</span><span class="p">):</span>
|
|
<span class="sd">""" Generates a quantile-quantile plot of the fit result which can be used to</span>
|
|
<span class="sd"> check if the residuals of the fit are gaussian distributed.</span>
|
|
<span class="sd"> """</span>
|
|
|
|
<span class="n">residuals</span> <span class="o">=</span> <span class="p">[]</span>
|
|
<span class="k">for</span> <span class="n">i_x</span><span class="p">,</span> <span class="n">i_y</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">o_y</span><span class="p">):</span>
|
|
<span class="n">residuals</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">i_y</span> <span class="o">-</span> <span class="n">func</span><span class="p">(</span><span class="n">p</span><span class="p">,</span> <span class="n">i_x</span><span class="p">))</span> <span class="o">/</span> <span class="n">i_y</span><span class="o">.</span><span class="n">dvalue</span><span class="p">)</span>
|
|
<span class="n">residuals</span> <span class="o">=</span> <span class="nb">sorted</span><span class="p">(</span><span class="n">residuals</span><span class="p">)</span>
|
|
<span class="n">my_y</span> <span class="o">=</span> <span class="p">[</span><span class="n">o</span><span class="o">.</span><span class="n">value</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">residuals</span><span class="p">]</span>
|
|
<span class="n">probplot</span> <span class="o">=</span> <span class="n">scipy</span><span class="o">.</span><span class="n">stats</span><span class="o">.</span><span class="n">probplot</span><span class="p">(</span><span class="n">my_y</span><span class="p">)</span>
|
|
<span class="n">my_x</span> <span class="o">=</span> <span class="n">probplot</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span>
|
|
<span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">8</span><span class="p">,</span> <span class="mi">8</span> <span class="o">/</span> <span class="mf">1.618</span><span class="p">))</span>
|
|
<span class="n">plt</span><span class="o">.</span><span class="n">errorbar</span><span class="p">(</span><span class="n">my_x</span><span class="p">,</span> <span class="n">my_y</span><span class="p">,</span> <span class="n">fmt</span><span class="o">=</span><span class="s1">'o'</span><span class="p">)</span>
|
|
<span class="n">fit_start</span> <span class="o">=</span> <span class="n">my_x</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
|
|
<span class="n">fit_stop</span> <span class="o">=</span> <span class="n">my_x</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span>
|
|
<span class="n">samples</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">fit_start</span><span class="p">,</span> <span class="n">fit_stop</span><span class="p">,</span> <span class="mf">0.01</span><span class="p">)</span>
|
|
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">samples</span><span class="p">,</span> <span class="n">samples</span><span class="p">,</span> <span class="s1">'k--'</span><span class="p">,</span> <span class="n">zorder</span><span class="o">=</span><span class="mi">11</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">'Standard normal distribution'</span><span class="p">)</span>
|
|
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">samples</span><span class="p">,</span> <span class="n">probplot</span><span class="p">[</span><span class="mi">1</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="n">samples</span> <span class="o">+</span> <span class="n">probplot</span><span class="p">[</span><span class="mi">1</span><span class="p">][</span><span class="mi">1</span><span class="p">],</span> <span class="n">zorder</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">'Least squares fit, r='</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">around</span><span class="p">(</span><span class="n">probplot</span><span class="p">[</span><span class="mi">1</span><span class="p">][</span><span class="mi">2</span><span class="p">],</span> <span class="mi">3</span><span class="p">)))</span>
|
|
|
|
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'Theoretical quantiles'</span><span class="p">)</span>
|
|
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'Ordered Values'</span><span class="p">)</span>
|
|
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
|
|
<span class="n">plt</span><span class="o">.</span><span class="n">draw</span><span class="p">()</span>
|
|
|
|
|
|
<span class="k">def</span> <span class="nf">residual_plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">fit_res</span><span class="p">):</span>
|
|
<span class="sd">""" Generates a plot which compares the fit to the data and displays the corresponding residuals"""</span>
|
|
<span class="n">xstart</span> <span class="o">=</span> <span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">-</span> <span class="mf">0.5</span>
|
|
<span class="n">xstop</span> <span class="o">=</span> <span class="n">x</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="mf">0.5</span>
|
|
<span class="n">x_samples</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">xstart</span><span class="p">,</span> <span class="n">xstop</span><span class="p">,</span> <span class="mf">0.01</span><span class="p">)</span>
|
|
|
|
<span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">8</span><span class="p">,</span> <span class="mi">8</span> <span class="o">/</span> <span class="mf">1.618</span><span class="p">))</span>
|
|
<span class="n">gs</span> <span class="o">=</span> <span class="n">gridspec</span><span class="o">.</span><span class="n">GridSpec</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">height_ratios</span><span class="o">=</span><span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">wspace</span><span class="o">=</span><span class="mf">0.0</span><span class="p">,</span> <span class="n">hspace</span><span class="o">=</span><span class="mf">0.0</span><span class="p">)</span>
|
|
<span class="n">ax0</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="n">gs</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
|
|
<span class="n">ax0</span><span class="o">.</span><span class="n">errorbar</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="p">[</span><span class="n">o</span><span class="o">.</span><span class="n">value</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">y</span><span class="p">],</span> <span class="n">yerr</span><span class="o">=</span><span class="p">[</span><span class="n">o</span><span class="o">.</span><span class="n">dvalue</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">y</span><span class="p">],</span> <span class="n">ls</span><span class="o">=</span><span class="s1">'none'</span><span class="p">,</span> <span class="n">fmt</span><span class="o">=</span><span class="s1">'o'</span><span class="p">,</span> <span class="n">capsize</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">markersize</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">'Data'</span><span class="p">)</span>
|
|
<span class="n">ax0</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x_samples</span><span class="p">,</span> <span class="n">func</span><span class="p">([</span><span class="n">o</span><span class="o">.</span><span class="n">value</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">fit_res</span><span class="p">],</span> <span class="n">x_samples</span><span class="p">),</span> <span class="n">label</span><span class="o">=</span><span class="s1">'Fit'</span><span class="p">,</span> <span class="n">zorder</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">ls</span><span class="o">=</span><span class="s1">'-'</span><span class="p">,</span> <span class="n">ms</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
|
|
<span class="n">ax0</span><span class="o">.</span><span class="n">set_xticklabels</span><span class="p">([])</span>
|
|
<span class="n">ax0</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="n">xstart</span><span class="p">,</span> <span class="n">xstop</span><span class="p">])</span>
|
|
<span class="n">ax0</span><span class="o">.</span><span class="n">set_xticklabels</span><span class="p">([])</span>
|
|
<span class="n">ax0</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
|
|
|
|
<span class="n">residuals</span> <span class="o">=</span> <span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">([</span><span class="n">o</span><span class="o">.</span><span class="n">value</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">y</span><span class="p">])</span> <span class="o">-</span> <span class="n">func</span><span class="p">([</span><span class="n">o</span><span class="o">.</span><span class="n">value</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">fit_res</span><span class="p">],</span> <span class="n">x</span><span class="p">))</span> <span class="o">/</span> <span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">([</span><span class="n">o</span><span class="o">.</span><span class="n">dvalue</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">y</span><span class="p">])</span>
|
|
<span class="n">ax1</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="n">gs</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
|
|
<span class="n">ax1</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">residuals</span><span class="p">,</span> <span class="s1">'ko'</span><span class="p">,</span> <span class="n">ls</span><span class="o">=</span><span class="s1">'none'</span><span class="p">,</span> <span class="n">markersize</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>
|
|
<span class="n">ax1</span><span class="o">.</span><span class="n">tick_params</span><span class="p">(</span><span class="n">direction</span><span class="o">=</span><span class="s1">'out'</span><span class="p">)</span>
|
|
<span class="n">ax1</span><span class="o">.</span><span class="n">tick_params</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="s2">"x"</span><span class="p">,</span> <span class="n">bottom</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">top</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">labelbottom</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
|
|
<span class="n">ax1</span><span class="o">.</span><span class="n">axhline</span><span class="p">(</span><span class="n">y</span><span class="o">=</span><span class="mf">0.0</span><span class="p">,</span> <span class="n">ls</span><span class="o">=</span><span class="s1">'--'</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">'k'</span><span class="p">,</span> <span class="n">marker</span><span class="o">=</span><span class="s2">" "</span><span class="p">)</span>
|
|
<span class="n">ax1</span><span class="o">.</span><span class="n">fill_between</span><span class="p">(</span><span class="n">x_samples</span><span class="p">,</span> <span class="o">-</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="n">facecolor</span><span class="o">=</span><span class="s1">'k'</span><span class="p">)</span>
|
|
<span class="n">ax1</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="n">xstart</span><span class="p">,</span> <span class="n">xstop</span><span class="p">])</span>
|
|
<span class="n">ax1</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">'Residuals'</span><span class="p">)</span>
|
|
<span class="n">plt</span><span class="o">.</span><span class="n">subplots_adjust</span><span class="p">(</span><span class="n">wspace</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">hspace</span><span class="o">=</span><span class="kc">None</span><span class="p">)</span>
|
|
<span class="n">plt</span><span class="o">.</span><span class="n">draw</span><span class="p">()</span>
|
|
|
|
|
|
<span class="k">def</span> <span class="nf">covariance_matrix</span><span class="p">(</span><span class="n">y</span><span class="p">):</span>
|
|
<span class="sd">"""Returns the covariance matrix of y."""</span>
|
|
<span class="n">length</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">y</span><span class="p">)</span>
|
|
<span class="n">cov</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="n">length</span><span class="p">,</span> <span class="n">length</span><span class="p">))</span>
|
|
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">item</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">y</span><span class="p">):</span>
|
|
<span class="k">for</span> <span class="n">j</span><span class="p">,</span> <span class="n">jtem</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">y</span><span class="p">[:</span><span class="n">i</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]):</span>
|
|
<span class="k">if</span> <span class="n">i</span> <span class="o">==</span> <span class="n">j</span><span class="p">:</span>
|
|
<span class="n">cov</span><span class="p">[</span><span class="n">i</span><span class="p">,</span> <span class="n">j</span><span class="p">]</span> <span class="o">=</span> <span class="n">item</span><span class="o">.</span><span class="n">dvalue</span> <span class="o">**</span> <span class="mi">2</span>
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="n">cov</span><span class="p">[</span><span class="n">i</span><span class="p">,</span> <span class="n">j</span><span class="p">]</span> <span class="o">=</span> <span class="n">covariance</span><span class="p">(</span><span class="n">item</span><span class="p">,</span> <span class="n">jtem</span><span class="p">)</span>
|
|
<span class="k">return</span> <span class="n">cov</span> <span class="o">+</span> <span class="n">cov</span><span class="o">.</span><span class="n">T</span> <span class="o">-</span> <span class="n">np</span><span class="o">.</span><span class="n">diag</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">diag</span><span class="p">(</span><span class="n">cov</span><span class="p">))</span>
|
|
|
|
|
|
<span class="k">def</span> <span class="nf">error_band</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">beta</span><span class="p">):</span>
|
|
<span class="sd">"""Returns the error band for an array of sample values x, for given fit function func with optimized parameters beta."""</span>
|
|
<span class="n">cov</span> <span class="o">=</span> <span class="n">covariance_matrix</span><span class="p">(</span><span class="n">beta</span><span class="p">)</span>
|
|
<span class="k">if</span> <span class="n">np</span><span class="o">.</span><span class="n">any</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="n">cov</span> <span class="o">-</span> <span class="n">cov</span><span class="o">.</span><span class="n">T</span><span class="p">)</span> <span class="o">></span> <span class="mi">1000</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">finfo</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">float64</span><span class="p">)</span><span class="o">.</span><span class="n">eps</span><span class="p">):</span>
|
|
<span class="n">warnings</span><span class="o">.</span><span class="n">warn</span><span class="p">(</span><span class="s2">"Covariance matrix is not symmetric within floating point precision"</span><span class="p">,</span> <span class="ne">RuntimeWarning</span><span class="p">)</span>
|
|
|
|
<span class="n">deriv</span> <span class="o">=</span> <span class="p">[]</span>
|
|
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">item</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
|
|
<span class="n">deriv</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">egrad</span><span class="p">(</span><span class="n">func</span><span class="p">)([</span><span class="n">o</span><span class="o">.</span><span class="n">value</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">beta</span><span class="p">],</span> <span class="n">item</span><span class="p">)))</span>
|
|
|
|
<span class="n">err</span> <span class="o">=</span> <span class="p">[]</span>
|
|
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">item</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
|
|
<span class="n">err</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">deriv</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">@</span> <span class="n">cov</span> <span class="o">@</span> <span class="n">deriv</span><span class="p">[</span><span class="n">i</span><span class="p">]))</span>
|
|
<span class="n">err</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">err</span><span class="p">)</span>
|
|
|
|
<span class="k">return</span> <span class="n">err</span>
|
|
</pre></div>
|
|
|
|
</details>
|
|
|
|
</section>
|
|
<section id="Fit_result">
|
|
<div class="attr class">
|
|
<a class="headerlink" href="#Fit_result">#  </a>
|
|
|
|
|
|
<span class="def">class</span>
|
|
<span class="name">Fit_result</span><wbr>(<span class="base">collections.abc.Sequence</span>):
|
|
</div>
|
|
|
|
<details>
|
|
<summary>View Source</summary>
|
|
<div class="codehilite"><pre><span></span><span class="k">class</span> <span class="nc">Fit_result</span><span class="p">(</span><span class="n">Sequence</span><span class="p">):</span>
|
|
<span class="sd">"""Represents fit results.</span>
|
|
|
|
<span class="sd"> Attributes</span>
|
|
<span class="sd"> ----------</span>
|
|
<span class="sd"> fit_parameters : list</span>
|
|
<span class="sd"> results for the individual fit parameters,</span>
|
|
<span class="sd"> also accessible via indices.</span>
|
|
<span class="sd"> """</span>
|
|
|
|
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">fit_parameters</span> <span class="o">=</span> <span class="kc">None</span>
|
|
|
|
<span class="k">def</span> <span class="fm">__getitem__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">idx</span><span class="p">):</span>
|
|
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">fit_parameters</span><span class="p">[</span><span class="n">idx</span><span class="p">]</span>
|
|
|
|
<span class="k">def</span> <span class="fm">__len__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
|
<span class="k">return</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">fit_parameters</span><span class="p">)</span>
|
|
|
|
<span class="k">def</span> <span class="nf">gamma_method</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
|
<span class="sd">"""Apply the gamma method to all fit parameters"""</span>
|
|
<span class="p">[</span><span class="n">o</span><span class="o">.</span><span class="n">gamma_method</span><span class="p">()</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">fit_parameters</span><span class="p">]</span>
|
|
|
|
<span class="k">def</span> <span class="fm">__str__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">gamma_method</span><span class="p">()</span>
|
|
<span class="n">my_str</span> <span class="o">=</span> <span class="s1">'Goodness of fit:</span><span class="se">\n</span><span class="s1">'</span>
|
|
<span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="s1">'chisquare_by_dof'</span><span class="p">):</span>
|
|
<span class="n">my_str</span> <span class="o">+=</span> <span class="s1">'</span><span class="se">\u03C7\u00b2</span><span class="s1">/d.o.f. = '</span> <span class="o">+</span> <span class="sa">f</span><span class="s1">'</span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">chisquare_by_dof</span><span class="si">:</span><span class="s1">2.6f</span><span class="si">}</span><span class="s1">'</span> <span class="o">+</span> <span class="s1">'</span><span class="se">\n</span><span class="s1">'</span>
|
|
<span class="k">elif</span> <span class="nb">hasattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="s1">'residual_variance'</span><span class="p">):</span>
|
|
<span class="n">my_str</span> <span class="o">+=</span> <span class="s1">'residual variance = '</span> <span class="o">+</span> <span class="sa">f</span><span class="s1">'</span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">residual_variance</span><span class="si">:</span><span class="s1">2.6f</span><span class="si">}</span><span class="s1">'</span> <span class="o">+</span> <span class="s1">'</span><span class="se">\n</span><span class="s1">'</span>
|
|
<span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="s1">'chisquare_by_expected_chisquare'</span><span class="p">):</span>
|
|
<span class="n">my_str</span> <span class="o">+=</span> <span class="s1">'</span><span class="se">\u03C7\u00b2</span><span class="s1">/</span><span class="se">\u03C7\u00b2</span><span class="s1">exp = '</span> <span class="o">+</span> <span class="sa">f</span><span class="s1">'</span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">chisquare_by_expected_chisquare</span><span class="si">:</span><span class="s1">2.6f</span><span class="si">}</span><span class="s1">'</span> <span class="o">+</span> <span class="s1">'</span><span class="se">\n</span><span class="s1">'</span>
|
|
<span class="n">my_str</span> <span class="o">+=</span> <span class="s1">'Fit parameters:</span><span class="se">\n</span><span class="s1">'</span>
|
|
<span class="k">for</span> <span class="n">i_par</span><span class="p">,</span> <span class="n">par</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">fit_parameters</span><span class="p">):</span>
|
|
<span class="n">my_str</span> <span class="o">+=</span> <span class="nb">str</span><span class="p">(</span><span class="n">i_par</span><span class="p">)</span> <span class="o">+</span> <span class="s1">'</span><span class="se">\t</span><span class="s1">'</span> <span class="o">+</span> <span class="s1">' '</span> <span class="o">*</span> <span class="nb">int</span><span class="p">(</span><span class="n">par</span> <span class="o">>=</span> <span class="mi">0</span><span class="p">)</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">par</span><span class="p">)</span><span class="o">.</span><span class="n">rjust</span><span class="p">(</span><span class="nb">int</span><span class="p">(</span><span class="n">par</span> <span class="o"><</span> <span class="mf">0.0</span><span class="p">))</span> <span class="o">+</span> <span class="s1">'</span><span class="se">\n</span><span class="s1">'</span>
|
|
<span class="k">return</span> <span class="n">my_str</span>
|
|
|
|
<span class="k">def</span> <span class="fm">__repr__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
|
<span class="n">m</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="nb">len</span><span class="p">,</span> <span class="nb">list</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="vm">__dict__</span><span class="o">.</span><span class="n">keys</span><span class="p">())))</span> <span class="o">+</span> <span class="mi">1</span>
|
|
<span class="k">return</span> <span class="s1">'</span><span class="se">\n</span><span class="s1">'</span><span class="o">.</span><span class="n">join</span><span class="p">([</span><span class="n">key</span><span class="o">.</span><span class="n">rjust</span><span class="p">(</span><span class="n">m</span><span class="p">)</span> <span class="o">+</span> <span class="s1">': '</span> <span class="o">+</span> <span class="nb">repr</span><span class="p">(</span><span class="n">value</span><span class="p">)</span> <span class="k">for</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="ow">in</span> <span class="nb">sorted</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="vm">__dict__</span><span class="o">.</span><span class="n">items</span><span class="p">())])</span>
|
|
</pre></div>
|
|
|
|
</details>
|
|
|
|
<div class="docstring"><p>Represents fit results.</p>
|
|
|
|
<h6 id="attributes">Attributes</h6>
|
|
|
|
<ul>
|
|
<li><strong>fit_parameters</strong> (list):
|
|
results for the individual fit parameters,
|
|
also accessible via indices.</li>
|
|
</ul>
|
|
</div>
|
|
|
|
|
|
<div id="Fit_result.__init__" class="classattr">
|
|
<div class="attr function"><a class="headerlink" href="#Fit_result.__init__">#  </a>
|
|
|
|
|
|
<span class="name">Fit_result</span><span class="signature">()</span>
|
|
</div>
|
|
|
|
<details>
|
|
<summary>View Source</summary>
|
|
<div class="codehilite"><pre><span></span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">fit_parameters</span> <span class="o">=</span> <span class="kc">None</span>
|
|
</pre></div>
|
|
|
|
</details>
|
|
|
|
|
|
|
|
</div>
|
|
<div id="Fit_result.gamma_method" class="classattr">
|
|
<div class="attr function"><a class="headerlink" href="#Fit_result.gamma_method">#  </a>
|
|
|
|
|
|
<span class="def">def</span>
|
|
<span class="name">gamma_method</span><span class="signature">(self)</span>:
|
|
</div>
|
|
|
|
<details>
|
|
<summary>View Source</summary>
|
|
<div class="codehilite"><pre><span></span> <span class="k">def</span> <span class="nf">gamma_method</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
|
<span class="sd">"""Apply the gamma method to all fit parameters"""</span>
|
|
<span class="p">[</span><span class="n">o</span><span class="o">.</span><span class="n">gamma_method</span><span class="p">()</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">fit_parameters</span><span class="p">]</span>
|
|
</pre></div>
|
|
|
|
</details>
|
|
|
|
<div class="docstring"><p>Apply the gamma method to all fit parameters</p>
|
|
</div>
|
|
|
|
|
|
</div>
|
|
<div class="inherited">
|
|
<h5>Inherited Members</h5>
|
|
<dl>
|
|
<div><dt>collections.abc.Sequence</dt>
|
|
<dd id="Fit_result.index" class="function">index</dd>
|
|
<dd id="Fit_result.count" class="function">count</dd>
|
|
|
|
</div>
|
|
</dl>
|
|
</div>
|
|
</section>
|
|
<section id="least_squares">
|
|
<div class="attr function"><a class="headerlink" href="#least_squares">#  </a>
|
|
|
|
|
|
<span class="def">def</span>
|
|
<span class="name">least_squares</span><span class="signature">(x, y, func, priors=None, silent=False, **kwargs)</span>:
|
|
</div>
|
|
|
|
<details>
|
|
<summary>View Source</summary>
|
|
<div class="codehilite"><pre><span></span><span class="k">def</span> <span class="nf">least_squares</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">priors</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">silent</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
|
<span class="sa">r</span><span class="sd">'''Performs a non-linear fit to y = func(x).</span>
|
|
|
|
<span class="sd"> Parameters</span>
|
|
<span class="sd"> ----------</span>
|
|
<span class="sd"> x : list</span>
|
|
<span class="sd"> list of floats.</span>
|
|
<span class="sd"> y : list</span>
|
|
<span class="sd"> list of Obs.</span>
|
|
<span class="sd"> func : object</span>
|
|
<span class="sd"> fit function, has to be of the form</span>
|
|
|
|
<span class="sd"> ```python</span>
|
|
<span class="sd"> def func(a, x):</span>
|
|
<span class="sd"> y = a[0] + a[1] * x + a[2] * anp.sinh(x)</span>
|
|
<span class="sd"> return y</span>
|
|
<span class="sd"> ```</span>
|
|
|
|
<span class="sd"> For multiple x values func can be of the form</span>
|
|
|
|
<span class="sd"> ```python</span>
|
|
<span class="sd"> def func(a, x):</span>
|
|
<span class="sd"> (x1, x2) = x</span>
|
|
<span class="sd"> return a[0] * x1 ** 2 + a[1] * x2</span>
|
|
<span class="sd"> ```</span>
|
|
|
|
<span class="sd"> It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation</span>
|
|
<span class="sd"> will not work</span>
|
|
<span class="sd"> priors : list, optional</span>
|
|
<span class="sd"> priors has to be a list with an entry for every parameter in the fit. The entries can either be</span>
|
|
<span class="sd"> Obs (e.g. results from a previous fit) or strings containing a value and an error formatted like</span>
|
|
<span class="sd"> 0.548(23), 500(40) or 0.5(0.4)</span>
|
|
<span class="sd"> silent : bool, optional</span>
|
|
<span class="sd"> If true all output to the console is omitted (default False).</span>
|
|
<span class="sd"> initial_guess : list</span>
|
|
<span class="sd"> can provide an initial guess for the input parameters. Relevant for</span>
|
|
<span class="sd"> non-linear fits with many parameters.</span>
|
|
<span class="sd"> method : str</span>
|
|
<span class="sd"> can be used to choose an alternative method for the minimization of chisquare.</span>
|
|
<span class="sd"> The possible methods are the ones which can be used for scipy.optimize.minimize and</span>
|
|
<span class="sd"> migrad of iminuit. If no method is specified, Levenberg-Marquard is used.</span>
|
|
<span class="sd"> Reliable alternatives are migrad, Powell and Nelder-Mead.</span>
|
|
<span class="sd"> resplot : bool</span>
|
|
<span class="sd"> If true, a plot which displays fit, data and residuals is generated (default False).</span>
|
|
<span class="sd"> qqplot : bool</span>
|
|
<span class="sd"> If true, a quantile-quantile plot of the fit result is generated (default False).</span>
|
|
<span class="sd"> expected_chisquare : bool</span>
|
|
<span class="sd"> If true prints the expected chisquare which is</span>
|
|
<span class="sd"> corrected by effects caused by correlated input data.</span>
|
|
<span class="sd"> This can take a while as the full correlation matrix</span>
|
|
<span class="sd"> has to be calculated (default False).</span>
|
|
<span class="sd"> correlated_fit : bool</span>
|
|
<span class="sd"> If true, use the full correlation matrix in the definition of the chisquare</span>
|
|
<span class="sd"> (only works for prior==None and when no method is given, at the moment).</span>
|
|
<span class="sd"> const_par : list, optional</span>
|
|
<span class="sd"> List of N Obs that are used to constrain the last N fit parameters of func.</span>
|
|
<span class="sd"> '''</span>
|
|
<span class="k">if</span> <span class="n">priors</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
|
|
<span class="k">return</span> <span class="n">_prior_fit</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">priors</span><span class="p">,</span> <span class="n">silent</span><span class="o">=</span><span class="n">silent</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="k">return</span> <span class="n">_standard_fit</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">silent</span><span class="o">=</span><span class="n">silent</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
|
|
</pre></div>
|
|
|
|
</details>
|
|
|
|
<div class="docstring"><p>Performs a non-linear fit to y = func(x).</p>
|
|
|
|
<h6 id="parameters">Parameters</h6>
|
|
|
|
<ul>
|
|
<li><strong>x</strong> (list):
|
|
list of floats.</li>
|
|
<li><strong>y</strong> (list):
|
|
list of Obs.</li>
|
|
<li><p><strong>func</strong> (object):
|
|
fit function, has to be of the form</p>
|
|
|
|
<div class="codehilite"><pre><span></span><code><span class="k">def</span> <span class="nf">func</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
|
|
<span class="n">y</span> <span class="o">=</span> <span class="n">a</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">+</span> <span class="n">a</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="n">x</span> <span class="o">+</span> <span class="n">a</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> <span class="o">*</span> <span class="n">anp</span><span class="o">.</span><span class="n">sinh</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
|
|
<span class="k">return</span> <span class="n">y</span>
|
|
</code></pre></div>
|
|
|
|
<p>For multiple x values func can be of the form</p>
|
|
|
|
<div class="codehilite"><pre><span></span><code><span class="k">def</span> <span class="nf">func</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
|
|
<span class="p">(</span><span class="n">x1</span><span class="p">,</span> <span class="n">x2</span><span class="p">)</span> <span class="o">=</span> <span class="n">x</span>
|
|
<span class="k">return</span> <span class="n">a</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="n">x1</span> <span class="o">**</span> <span class="mi">2</span> <span class="o">+</span> <span class="n">a</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="n">x2</span>
|
|
</code></pre></div>
|
|
|
|
<p>It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation
|
|
will not work</p></li>
|
|
<li><strong>priors</strong> (list, optional):
|
|
priors has to be a list with an entry for every parameter in the fit. The entries can either be
|
|
Obs (e.g. results from a previous fit) or strings containing a value and an error formatted like
|
|
0.548(23), 500(40) or 0.5(0.4)</li>
|
|
<li><strong>silent</strong> (bool, optional):
|
|
If true all output to the console is omitted (default False).</li>
|
|
<li><strong>initial_guess</strong> (list):
|
|
can provide an initial guess for the input parameters. Relevant for
|
|
non-linear fits with many parameters.</li>
|
|
<li><strong>method</strong> (str):
|
|
can be used to choose an alternative method for the minimization of chisquare.
|
|
The possible methods are the ones which can be used for scipy.optimize.minimize and
|
|
migrad of iminuit. If no method is specified, Levenberg-Marquard is used.
|
|
Reliable alternatives are migrad, Powell and Nelder-Mead.</li>
|
|
<li><strong>resplot</strong> (bool):
|
|
If true, a plot which displays fit, data and residuals is generated (default False).</li>
|
|
<li><strong>qqplot</strong> (bool):
|
|
If true, a quantile-quantile plot of the fit result is generated (default False).</li>
|
|
<li><strong>expected_chisquare</strong> (bool):
|
|
If true prints the expected chisquare which is
|
|
corrected by effects caused by correlated input data.
|
|
This can take a while as the full correlation matrix
|
|
has to be calculated (default False).</li>
|
|
<li><strong>correlated_fit</strong> (bool):
|
|
If true, use the full correlation matrix in the definition of the chisquare
|
|
(only works for prior==None and when no method is given, at the moment).</li>
|
|
<li><strong>const_par</strong> (list, optional):
|
|
List of N Obs that are used to constrain the last N fit parameters of func.</li>
|
|
</ul>
|
|
</div>
|
|
|
|
|
|
</section>
|
|
<section id="total_least_squares">
|
|
<div class="attr function"><a class="headerlink" href="#total_least_squares">#  </a>
|
|
|
|
|
|
<span class="def">def</span>
|
|
<span class="name">total_least_squares</span><span class="signature">(x, y, func, silent=False, **kwargs)</span>:
|
|
</div>
|
|
|
|
<details>
|
|
<summary>View Source</summary>
|
|
<div class="codehilite"><pre><span></span><span class="k">def</span> <span class="nf">total_least_squares</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">silent</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
|
<span class="sa">r</span><span class="sd">'''Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.</span>
|
|
|
|
<span class="sd"> Parameters</span>
|
|
<span class="sd"> ----------</span>
|
|
<span class="sd"> x : list</span>
|
|
<span class="sd"> list of Obs, or a tuple of lists of Obs</span>
|
|
<span class="sd"> y : list</span>
|
|
<span class="sd"> list of Obs. The dvalues of the Obs are used as x- and yerror for the fit.</span>
|
|
<span class="sd"> func : object</span>
|
|
<span class="sd"> func has to be of the form</span>
|
|
|
|
<span class="sd"> ```python</span>
|
|
<span class="sd"> def func(a, x):</span>
|
|
<span class="sd"> y = a[0] + a[1] * x + a[2] * anp.sinh(x)</span>
|
|
<span class="sd"> return y</span>
|
|
<span class="sd"> ```</span>
|
|
|
|
<span class="sd"> For multiple x values func can be of the form</span>
|
|
|
|
<span class="sd"> ```python</span>
|
|
<span class="sd"> def func(a, x):</span>
|
|
<span class="sd"> (x1, x2) = x</span>
|
|
<span class="sd"> return a[0] * x1 ** 2 + a[1] * x2</span>
|
|
<span class="sd"> ```</span>
|
|
|
|
<span class="sd"> It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation</span>
|
|
<span class="sd"> will not work.</span>
|
|
<span class="sd"> silent : bool, optional</span>
|
|
<span class="sd"> If true all output to the console is omitted (default False).</span>
|
|
<span class="sd"> initial_guess : list</span>
|
|
<span class="sd"> can provide an initial guess for the input parameters. Relevant for non-linear</span>
|
|
<span class="sd"> fits with many parameters.</span>
|
|
<span class="sd"> expected_chisquare : bool</span>
|
|
<span class="sd"> If true prints the expected chisquare which is</span>
|
|
<span class="sd"> corrected by effects caused by correlated input data.</span>
|
|
<span class="sd"> This can take a while as the full correlation matrix</span>
|
|
<span class="sd"> has to be calculated (default False).</span>
|
|
<span class="sd"> const_par : list, optional</span>
|
|
<span class="sd"> List of N Obs that are used to constrain the last N fit parameters of func.</span>
|
|
|
|
<span class="sd"> Based on the orthogonal distance regression module of scipy</span>
|
|
<span class="sd"> '''</span>
|
|
|
|
<span class="n">output</span> <span class="o">=</span> <span class="n">Fit_result</span><span class="p">()</span>
|
|
|
|
<span class="n">output</span><span class="o">.</span><span class="n">fit_function</span> <span class="o">=</span> <span class="n">func</span>
|
|
|
|
<span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
|
|
|
|
<span class="n">x_shape</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">shape</span>
|
|
|
|
<span class="k">if</span> <span class="ow">not</span> <span class="n">callable</span><span class="p">(</span><span class="n">func</span><span class="p">):</span>
|
|
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'func has to be a function.'</span><span class="p">)</span>
|
|
|
|
<span class="n">func_aug</span> <span class="o">=</span> <span class="n">func</span>
|
|
<span class="k">if</span> <span class="s1">'const_par'</span> <span class="ow">in</span> <span class="n">kwargs</span><span class="p">:</span>
|
|
<span class="n">const_par</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span><span class="s1">'const_par'</span><span class="p">]</span>
|
|
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">const_par</span><span class="p">,</span> <span class="n">Obs</span><span class="p">):</span>
|
|
<span class="n">const_par</span> <span class="o">=</span> <span class="p">[</span><span class="n">const_par</span><span class="p">]</span>
|
|
|
|
<span class="k">def</span> <span class="nf">func</span><span class="p">(</span><span class="n">p</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
|
|
<span class="k">return</span> <span class="n">func_aug</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">p</span><span class="p">,</span> <span class="p">[</span><span class="n">o</span><span class="o">.</span><span class="n">value</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">const_par</span><span class="p">])),</span> <span class="n">x</span><span class="p">)</span>
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="n">const_par</span> <span class="o">=</span> <span class="p">[]</span>
|
|
|
|
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">25</span><span class="p">):</span>
|
|
<span class="k">try</span><span class="p">:</span>
|
|
<span class="n">func</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">i</span><span class="p">),</span> <span class="n">x</span><span class="o">.</span><span class="n">T</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
|
|
<span class="k">except</span> <span class="ne">Exception</span><span class="p">:</span>
|
|
<span class="k">pass</span>
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="k">break</span>
|
|
|
|
<span class="n">n_parms</span> <span class="o">=</span> <span class="n">i</span>
|
|
<span class="k">if</span> <span class="ow">not</span> <span class="n">silent</span><span class="p">:</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="s1">'Fit with'</span><span class="p">,</span> <span class="n">n_parms</span><span class="p">,</span> <span class="s1">'parameters'</span><span class="p">)</span>
|
|
<span class="k">if</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">const_par</span><span class="p">)</span> <span class="o">></span> <span class="mi">0</span><span class="p">):</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="s1">'</span><span class="se">\t</span><span class="s1"> and </span><span class="si">%d</span><span class="s1"> constrained parameter</span><span class="si">%s</span><span class="s1">'</span> <span class="o">%</span> <span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">const_par</span><span class="p">),</span> <span class="s1">'s'</span> <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">const_par</span><span class="p">)</span> <span class="o">></span> <span class="mi">1</span> <span class="k">else</span> <span class="s1">''</span><span class="p">),</span> <span class="n">const_par</span><span class="p">)</span>
|
|
|
|
<span class="n">x_f</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">vectorize</span><span class="p">(</span><span class="k">lambda</span> <span class="n">o</span><span class="p">:</span> <span class="n">o</span><span class="o">.</span><span class="n">value</span><span class="p">)(</span><span class="n">x</span><span class="p">)</span>
|
|
<span class="n">dx_f</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">vectorize</span><span class="p">(</span><span class="k">lambda</span> <span class="n">o</span><span class="p">:</span> <span class="n">o</span><span class="o">.</span><span class="n">dvalue</span><span class="p">)(</span><span class="n">x</span><span class="p">)</span>
|
|
<span class="n">y_f</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="n">o</span><span class="o">.</span><span class="n">value</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">y</span><span class="p">])</span>
|
|
<span class="n">dy_f</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="n">o</span><span class="o">.</span><span class="n">dvalue</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">y</span><span class="p">])</span>
|
|
|
|
<span class="k">if</span> <span class="n">np</span><span class="o">.</span><span class="n">any</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span><span class="n">dx_f</span><span class="p">)</span> <span class="o"><=</span> <span class="mf">0.0</span><span class="p">):</span>
|
|
<span class="k">raise</span> <span class="ne">Exception</span><span class="p">(</span><span class="s1">'No x errors available, run the gamma method first.'</span><span class="p">)</span>
|
|
|
|
<span class="k">if</span> <span class="n">np</span><span class="o">.</span><span class="n">any</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span><span class="n">dy_f</span><span class="p">)</span> <span class="o"><=</span> <span class="mf">0.0</span><span class="p">):</span>
|
|
<span class="k">raise</span> <span class="ne">Exception</span><span class="p">(</span><span class="s1">'No y errors available, run the gamma method first.'</span><span class="p">)</span>
|
|
|
|
<span class="k">if</span> <span class="s1">'initial_guess'</span> <span class="ow">in</span> <span class="n">kwargs</span><span class="p">:</span>
|
|
<span class="n">x0</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'initial_guess'</span><span class="p">)</span>
|
|
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">x0</span><span class="p">)</span> <span class="o">!=</span> <span class="n">n_parms</span><span class="p">:</span>
|
|
<span class="k">raise</span> <span class="ne">Exception</span><span class="p">(</span><span class="s1">'Initial guess does not have the correct length: </span><span class="si">%d</span><span class="s1"> vs. </span><span class="si">%d</span><span class="s1">'</span> <span class="o">%</span> <span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">x0</span><span class="p">),</span> <span class="n">n_parms</span><span class="p">))</span>
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="n">x0</span> <span class="o">=</span> <span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="n">n_parms</span>
|
|
|
|
<span class="n">data</span> <span class="o">=</span> <span class="n">RealData</span><span class="p">(</span><span class="n">x_f</span><span class="p">,</span> <span class="n">y_f</span><span class="p">,</span> <span class="n">sx</span><span class="o">=</span><span class="n">dx_f</span><span class="p">,</span> <span class="n">sy</span><span class="o">=</span><span class="n">dy_f</span><span class="p">)</span>
|
|
<span class="n">model</span> <span class="o">=</span> <span class="n">Model</span><span class="p">(</span><span class="n">func</span><span class="p">)</span>
|
|
<span class="n">odr</span> <span class="o">=</span> <span class="n">ODR</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">model</span><span class="p">,</span> <span class="n">x0</span><span class="p">,</span> <span class="n">partol</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">finfo</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">float64</span><span class="p">)</span><span class="o">.</span><span class="n">eps</span><span class="p">)</span>
|
|
<span class="n">odr</span><span class="o">.</span><span class="n">set_job</span><span class="p">(</span><span class="n">fit_type</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">deriv</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
|
|
<span class="n">out</span> <span class="o">=</span> <span class="n">odr</span><span class="o">.</span><span class="n">run</span><span class="p">()</span>
|
|
|
|
<span class="n">output</span><span class="o">.</span><span class="n">residual_variance</span> <span class="o">=</span> <span class="n">out</span><span class="o">.</span><span class="n">res_var</span>
|
|
|
|
<span class="n">output</span><span class="o">.</span><span class="n">method</span> <span class="o">=</span> <span class="s1">'ODR'</span>
|
|
|
|
<span class="n">output</span><span class="o">.</span><span class="n">message</span> <span class="o">=</span> <span class="n">out</span><span class="o">.</span><span class="n">stopreason</span>
|
|
|
|
<span class="n">output</span><span class="o">.</span><span class="n">xplus</span> <span class="o">=</span> <span class="n">out</span><span class="o">.</span><span class="n">xplus</span>
|
|
|
|
<span class="k">if</span> <span class="ow">not</span> <span class="n">silent</span><span class="p">:</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="s1">'Method: ODR'</span><span class="p">)</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="o">*</span><span class="n">out</span><span class="o">.</span><span class="n">stopreason</span><span class="p">)</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="s1">'Residual variance:'</span><span class="p">,</span> <span class="n">output</span><span class="o">.</span><span class="n">residual_variance</span><span class="p">)</span>
|
|
|
|
<span class="k">if</span> <span class="n">out</span><span class="o">.</span><span class="n">info</span> <span class="o">></span> <span class="mi">3</span><span class="p">:</span>
|
|
<span class="k">raise</span> <span class="ne">Exception</span><span class="p">(</span><span class="s1">'The minimization procedure did not converge.'</span><span class="p">)</span>
|
|
|
|
<span class="n">m</span> <span class="o">=</span> <span class="n">x_f</span><span class="o">.</span><span class="n">size</span>
|
|
<span class="n">n_parms_aug</span> <span class="o">=</span> <span class="n">n_parms</span> <span class="o">+</span> <span class="nb">len</span><span class="p">(</span><span class="n">const_par</span><span class="p">)</span>
|
|
|
|
<span class="k">def</span> <span class="nf">odr_chisquare</span><span class="p">(</span><span class="n">p</span><span class="p">):</span>
|
|
<span class="n">model</span> <span class="o">=</span> <span class="n">func</span><span class="p">(</span><span class="n">p</span><span class="p">[:</span><span class="n">n_parms</span><span class="p">],</span> <span class="n">p</span><span class="p">[</span><span class="n">n_parms</span><span class="p">:]</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">x_shape</span><span class="p">))</span>
|
|
<span class="n">chisq</span> <span class="o">=</span> <span class="n">anp</span><span class="o">.</span><span class="n">sum</span><span class="p">(((</span><span class="n">y_f</span> <span class="o">-</span> <span class="n">model</span><span class="p">)</span> <span class="o">/</span> <span class="n">dy_f</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">anp</span><span class="o">.</span><span class="n">sum</span><span class="p">(((</span><span class="n">x_f</span> <span class="o">-</span> <span class="n">p</span><span class="p">[</span><span class="n">n_parms</span><span class="p">:]</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">x_shape</span><span class="p">))</span> <span class="o">/</span> <span class="n">dx_f</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span>
|
|
<span class="k">return</span> <span class="n">chisq</span>
|
|
|
|
<span class="k">def</span> <span class="nf">odr_chisquare_aug</span><span class="p">(</span><span class="n">p</span><span class="p">):</span>
|
|
<span class="n">model</span> <span class="o">=</span> <span class="n">func_aug</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">p</span><span class="p">[:</span><span class="n">n_parms_aug</span><span class="p">],</span> <span class="p">[</span><span class="n">o</span><span class="o">.</span><span class="n">value</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">const_par</span><span class="p">])),</span> <span class="n">p</span><span class="p">[</span><span class="n">n_parms_aug</span><span class="p">:]</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">x_shape</span><span class="p">))</span>
|
|
<span class="n">chisq</span> <span class="o">=</span> <span class="n">anp</span><span class="o">.</span><span class="n">sum</span><span class="p">(((</span><span class="n">y_f</span> <span class="o">-</span> <span class="n">model</span><span class="p">)</span> <span class="o">/</span> <span class="n">dy_f</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">anp</span><span class="o">.</span><span class="n">sum</span><span class="p">(((</span><span class="n">x_f</span> <span class="o">-</span> <span class="n">p</span><span class="p">[</span><span class="n">n_parms_aug</span><span class="p">:]</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">x_shape</span><span class="p">))</span> <span class="o">/</span> <span class="n">dx_f</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span>
|
|
<span class="k">return</span> <span class="n">chisq</span>
|
|
|
|
<span class="k">if</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'expected_chisquare'</span><span class="p">)</span> <span class="ow">is</span> <span class="kc">True</span><span class="p">:</span>
|
|
<span class="n">W</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">diag</span><span class="p">(</span><span class="mi">1</span> <span class="o">/</span> <span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">dy_f</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">dx_f</span><span class="o">.</span><span class="n">ravel</span><span class="p">()))))</span>
|
|
|
|
<span class="k">if</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'covariance'</span><span class="p">)</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
|
|
<span class="n">cov</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'covariance'</span><span class="p">)</span>
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="n">cov</span> <span class="o">=</span> <span class="n">covariance_matrix</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">y</span><span class="p">,</span> <span class="n">x</span><span class="o">.</span><span class="n">ravel</span><span class="p">())))</span>
|
|
|
|
<span class="n">number_of_x_parameters</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="n">m</span> <span class="o">/</span> <span class="n">x_f</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span>
|
|
|
|
<span class="n">old_jac</span> <span class="o">=</span> <span class="n">jacobian</span><span class="p">(</span><span class="n">func</span><span class="p">)(</span><span class="n">out</span><span class="o">.</span><span class="n">beta</span><span class="p">,</span> <span class="n">out</span><span class="o">.</span><span class="n">xplus</span><span class="p">)</span>
|
|
<span class="n">fused_row1</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">old_jac</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">number_of_x_parameters</span> <span class="o">*</span> <span class="p">[</span><span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">old_jac</span><span class="o">.</span><span class="n">shape</span><span class="p">)]),</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)))</span>
|
|
<span class="n">fused_row2</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">jacobian</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">:</span> <span class="n">func</span><span class="p">(</span><span class="n">y</span><span class="p">,</span> <span class="n">x</span><span class="p">))(</span><span class="n">out</span><span class="o">.</span><span class="n">xplus</span><span class="p">,</span> <span class="n">out</span><span class="o">.</span><span class="n">beta</span><span class="p">)</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">x_f</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span> <span class="n">x_f</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="n">number_of_x_parameters</span><span class="p">),</span> <span class="n">np</span><span class="o">.</span><span class="n">identity</span><span class="p">(</span><span class="n">number_of_x_parameters</span> <span class="o">*</span> <span class="n">old_jac</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">])))</span>
|
|
<span class="n">new_jac</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">fused_row1</span><span class="p">,</span> <span class="n">fused_row2</span><span class="p">),</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
|
|
|
|
<span class="n">A</span> <span class="o">=</span> <span class="n">W</span> <span class="o">@</span> <span class="n">new_jac</span>
|
|
<span class="n">P_phi</span> <span class="o">=</span> <span class="n">A</span> <span class="o">@</span> <span class="n">np</span><span class="o">.</span><span class="n">linalg</span><span class="o">.</span><span class="n">inv</span><span class="p">(</span><span class="n">A</span><span class="o">.</span><span class="n">T</span> <span class="o">@</span> <span class="n">A</span><span class="p">)</span> <span class="o">@</span> <span class="n">A</span><span class="o">.</span><span class="n">T</span>
|
|
<span class="n">expected_chisquare</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">trace</span><span class="p">((</span><span class="n">np</span><span class="o">.</span><span class="n">identity</span><span class="p">(</span><span class="n">P_phi</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span> <span class="o">-</span> <span class="n">P_phi</span><span class="p">)</span> <span class="o">@</span> <span class="n">W</span> <span class="o">@</span> <span class="n">cov</span> <span class="o">@</span> <span class="n">W</span><span class="p">)</span>
|
|
<span class="k">if</span> <span class="n">expected_chisquare</span> <span class="o"><=</span> <span class="mf">0.0</span><span class="p">:</span>
|
|
<span class="n">warnings</span><span class="o">.</span><span class="n">warn</span><span class="p">(</span><span class="s2">"Negative expected_chisquare."</span><span class="p">,</span> <span class="ne">RuntimeWarning</span><span class="p">)</span>
|
|
<span class="n">expected_chisquare</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="n">expected_chisquare</span><span class="p">)</span>
|
|
<span class="n">output</span><span class="o">.</span><span class="n">chisquare_by_expected_chisquare</span> <span class="o">=</span> <span class="n">odr_chisquare</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">out</span><span class="o">.</span><span class="n">beta</span><span class="p">,</span> <span class="n">out</span><span class="o">.</span><span class="n">xplus</span><span class="o">.</span><span class="n">ravel</span><span class="p">())))</span> <span class="o">/</span> <span class="n">expected_chisquare</span>
|
|
<span class="k">if</span> <span class="ow">not</span> <span class="n">silent</span><span class="p">:</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="s1">'chisquare/expected_chisquare:'</span><span class="p">,</span>
|
|
<span class="n">output</span><span class="o">.</span><span class="n">chisquare_by_expected_chisquare</span><span class="p">)</span>
|
|
|
|
<span class="n">fitp</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">out</span><span class="o">.</span><span class="n">beta</span><span class="p">,</span> <span class="p">[</span><span class="n">o</span><span class="o">.</span><span class="n">value</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">const_par</span><span class="p">]))</span>
|
|
<span class="n">hess_inv</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linalg</span><span class="o">.</span><span class="n">pinv</span><span class="p">(</span><span class="n">jacobian</span><span class="p">(</span><span class="n">jacobian</span><span class="p">(</span><span class="n">odr_chisquare_aug</span><span class="p">))(</span><span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">fitp</span><span class="p">,</span> <span class="n">out</span><span class="o">.</span><span class="n">xplus</span><span class="o">.</span><span class="n">ravel</span><span class="p">()))))</span>
|
|
|
|
<span class="k">def</span> <span class="nf">odr_chisquare_compact_x</span><span class="p">(</span><span class="n">d</span><span class="p">):</span>
|
|
<span class="n">model</span> <span class="o">=</span> <span class="n">func_aug</span><span class="p">(</span><span class="n">d</span><span class="p">[:</span><span class="n">n_parms_aug</span><span class="p">],</span> <span class="n">d</span><span class="p">[</span><span class="n">n_parms_aug</span><span class="p">:</span><span class="n">n_parms_aug</span> <span class="o">+</span> <span class="n">m</span><span class="p">]</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">x_shape</span><span class="p">))</span>
|
|
<span class="n">chisq</span> <span class="o">=</span> <span class="n">anp</span><span class="o">.</span><span class="n">sum</span><span class="p">(((</span><span class="n">y_f</span> <span class="o">-</span> <span class="n">model</span><span class="p">)</span> <span class="o">/</span> <span class="n">dy_f</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">anp</span><span class="o">.</span><span class="n">sum</span><span class="p">(((</span><span class="n">d</span><span class="p">[</span><span class="n">n_parms_aug</span> <span class="o">+</span> <span class="n">m</span><span class="p">:]</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">x_shape</span><span class="p">)</span> <span class="o">-</span> <span class="n">d</span><span class="p">[</span><span class="n">n_parms_aug</span><span class="p">:</span><span class="n">n_parms_aug</span> <span class="o">+</span> <span class="n">m</span><span class="p">]</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">x_shape</span><span class="p">))</span> <span class="o">/</span> <span class="n">dx_f</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span>
|
|
<span class="k">return</span> <span class="n">chisq</span>
|
|
|
|
<span class="n">jac_jac_x</span> <span class="o">=</span> <span class="n">jacobian</span><span class="p">(</span><span class="n">jacobian</span><span class="p">(</span><span class="n">odr_chisquare_compact_x</span><span class="p">))(</span><span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">fitp</span><span class="p">,</span> <span class="n">out</span><span class="o">.</span><span class="n">xplus</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">x_f</span><span class="o">.</span><span class="n">ravel</span><span class="p">())))</span>
|
|
|
|
<span class="n">deriv_x</span> <span class="o">=</span> <span class="o">-</span><span class="n">hess_inv</span> <span class="o">@</span> <span class="n">jac_jac_x</span><span class="p">[:</span><span class="n">n_parms_aug</span> <span class="o">+</span> <span class="n">m</span><span class="p">,</span> <span class="n">n_parms_aug</span> <span class="o">+</span> <span class="n">m</span><span class="p">:]</span>
|
|
|
|
<span class="k">def</span> <span class="nf">odr_chisquare_compact_y</span><span class="p">(</span><span class="n">d</span><span class="p">):</span>
|
|
<span class="n">model</span> <span class="o">=</span> <span class="n">func_aug</span><span class="p">(</span><span class="n">d</span><span class="p">[:</span><span class="n">n_parms_aug</span><span class="p">],</span> <span class="n">d</span><span class="p">[</span><span class="n">n_parms_aug</span><span class="p">:</span><span class="n">n_parms_aug</span> <span class="o">+</span> <span class="n">m</span><span class="p">]</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">x_shape</span><span class="p">))</span>
|
|
<span class="n">chisq</span> <span class="o">=</span> <span class="n">anp</span><span class="o">.</span><span class="n">sum</span><span class="p">(((</span><span class="n">d</span><span class="p">[</span><span class="n">n_parms_aug</span> <span class="o">+</span> <span class="n">m</span><span class="p">:]</span> <span class="o">-</span> <span class="n">model</span><span class="p">)</span> <span class="o">/</span> <span class="n">dy_f</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">anp</span><span class="o">.</span><span class="n">sum</span><span class="p">(((</span><span class="n">x_f</span> <span class="o">-</span> <span class="n">d</span><span class="p">[</span><span class="n">n_parms_aug</span><span class="p">:</span><span class="n">n_parms_aug</span> <span class="o">+</span> <span class="n">m</span><span class="p">]</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">x_shape</span><span class="p">))</span> <span class="o">/</span> <span class="n">dx_f</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span>
|
|
<span class="k">return</span> <span class="n">chisq</span>
|
|
|
|
<span class="n">jac_jac_y</span> <span class="o">=</span> <span class="n">jacobian</span><span class="p">(</span><span class="n">jacobian</span><span class="p">(</span><span class="n">odr_chisquare_compact_y</span><span class="p">))(</span><span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">fitp</span><span class="p">,</span> <span class="n">out</span><span class="o">.</span><span class="n">xplus</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">y_f</span><span class="p">)))</span>
|
|
|
|
<span class="n">deriv_y</span> <span class="o">=</span> <span class="o">-</span><span class="n">hess_inv</span> <span class="o">@</span> <span class="n">jac_jac_y</span><span class="p">[:</span><span class="n">n_parms_aug</span> <span class="o">+</span> <span class="n">m</span><span class="p">,</span> <span class="n">n_parms_aug</span> <span class="o">+</span> <span class="n">m</span><span class="p">:]</span>
|
|
|
|
<span class="n">result</span> <span class="o">=</span> <span class="p">[]</span>
|
|
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n_parms</span><span class="p">):</span>
|
|
<span class="n">result</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">derived_observable</span><span class="p">(</span><span class="k">lambda</span> <span class="n">my_var</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">:</span> <span class="p">(</span><span class="n">my_var</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">+</span> <span class="n">np</span><span class="o">.</span><span class="n">finfo</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">float64</span><span class="p">)</span><span class="o">.</span><span class="n">eps</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">ravel</span><span class="p">()[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">value</span> <span class="o">+</span> <span class="n">np</span><span class="o">.</span><span class="n">finfo</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">float64</span><span class="p">)</span><span class="o">.</span><span class="n">eps</span><span class="p">)</span> <span class="o">*</span> <span class="n">out</span><span class="o">.</span><span class="n">beta</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="nb">list</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">ravel</span><span class="p">())</span> <span class="o">+</span> <span class="nb">list</span><span class="p">(</span><span class="n">y</span><span class="p">),</span> <span class="n">man_grad</span><span class="o">=</span><span class="nb">list</span><span class="p">(</span><span class="n">deriv_x</span><span class="p">[</span><span class="n">i</span><span class="p">])</span> <span class="o">+</span> <span class="nb">list</span><span class="p">(</span><span class="n">deriv_y</span><span class="p">[</span><span class="n">i</span><span class="p">])))</span>
|
|
|
|
<span class="n">output</span><span class="o">.</span><span class="n">fit_parameters</span> <span class="o">=</span> <span class="n">result</span> <span class="o">+</span> <span class="n">const_par</span>
|
|
|
|
<span class="n">output</span><span class="o">.</span><span class="n">odr_chisquare</span> <span class="o">=</span> <span class="n">odr_chisquare</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">((</span><span class="n">out</span><span class="o">.</span><span class="n">beta</span><span class="p">,</span> <span class="n">out</span><span class="o">.</span><span class="n">xplus</span><span class="o">.</span><span class="n">ravel</span><span class="p">())))</span>
|
|
<span class="n">output</span><span class="o">.</span><span class="n">dof</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">n_parms</span>
|
|
|
|
<span class="k">return</span> <span class="n">output</span>
|
|
</pre></div>
|
|
|
|
</details>
|
|
|
|
<div class="docstring"><p>Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.</p>
|
|
|
|
<h6 id="parameters">Parameters</h6>
|
|
|
|
<ul>
|
|
<li><strong>x</strong> (list):
|
|
list of Obs, or a tuple of lists of Obs</li>
|
|
<li><strong>y</strong> (list):
|
|
list of Obs. The dvalues of the Obs are used as x- and yerror for the fit.</li>
|
|
<li><p><strong>func</strong> (object):
|
|
func has to be of the form</p>
|
|
|
|
<div class="codehilite"><pre><span></span><code><span class="k">def</span> <span class="nf">func</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
|
|
<span class="n">y</span> <span class="o">=</span> <span class="n">a</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">+</span> <span class="n">a</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="n">x</span> <span class="o">+</span> <span class="n">a</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> <span class="o">*</span> <span class="n">anp</span><span class="o">.</span><span class="n">sinh</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
|
|
<span class="k">return</span> <span class="n">y</span>
|
|
</code></pre></div>
|
|
|
|
<p>For multiple x values func can be of the form</p>
|
|
|
|
<div class="codehilite"><pre><span></span><code><span class="k">def</span> <span class="nf">func</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
|
|
<span class="p">(</span><span class="n">x1</span><span class="p">,</span> <span class="n">x2</span><span class="p">)</span> <span class="o">=</span> <span class="n">x</span>
|
|
<span class="k">return</span> <span class="n">a</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="n">x1</span> <span class="o">**</span> <span class="mi">2</span> <span class="o">+</span> <span class="n">a</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="n">x2</span>
|
|
</code></pre></div>
|
|
|
|
<p>It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation
|
|
will not work.</p></li>
|
|
<li><strong>silent</strong> (bool, optional):
|
|
If true all output to the console is omitted (default False).</li>
|
|
<li><strong>initial_guess</strong> (list):
|
|
can provide an initial guess for the input parameters. Relevant for non-linear
|
|
fits with many parameters.</li>
|
|
<li><strong>expected_chisquare</strong> (bool):
|
|
If true prints the expected chisquare which is
|
|
corrected by effects caused by correlated input data.
|
|
This can take a while as the full correlation matrix
|
|
has to be calculated (default False).</li>
|
|
<li><strong>const_par</strong> (list, optional):
|
|
List of N Obs that are used to constrain the last N fit parameters of func.</li>
|
|
<li><strong>Based on the orthogonal distance regression module of scipy</strong></li>
|
|
</ul>
|
|
</div>
|
|
|
|
|
|
</section>
|
|
<section id="prior_fit">
|
|
<div class="attr function"><a class="headerlink" href="#prior_fit">#  </a>
|
|
|
|
|
|
<span class="def">def</span>
|
|
<span class="name">prior_fit</span><span class="signature">(x, y, func, priors, silent=False, **kwargs)</span>:
|
|
</div>
|
|
|
|
<details>
|
|
<summary>View Source</summary>
|
|
<div class="codehilite"><pre><span></span><span class="k">def</span> <span class="nf">prior_fit</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">priors</span><span class="p">,</span> <span class="n">silent</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
|
<span class="n">warnings</span><span class="o">.</span><span class="n">warn</span><span class="p">(</span><span class="s2">"prior_fit renamed to least_squares"</span><span class="p">,</span> <span class="ne">DeprecationWarning</span><span class="p">)</span>
|
|
<span class="k">return</span> <span class="n">least_squares</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">priors</span><span class="o">=</span><span class="n">priors</span><span class="p">,</span> <span class="n">silent</span><span class="o">=</span><span class="n">silent</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
|
|
</pre></div>
|
|
|
|
</details>
|
|
|
|
|
|
|
|
</section>
|
|
<section id="standard_fit">
|
|
<div class="attr function"><a class="headerlink" href="#standard_fit">#  </a>
|
|
|
|
|
|
<span class="def">def</span>
|
|
<span class="name">standard_fit</span><span class="signature">(x, y, func, silent=False, **kwargs)</span>:
|
|
</div>
|
|
|
|
<details>
|
|
<summary>View Source</summary>
|
|
<div class="codehilite"><pre><span></span><span class="k">def</span> <span class="nf">standard_fit</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">silent</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
|
<span class="n">warnings</span><span class="o">.</span><span class="n">warn</span><span class="p">(</span><span class="s2">"standard_fit renamed to least_squares"</span><span class="p">,</span> <span class="ne">DeprecationWarning</span><span class="p">)</span>
|
|
<span class="k">return</span> <span class="n">least_squares</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">silent</span><span class="o">=</span><span class="n">silent</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
|
|
</pre></div>
|
|
|
|
</details>
|
|
|
|
|
|
|
|
</section>
|
|
<section id="odr_fit">
|
|
<div class="attr function"><a class="headerlink" href="#odr_fit">#  </a>
|
|
|
|
|
|
<span class="def">def</span>
|
|
<span class="name">odr_fit</span><span class="signature">(x, y, func, silent=False, **kwargs)</span>:
|
|
</div>
|
|
|
|
<details>
|
|
<summary>View Source</summary>
|
|
<div class="codehilite"><pre><span></span><span class="k">def</span> <span class="nf">odr_fit</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">silent</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
|
<span class="n">warnings</span><span class="o">.</span><span class="n">warn</span><span class="p">(</span><span class="s2">"odr_fit renamed to total_least_squares"</span><span class="p">,</span> <span class="ne">DeprecationWarning</span><span class="p">)</span>
|
|
<span class="k">return</span> <span class="n">total_least_squares</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">silent</span><span class="o">=</span><span class="n">silent</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
|
|
</pre></div>
|
|
|
|
</details>
|
|
|
|
|
|
|
|
</section>
|
|
<section id="fit_lin">
|
|
<div class="attr function"><a class="headerlink" href="#fit_lin">#  </a>
|
|
|
|
|
|
<span class="def">def</span>
|
|
<span class="name">fit_lin</span><span class="signature">(x, y, **kwargs)</span>:
|
|
</div>
|
|
|
|
<details>
|
|
<summary>View Source</summary>
|
|
<div class="codehilite"><pre><span></span><span class="k">def</span> <span class="nf">fit_lin</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
|
<span class="sd">"""Performs a linear fit to y = n + m * x and returns two Obs n, m.</span>
|
|
|
|
<span class="sd"> y has to be a list of Obs, the dvalues of the Obs are used as yerror for the fit.</span>
|
|
<span class="sd"> x can either be a list of floats in which case no xerror is assumed, or</span>
|
|
<span class="sd"> a list of Obs, where the dvalues of the Obs are used as xerror for the fit.</span>
|
|
<span class="sd"> """</span>
|
|
|
|
<span class="k">def</span> <span class="nf">f</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
|
|
<span class="n">y</span> <span class="o">=</span> <span class="n">a</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">+</span> <span class="n">a</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="n">x</span>
|
|
<span class="k">return</span> <span class="n">y</span>
|
|
|
|
<span class="k">if</span> <span class="nb">all</span><span class="p">(</span><span class="nb">isinstance</span><span class="p">(</span><span class="n">n</span><span class="p">,</span> <span class="n">Obs</span><span class="p">)</span> <span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="n">x</span><span class="p">):</span>
|
|
<span class="n">out</span> <span class="o">=</span> <span class="n">total_least_squares</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">f</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
|
|
<span class="k">return</span> <span class="n">out</span><span class="o">.</span><span class="n">fit_parameters</span>
|
|
<span class="k">elif</span> <span class="nb">all</span><span class="p">(</span><span class="nb">isinstance</span><span class="p">(</span><span class="n">n</span><span class="p">,</span> <span class="nb">float</span><span class="p">)</span> <span class="ow">or</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">n</span><span class="p">,</span> <span class="nb">int</span><span class="p">)</span> <span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="n">x</span><span class="p">)</span> <span class="ow">or</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">):</span>
|
|
<span class="n">out</span> <span class="o">=</span> <span class="n">least_squares</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">f</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
|
|
<span class="k">return</span> <span class="n">out</span><span class="o">.</span><span class="n">fit_parameters</span>
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="k">raise</span> <span class="ne">Exception</span><span class="p">(</span><span class="s1">'Unsupported types for x'</span><span class="p">)</span>
|
|
</pre></div>
|
|
|
|
</details>
|
|
|
|
<div class="docstring"><p>Performs a linear fit to y = n + m * x and returns two Obs n, m.</p>
|
|
|
|
<p>y has to be a list of Obs, the dvalues of the Obs are used as yerror for the fit.
|
|
x can either be a list of floats in which case no xerror is assumed, or
|
|
a list of Obs, where the dvalues of the Obs are used as xerror for the fit.</p>
|
|
</div>
|
|
|
|
|
|
</section>
|
|
<section id="qqplot">
|
|
<div class="attr function"><a class="headerlink" href="#qqplot">#  </a>
|
|
|
|
|
|
<span class="def">def</span>
|
|
<span class="name">qqplot</span><span class="signature">(x, o_y, func, p)</span>:
|
|
</div>
|
|
|
|
<details>
|
|
<summary>View Source</summary>
|
|
<div class="codehilite"><pre><span></span><span class="k">def</span> <span class="nf">qqplot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">o_y</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">p</span><span class="p">):</span>
|
|
<span class="sd">""" Generates a quantile-quantile plot of the fit result which can be used to</span>
|
|
<span class="sd"> check if the residuals of the fit are gaussian distributed.</span>
|
|
<span class="sd"> """</span>
|
|
|
|
<span class="n">residuals</span> <span class="o">=</span> <span class="p">[]</span>
|
|
<span class="k">for</span> <span class="n">i_x</span><span class="p">,</span> <span class="n">i_y</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">o_y</span><span class="p">):</span>
|
|
<span class="n">residuals</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">i_y</span> <span class="o">-</span> <span class="n">func</span><span class="p">(</span><span class="n">p</span><span class="p">,</span> <span class="n">i_x</span><span class="p">))</span> <span class="o">/</span> <span class="n">i_y</span><span class="o">.</span><span class="n">dvalue</span><span class="p">)</span>
|
|
<span class="n">residuals</span> <span class="o">=</span> <span class="nb">sorted</span><span class="p">(</span><span class="n">residuals</span><span class="p">)</span>
|
|
<span class="n">my_y</span> <span class="o">=</span> <span class="p">[</span><span class="n">o</span><span class="o">.</span><span class="n">value</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">residuals</span><span class="p">]</span>
|
|
<span class="n">probplot</span> <span class="o">=</span> <span class="n">scipy</span><span class="o">.</span><span class="n">stats</span><span class="o">.</span><span class="n">probplot</span><span class="p">(</span><span class="n">my_y</span><span class="p">)</span>
|
|
<span class="n">my_x</span> <span class="o">=</span> <span class="n">probplot</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span>
|
|
<span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">8</span><span class="p">,</span> <span class="mi">8</span> <span class="o">/</span> <span class="mf">1.618</span><span class="p">))</span>
|
|
<span class="n">plt</span><span class="o">.</span><span class="n">errorbar</span><span class="p">(</span><span class="n">my_x</span><span class="p">,</span> <span class="n">my_y</span><span class="p">,</span> <span class="n">fmt</span><span class="o">=</span><span class="s1">'o'</span><span class="p">)</span>
|
|
<span class="n">fit_start</span> <span class="o">=</span> <span class="n">my_x</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
|
|
<span class="n">fit_stop</span> <span class="o">=</span> <span class="n">my_x</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span>
|
|
<span class="n">samples</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">fit_start</span><span class="p">,</span> <span class="n">fit_stop</span><span class="p">,</span> <span class="mf">0.01</span><span class="p">)</span>
|
|
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">samples</span><span class="p">,</span> <span class="n">samples</span><span class="p">,</span> <span class="s1">'k--'</span><span class="p">,</span> <span class="n">zorder</span><span class="o">=</span><span class="mi">11</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">'Standard normal distribution'</span><span class="p">)</span>
|
|
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">samples</span><span class="p">,</span> <span class="n">probplot</span><span class="p">[</span><span class="mi">1</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="n">samples</span> <span class="o">+</span> <span class="n">probplot</span><span class="p">[</span><span class="mi">1</span><span class="p">][</span><span class="mi">1</span><span class="p">],</span> <span class="n">zorder</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">'Least squares fit, r='</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">around</span><span class="p">(</span><span class="n">probplot</span><span class="p">[</span><span class="mi">1</span><span class="p">][</span><span class="mi">2</span><span class="p">],</span> <span class="mi">3</span><span class="p">)))</span>
|
|
|
|
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'Theoretical quantiles'</span><span class="p">)</span>
|
|
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'Ordered Values'</span><span class="p">)</span>
|
|
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
|
|
<span class="n">plt</span><span class="o">.</span><span class="n">draw</span><span class="p">()</span>
|
|
</pre></div>
|
|
|
|
</details>
|
|
|
|
<div class="docstring"><p>Generates a quantile-quantile plot of the fit result which can be used to
|
|
check if the residuals of the fit are gaussian distributed.</p>
|
|
</div>
|
|
|
|
|
|
</section>
|
|
<section id="residual_plot">
|
|
<div class="attr function"><a class="headerlink" href="#residual_plot">#  </a>
|
|
|
|
|
|
<span class="def">def</span>
|
|
<span class="name">residual_plot</span><span class="signature">(x, y, func, fit_res)</span>:
|
|
</div>
|
|
|
|
<details>
|
|
<summary>View Source</summary>
|
|
<div class="codehilite"><pre><span></span><span class="k">def</span> <span class="nf">residual_plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">fit_res</span><span class="p">):</span>
|
|
<span class="sd">""" Generates a plot which compares the fit to the data and displays the corresponding residuals"""</span>
|
|
<span class="n">xstart</span> <span class="o">=</span> <span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">-</span> <span class="mf">0.5</span>
|
|
<span class="n">xstop</span> <span class="o">=</span> <span class="n">x</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="mf">0.5</span>
|
|
<span class="n">x_samples</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">xstart</span><span class="p">,</span> <span class="n">xstop</span><span class="p">,</span> <span class="mf">0.01</span><span class="p">)</span>
|
|
|
|
<span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">8</span><span class="p">,</span> <span class="mi">8</span> <span class="o">/</span> <span class="mf">1.618</span><span class="p">))</span>
|
|
<span class="n">gs</span> <span class="o">=</span> <span class="n">gridspec</span><span class="o">.</span><span class="n">GridSpec</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">height_ratios</span><span class="o">=</span><span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">wspace</span><span class="o">=</span><span class="mf">0.0</span><span class="p">,</span> <span class="n">hspace</span><span class="o">=</span><span class="mf">0.0</span><span class="p">)</span>
|
|
<span class="n">ax0</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="n">gs</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
|
|
<span class="n">ax0</span><span class="o">.</span><span class="n">errorbar</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="p">[</span><span class="n">o</span><span class="o">.</span><span class="n">value</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">y</span><span class="p">],</span> <span class="n">yerr</span><span class="o">=</span><span class="p">[</span><span class="n">o</span><span class="o">.</span><span class="n">dvalue</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">y</span><span class="p">],</span> <span class="n">ls</span><span class="o">=</span><span class="s1">'none'</span><span class="p">,</span> <span class="n">fmt</span><span class="o">=</span><span class="s1">'o'</span><span class="p">,</span> <span class="n">capsize</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">markersize</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">'Data'</span><span class="p">)</span>
|
|
<span class="n">ax0</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x_samples</span><span class="p">,</span> <span class="n">func</span><span class="p">([</span><span class="n">o</span><span class="o">.</span><span class="n">value</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">fit_res</span><span class="p">],</span> <span class="n">x_samples</span><span class="p">),</span> <span class="n">label</span><span class="o">=</span><span class="s1">'Fit'</span><span class="p">,</span> <span class="n">zorder</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">ls</span><span class="o">=</span><span class="s1">'-'</span><span class="p">,</span> <span class="n">ms</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
|
|
<span class="n">ax0</span><span class="o">.</span><span class="n">set_xticklabels</span><span class="p">([])</span>
|
|
<span class="n">ax0</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="n">xstart</span><span class="p">,</span> <span class="n">xstop</span><span class="p">])</span>
|
|
<span class="n">ax0</span><span class="o">.</span><span class="n">set_xticklabels</span><span class="p">([])</span>
|
|
<span class="n">ax0</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
|
|
|
|
<span class="n">residuals</span> <span class="o">=</span> <span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">([</span><span class="n">o</span><span class="o">.</span><span class="n">value</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">y</span><span class="p">])</span> <span class="o">-</span> <span class="n">func</span><span class="p">([</span><span class="n">o</span><span class="o">.</span><span class="n">value</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">fit_res</span><span class="p">],</span> <span class="n">x</span><span class="p">))</span> <span class="o">/</span> <span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">([</span><span class="n">o</span><span class="o">.</span><span class="n">dvalue</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">y</span><span class="p">])</span>
|
|
<span class="n">ax1</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="n">gs</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
|
|
<span class="n">ax1</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">residuals</span><span class="p">,</span> <span class="s1">'ko'</span><span class="p">,</span> <span class="n">ls</span><span class="o">=</span><span class="s1">'none'</span><span class="p">,</span> <span class="n">markersize</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>
|
|
<span class="n">ax1</span><span class="o">.</span><span class="n">tick_params</span><span class="p">(</span><span class="n">direction</span><span class="o">=</span><span class="s1">'out'</span><span class="p">)</span>
|
|
<span class="n">ax1</span><span class="o">.</span><span class="n">tick_params</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="s2">"x"</span><span class="p">,</span> <span class="n">bottom</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">top</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">labelbottom</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
|
|
<span class="n">ax1</span><span class="o">.</span><span class="n">axhline</span><span class="p">(</span><span class="n">y</span><span class="o">=</span><span class="mf">0.0</span><span class="p">,</span> <span class="n">ls</span><span class="o">=</span><span class="s1">'--'</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">'k'</span><span class="p">,</span> <span class="n">marker</span><span class="o">=</span><span class="s2">" "</span><span class="p">)</span>
|
|
<span class="n">ax1</span><span class="o">.</span><span class="n">fill_between</span><span class="p">(</span><span class="n">x_samples</span><span class="p">,</span> <span class="o">-</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="n">facecolor</span><span class="o">=</span><span class="s1">'k'</span><span class="p">)</span>
|
|
<span class="n">ax1</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="n">xstart</span><span class="p">,</span> <span class="n">xstop</span><span class="p">])</span>
|
|
<span class="n">ax1</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">'Residuals'</span><span class="p">)</span>
|
|
<span class="n">plt</span><span class="o">.</span><span class="n">subplots_adjust</span><span class="p">(</span><span class="n">wspace</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">hspace</span><span class="o">=</span><span class="kc">None</span><span class="p">)</span>
|
|
<span class="n">plt</span><span class="o">.</span><span class="n">draw</span><span class="p">()</span>
|
|
</pre></div>
|
|
|
|
</details>
|
|
|
|
<div class="docstring"><p>Generates a plot which compares the fit to the data and displays the corresponding residuals</p>
|
|
</div>
|
|
|
|
|
|
</section>
|
|
<section id="covariance_matrix">
|
|
<div class="attr function"><a class="headerlink" href="#covariance_matrix">#  </a>
|
|
|
|
|
|
<span class="def">def</span>
|
|
<span class="name">covariance_matrix</span><span class="signature">(y)</span>:
|
|
</div>
|
|
|
|
<details>
|
|
<summary>View Source</summary>
|
|
<div class="codehilite"><pre><span></span><span class="k">def</span> <span class="nf">covariance_matrix</span><span class="p">(</span><span class="n">y</span><span class="p">):</span>
|
|
<span class="sd">"""Returns the covariance matrix of y."""</span>
|
|
<span class="n">length</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">y</span><span class="p">)</span>
|
|
<span class="n">cov</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="n">length</span><span class="p">,</span> <span class="n">length</span><span class="p">))</span>
|
|
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">item</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">y</span><span class="p">):</span>
|
|
<span class="k">for</span> <span class="n">j</span><span class="p">,</span> <span class="n">jtem</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">y</span><span class="p">[:</span><span class="n">i</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]):</span>
|
|
<span class="k">if</span> <span class="n">i</span> <span class="o">==</span> <span class="n">j</span><span class="p">:</span>
|
|
<span class="n">cov</span><span class="p">[</span><span class="n">i</span><span class="p">,</span> <span class="n">j</span><span class="p">]</span> <span class="o">=</span> <span class="n">item</span><span class="o">.</span><span class="n">dvalue</span> <span class="o">**</span> <span class="mi">2</span>
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="n">cov</span><span class="p">[</span><span class="n">i</span><span class="p">,</span> <span class="n">j</span><span class="p">]</span> <span class="o">=</span> <span class="n">covariance</span><span class="p">(</span><span class="n">item</span><span class="p">,</span> <span class="n">jtem</span><span class="p">)</span>
|
|
<span class="k">return</span> <span class="n">cov</span> <span class="o">+</span> <span class="n">cov</span><span class="o">.</span><span class="n">T</span> <span class="o">-</span> <span class="n">np</span><span class="o">.</span><span class="n">diag</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">diag</span><span class="p">(</span><span class="n">cov</span><span class="p">))</span>
|
|
</pre></div>
|
|
|
|
</details>
|
|
|
|
<div class="docstring"><p>Returns the covariance matrix of y.</p>
|
|
</div>
|
|
|
|
|
|
</section>
|
|
<section id="error_band">
|
|
<div class="attr function"><a class="headerlink" href="#error_band">#  </a>
|
|
|
|
|
|
<span class="def">def</span>
|
|
<span class="name">error_band</span><span class="signature">(x, func, beta)</span>:
|
|
</div>
|
|
|
|
<details>
|
|
<summary>View Source</summary>
|
|
<div class="codehilite"><pre><span></span><span class="k">def</span> <span class="nf">error_band</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">beta</span><span class="p">):</span>
|
|
<span class="sd">"""Returns the error band for an array of sample values x, for given fit function func with optimized parameters beta."""</span>
|
|
<span class="n">cov</span> <span class="o">=</span> <span class="n">covariance_matrix</span><span class="p">(</span><span class="n">beta</span><span class="p">)</span>
|
|
<span class="k">if</span> <span class="n">np</span><span class="o">.</span><span class="n">any</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="n">cov</span> <span class="o">-</span> <span class="n">cov</span><span class="o">.</span><span class="n">T</span><span class="p">)</span> <span class="o">></span> <span class="mi">1000</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">finfo</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">float64</span><span class="p">)</span><span class="o">.</span><span class="n">eps</span><span class="p">):</span>
|
|
<span class="n">warnings</span><span class="o">.</span><span class="n">warn</span><span class="p">(</span><span class="s2">"Covariance matrix is not symmetric within floating point precision"</span><span class="p">,</span> <span class="ne">RuntimeWarning</span><span class="p">)</span>
|
|
|
|
<span class="n">deriv</span> <span class="o">=</span> <span class="p">[]</span>
|
|
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">item</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
|
|
<span class="n">deriv</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">egrad</span><span class="p">(</span><span class="n">func</span><span class="p">)([</span><span class="n">o</span><span class="o">.</span><span class="n">value</span> <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">beta</span><span class="p">],</span> <span class="n">item</span><span class="p">)))</span>
|
|
|
|
<span class="n">err</span> <span class="o">=</span> <span class="p">[]</span>
|
|
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">item</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
|
|
<span class="n">err</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">deriv</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">@</span> <span class="n">cov</span> <span class="o">@</span> <span class="n">deriv</span><span class="p">[</span><span class="n">i</span><span class="p">]))</span>
|
|
<span class="n">err</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">err</span><span class="p">)</span>
|
|
|
|
<span class="k">return</span> <span class="n">err</span>
|
|
</pre></div>
|
|
|
|
</details>
|
|
|
|
<div class="docstring"><p>Returns the error band for an array of sample values x, for given fit function func with optimized parameters beta.</p>
|
|
</div>
|
|
|
|
|
|
</section>
|
|
</main>
|
|
<script>
|
|
function escapeHTML(html) {
|
|
return document.createElement('div').appendChild(document.createTextNode(html)).parentNode.innerHTML;
|
|
}
|
|
|
|
const originalContent = document.querySelector("main.pdoc");
|
|
let currentContent = originalContent;
|
|
|
|
function setContent(innerHTML) {
|
|
let elem;
|
|
if (innerHTML) {
|
|
elem = document.createElement("main");
|
|
elem.classList.add("pdoc");
|
|
elem.innerHTML = innerHTML;
|
|
} else {
|
|
elem = originalContent;
|
|
}
|
|
if (currentContent !== elem) {
|
|
currentContent.replaceWith(elem);
|
|
currentContent = elem;
|
|
}
|
|
}
|
|
|
|
function getSearchTerm() {
|
|
return (new URL(window.location)).searchParams.get("search");
|
|
}
|
|
|
|
const searchBox = document.querySelector(".pdoc input[type=search]");
|
|
searchBox.addEventListener("input", function () {
|
|
let url = new URL(window.location);
|
|
if (searchBox.value.trim()) {
|
|
url.hash = "";
|
|
url.searchParams.set("search", searchBox.value);
|
|
} else {
|
|
url.searchParams.delete("search");
|
|
}
|
|
history.replaceState("", "", url.toString());
|
|
onInput();
|
|
});
|
|
window.addEventListener("popstate", onInput);
|
|
|
|
|
|
let search, searchErr;
|
|
|
|
async function initialize() {
|
|
try {
|
|
search = await new Promise((resolve, reject) => {
|
|
const script = document.createElement("script");
|
|
script.type = "text/javascript";
|
|
script.async = true;
|
|
script.onload = () => resolve(window.pdocSearch);
|
|
script.onerror = (e) => reject(e);
|
|
script.src = "../search.js";
|
|
document.getElementsByTagName("head")[0].appendChild(script);
|
|
});
|
|
} catch (e) {
|
|
console.error("Cannot fetch pdoc search index");
|
|
searchErr = "Cannot fetch search index.";
|
|
}
|
|
onInput();
|
|
|
|
document.querySelector("nav.pdoc").addEventListener("click", e => {
|
|
if (e.target.hash) {
|
|
searchBox.value = "";
|
|
searchBox.dispatchEvent(new Event("input"));
|
|
}
|
|
});
|
|
}
|
|
|
|
function onInput() {
|
|
setContent((() => {
|
|
const term = getSearchTerm();
|
|
if (!term) {
|
|
return null
|
|
}
|
|
if (searchErr) {
|
|
return `<h3>Error: ${searchErr}</h3>`
|
|
}
|
|
if (!search) {
|
|
return "<h3>Searching...</h3>"
|
|
}
|
|
|
|
window.scrollTo({top: 0, left: 0, behavior: 'auto'});
|
|
|
|
const results = search(term);
|
|
|
|
let html;
|
|
if (results.length === 0) {
|
|
html = `No search results for '${escapeHTML(term)}'.`
|
|
} else {
|
|
html = `<h4>${results.length} search result${results.length > 1 ? "s" : ""} for '${escapeHTML(term)}'.</h4>`;
|
|
}
|
|
for (let result of results.slice(0, 10)) {
|
|
let doc = result.doc;
|
|
let url = `../${doc.modulename.replaceAll(".", "/")}.html`;
|
|
if (doc.qualname) {
|
|
url += `#${doc.qualname}`;
|
|
}
|
|
|
|
let heading;
|
|
switch (result.doc.type) {
|
|
case "function":
|
|
heading = `<span class="def">${doc.funcdef}</span> <span class="name">${doc.fullname}</span><span class="signature">(${doc.parameters.join(", ")})</span>`;
|
|
break;
|
|
case "class":
|
|
heading = `<span class="def">class</span> <span class="name">${doc.fullname}</span>`;
|
|
break;
|
|
default:
|
|
heading = `<span class="name">${doc.fullname}</span>`;
|
|
break;
|
|
}
|
|
html += `
|
|
<section class="search-result">
|
|
<a href="${url}" class="attr ${doc.type}">${heading}</a>
|
|
<div class="docstring">${doc.doc}</div>
|
|
</section>
|
|
`;
|
|
|
|
}
|
|
return html;
|
|
})());
|
|
}
|
|
|
|
if (getSearchTerm()) {
|
|
initialize();
|
|
searchBox.value = getSearchTerm();
|
|
onInput();
|
|
} else {
|
|
searchBox.addEventListener("focus", initialize, {once: true});
|
|
}
|
|
|
|
searchBox.addEventListener("keydown", e => {
|
|
if (["ArrowDown", "ArrowUp", "Enter"].includes(e.key)) {
|
|
let focused = currentContent.querySelector(".search-result.focused");
|
|
if (!focused) {
|
|
currentContent.querySelector(".search-result").classList.add("focused");
|
|
} else if (
|
|
e.key === "ArrowDown"
|
|
&& focused.nextElementSibling
|
|
&& focused.nextElementSibling.classList.contains("search-result")
|
|
) {
|
|
focused.classList.remove("focused");
|
|
focused.nextElementSibling.classList.add("focused");
|
|
focused.nextElementSibling.scrollIntoView({
|
|
behavior: "smooth",
|
|
block: "nearest",
|
|
inline: "nearest"
|
|
});
|
|
} else if (
|
|
e.key === "ArrowUp"
|
|
&& focused.previousElementSibling
|
|
&& focused.previousElementSibling.classList.contains("search-result")
|
|
) {
|
|
focused.classList.remove("focused");
|
|
focused.previousElementSibling.classList.add("focused");
|
|
focused.previousElementSibling.scrollIntoView({
|
|
behavior: "smooth",
|
|
block: "nearest",
|
|
inline: "nearest"
|
|
});
|
|
} else if (
|
|
e.key === "Enter"
|
|
) {
|
|
focused.querySelector("a").click();
|
|
}
|
|
}
|
|
});
|
|
</script></body>
|
|
</html> |