pyerrors.fits
1import gc 2from collections.abc import Sequence 3import warnings 4import numpy as np 5import autograd.numpy as anp 6import scipy.optimize 7import scipy.stats 8import matplotlib.pyplot as plt 9from matplotlib import gridspec 10from scipy.odr import ODR, Model, RealData 11from scipy.stats import chi2 12import iminuit 13from autograd import jacobian 14from autograd import elementwise_grad as egrad 15from .obs import Obs, derived_observable, covariance, cov_Obs 16 17 18class Fit_result(Sequence): 19 """Represents fit results. 20 21 Attributes 22 ---------- 23 fit_parameters : list 24 results for the individual fit parameters, 25 also accessible via indices. 26 """ 27 28 def __init__(self): 29 self.fit_parameters = None 30 31 def __getitem__(self, idx): 32 return self.fit_parameters[idx] 33 34 def __len__(self): 35 return len(self.fit_parameters) 36 37 def gamma_method(self): 38 """Apply the gamma method to all fit parameters""" 39 [o.gamma_method() for o in self.fit_parameters] 40 41 def __str__(self): 42 my_str = 'Goodness of fit:\n' 43 if hasattr(self, 'chisquare_by_dof'): 44 my_str += '\u03C7\u00b2/d.o.f. = ' + f'{self.chisquare_by_dof:2.6f}' + '\n' 45 elif hasattr(self, 'residual_variance'): 46 my_str += 'residual variance = ' + f'{self.residual_variance:2.6f}' + '\n' 47 if hasattr(self, 'chisquare_by_expected_chisquare'): 48 my_str += '\u03C7\u00b2/\u03C7\u00b2exp = ' + f'{self.chisquare_by_expected_chisquare:2.6f}' + '\n' 49 if hasattr(self, 'p_value'): 50 my_str += 'p-value = ' + f'{self.p_value:2.4f}' + '\n' 51 my_str += 'Fit parameters:\n' 52 for i_par, par in enumerate(self.fit_parameters): 53 my_str += str(i_par) + '\t' + ' ' * int(par >= 0) + str(par).rjust(int(par < 0.0)) + '\n' 54 return my_str 55 56 def __repr__(self): 57 m = max(map(len, list(self.__dict__.keys()))) + 1 58 return '\n'.join([key.rjust(m) + ': ' + repr(value) for key, value in sorted(self.__dict__.items())]) 59 60 61def least_squares(x, y, func, priors=None, silent=False, **kwargs): 62 r'''Performs a non-linear fit to y = func(x). 63 64 Parameters 65 ---------- 66 x : list 67 list of floats. 68 y : list 69 list of Obs. 70 func : object 71 fit function, has to be of the form 72 73 ```python 74 import autograd.numpy as anp 75 76 def func(a, x): 77 return a[0] + a[1] * x + a[2] * anp.sinh(x) 78 ``` 79 80 For multiple x values func can be of the form 81 82 ```python 83 def func(a, x): 84 (x1, x2) = x 85 return a[0] * x1 ** 2 + a[1] * x2 86 ``` 87 88 It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation 89 will not work. 90 priors : list, optional 91 priors has to be a list with an entry for every parameter in the fit. The entries can either be 92 Obs (e.g. results from a previous fit) or strings containing a value and an error formatted like 93 0.548(23), 500(40) or 0.5(0.4) 94 silent : bool, optional 95 If true all output to the console is omitted (default False). 96 initial_guess : list 97 can provide an initial guess for the input parameters. Relevant for 98 non-linear fits with many parameters. In case of correlated fits the guess is used to perform 99 an uncorrelated fit which then serves as guess for the correlated fit. 100 method : str, optional 101 can be used to choose an alternative method for the minimization of chisquare. 102 The possible methods are the ones which can be used for scipy.optimize.minimize and 103 migrad of iminuit. If no method is specified, Levenberg-Marquard is used. 104 Reliable alternatives are migrad, Powell and Nelder-Mead. 105 correlated_fit : bool 106 If True, use the full inverse covariance matrix in the definition of the chisquare cost function. 107 For details about how the covariance matrix is estimated see `pyerrors.obs.covariance`. 108 In practice the correlation matrix is Cholesky decomposed and inverted (instead of the covariance matrix). 109 This procedure should be numerically more stable as the correlation matrix is typically better conditioned (Jacobi preconditioning). 110 At the moment this option only works for `prior==None` and when no `method` is given. 111 expected_chisquare : bool 112 If True estimates the expected chisquare which is 113 corrected by effects caused by correlated input data (default False). 114 resplot : bool 115 If True, a plot which displays fit, data and residuals is generated (default False). 116 qqplot : bool 117 If True, a quantile-quantile plot of the fit result is generated (default False). 118 ''' 119 if priors is not None: 120 return _prior_fit(x, y, func, priors, silent=silent, **kwargs) 121 else: 122 return _standard_fit(x, y, func, silent=silent, **kwargs) 123 124 125def total_least_squares(x, y, func, silent=False, **kwargs): 126 r'''Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters. 127 128 Parameters 129 ---------- 130 x : list 131 list of Obs, or a tuple of lists of Obs 132 y : list 133 list of Obs. The dvalues of the Obs are used as x- and yerror for the fit. 134 func : object 135 func has to be of the form 136 137 ```python 138 import autograd.numpy as anp 139 140 def func(a, x): 141 return a[0] + a[1] * x + a[2] * anp.sinh(x) 142 ``` 143 144 For multiple x values func can be of the form 145 146 ```python 147 def func(a, x): 148 (x1, x2) = x 149 return a[0] * x1 ** 2 + a[1] * x2 150 ``` 151 152 It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation 153 will not work. 154 silent : bool, optional 155 If true all output to the console is omitted (default False). 156 initial_guess : list 157 can provide an initial guess for the input parameters. Relevant for non-linear 158 fits with many parameters. 159 expected_chisquare : bool 160 If true prints the expected chisquare which is 161 corrected by effects caused by correlated input data. 162 This can take a while as the full correlation matrix 163 has to be calculated (default False). 164 165 Notes 166 ----- 167 Based on the orthogonal distance regression module of scipy 168 ''' 169 170 output = Fit_result() 171 172 output.fit_function = func 173 174 x = np.array(x) 175 176 x_shape = x.shape 177 178 if not callable(func): 179 raise TypeError('func has to be a function.') 180 181 for i in range(25): 182 try: 183 func(np.arange(i), x.T[0]) 184 except Exception: 185 pass 186 else: 187 break 188 189 n_parms = i 190 if not silent: 191 print('Fit with', n_parms, 'parameter' + 's' * (n_parms > 1)) 192 193 x_f = np.vectorize(lambda o: o.value)(x) 194 dx_f = np.vectorize(lambda o: o.dvalue)(x) 195 y_f = np.array([o.value for o in y]) 196 dy_f = np.array([o.dvalue for o in y]) 197 198 if np.any(np.asarray(dx_f) <= 0.0): 199 raise Exception('No x errors available, run the gamma method first.') 200 201 if np.any(np.asarray(dy_f) <= 0.0): 202 raise Exception('No y errors available, run the gamma method first.') 203 204 if 'initial_guess' in kwargs: 205 x0 = kwargs.get('initial_guess') 206 if len(x0) != n_parms: 207 raise Exception('Initial guess does not have the correct length: %d vs. %d' % (len(x0), n_parms)) 208 else: 209 x0 = [1] * n_parms 210 211 data = RealData(x_f, y_f, sx=dx_f, sy=dy_f) 212 model = Model(func) 213 odr = ODR(data, model, x0, partol=np.finfo(np.float64).eps) 214 odr.set_job(fit_type=0, deriv=1) 215 out = odr.run() 216 217 output.residual_variance = out.res_var 218 219 output.method = 'ODR' 220 221 output.message = out.stopreason 222 223 output.xplus = out.xplus 224 225 if not silent: 226 print('Method: ODR') 227 print(*out.stopreason) 228 print('Residual variance:', output.residual_variance) 229 230 if out.info > 3: 231 raise Exception('The minimization procedure did not converge.') 232 233 m = x_f.size 234 235 def odr_chisquare(p): 236 model = func(p[:n_parms], p[n_parms:].reshape(x_shape)) 237 chisq = anp.sum(((y_f - model) / dy_f) ** 2) + anp.sum(((x_f - p[n_parms:].reshape(x_shape)) / dx_f) ** 2) 238 return chisq 239 240 if kwargs.get('expected_chisquare') is True: 241 W = np.diag(1 / np.asarray(np.concatenate((dy_f.ravel(), dx_f.ravel())))) 242 243 if kwargs.get('covariance') is not None: 244 cov = kwargs.get('covariance') 245 else: 246 cov = covariance(np.concatenate((y, x.ravel()))) 247 248 number_of_x_parameters = int(m / x_f.shape[-1]) 249 250 old_jac = jacobian(func)(out.beta, out.xplus) 251 fused_row1 = np.concatenate((old_jac, np.concatenate((number_of_x_parameters * [np.zeros(old_jac.shape)]), axis=0))) 252 fused_row2 = np.concatenate((jacobian(lambda x, y: func(y, x))(out.xplus, out.beta).reshape(x_f.shape[-1], x_f.shape[-1] * number_of_x_parameters), np.identity(number_of_x_parameters * old_jac.shape[0]))) 253 new_jac = np.concatenate((fused_row1, fused_row2), axis=1) 254 255 A = W @ new_jac 256 P_phi = A @ np.linalg.pinv(A.T @ A) @ A.T 257 expected_chisquare = np.trace((np.identity(P_phi.shape[0]) - P_phi) @ W @ cov @ W) 258 if expected_chisquare <= 0.0: 259 warnings.warn("Negative expected_chisquare.", RuntimeWarning) 260 expected_chisquare = np.abs(expected_chisquare) 261 output.chisquare_by_expected_chisquare = odr_chisquare(np.concatenate((out.beta, out.xplus.ravel()))) / expected_chisquare 262 if not silent: 263 print('chisquare/expected_chisquare:', 264 output.chisquare_by_expected_chisquare) 265 266 fitp = out.beta 267 try: 268 hess = jacobian(jacobian(odr_chisquare))(np.concatenate((fitp, out.xplus.ravel()))) 269 except TypeError: 270 raise Exception("It is required to use autograd.numpy instead of numpy within fit functions, see the documentation for details.") from None 271 272 def odr_chisquare_compact_x(d): 273 model = func(d[:n_parms], d[n_parms:n_parms + m].reshape(x_shape)) 274 chisq = anp.sum(((y_f - model) / dy_f) ** 2) + anp.sum(((d[n_parms + m:].reshape(x_shape) - d[n_parms:n_parms + m].reshape(x_shape)) / dx_f) ** 2) 275 return chisq 276 277 jac_jac_x = jacobian(jacobian(odr_chisquare_compact_x))(np.concatenate((fitp, out.xplus.ravel(), x_f.ravel()))) 278 279 # Compute hess^{-1} @ jac_jac_x[:n_parms + m, n_parms + m:] using LAPACK dgesv 280 try: 281 deriv_x = -scipy.linalg.solve(hess, jac_jac_x[:n_parms + m, n_parms + m:]) 282 except np.linalg.LinAlgError: 283 raise Exception("Cannot invert hessian matrix.") 284 285 def odr_chisquare_compact_y(d): 286 model = func(d[:n_parms], d[n_parms:n_parms + m].reshape(x_shape)) 287 chisq = anp.sum(((d[n_parms + m:] - model) / dy_f) ** 2) + anp.sum(((x_f - d[n_parms:n_parms + m].reshape(x_shape)) / dx_f) ** 2) 288 return chisq 289 290 jac_jac_y = jacobian(jacobian(odr_chisquare_compact_y))(np.concatenate((fitp, out.xplus.ravel(), y_f))) 291 292 # Compute hess^{-1} @ jac_jac_y[:n_parms + m, n_parms + m:] using LAPACK dgesv 293 try: 294 deriv_y = -scipy.linalg.solve(hess, jac_jac_y[:n_parms + m, n_parms + m:]) 295 except np.linalg.LinAlgError: 296 raise Exception("Cannot invert hessian matrix.") 297 298 result = [] 299 for i in range(n_parms): 300 result.append(derived_observable(lambda my_var, **kwargs: (my_var[0] + np.finfo(np.float64).eps) / (x.ravel()[0].value + np.finfo(np.float64).eps) * out.beta[i], list(x.ravel()) + list(y), man_grad=list(deriv_x[i]) + list(deriv_y[i]))) 301 302 output.fit_parameters = result 303 304 output.odr_chisquare = odr_chisquare(np.concatenate((out.beta, out.xplus.ravel()))) 305 output.dof = x.shape[-1] - n_parms 306 output.p_value = 1 - chi2.cdf(output.odr_chisquare, output.dof) 307 308 return output 309 310 311def _prior_fit(x, y, func, priors, silent=False, **kwargs): 312 output = Fit_result() 313 314 output.fit_function = func 315 316 x = np.asarray(x) 317 318 if not callable(func): 319 raise TypeError('func has to be a function.') 320 321 for i in range(100): 322 try: 323 func(np.arange(i), 0) 324 except Exception: 325 pass 326 else: 327 break 328 329 n_parms = i 330 331 if n_parms != len(priors): 332 raise Exception('Priors does not have the correct length.') 333 334 def extract_val_and_dval(string): 335 split_string = string.split('(') 336 if '.' in split_string[0] and '.' not in split_string[1][:-1]: 337 factor = 10 ** -len(split_string[0].partition('.')[2]) 338 else: 339 factor = 1 340 return float(split_string[0]), float(split_string[1][:-1]) * factor 341 342 loc_priors = [] 343 for i_n, i_prior in enumerate(priors): 344 if isinstance(i_prior, Obs): 345 loc_priors.append(i_prior) 346 else: 347 loc_val, loc_dval = extract_val_and_dval(i_prior) 348 loc_priors.append(cov_Obs(loc_val, loc_dval ** 2, '#prior' + str(i_n) + f"_{np.random.randint(2147483647):010d}")) 349 350 output.priors = loc_priors 351 352 if not silent: 353 print('Fit with', n_parms, 'parameter' + 's' * (n_parms > 1)) 354 355 y_f = [o.value for o in y] 356 dy_f = [o.dvalue for o in y] 357 358 if np.any(np.asarray(dy_f) <= 0.0): 359 raise Exception('No y errors available, run the gamma method first.') 360 361 p_f = [o.value for o in loc_priors] 362 dp_f = [o.dvalue for o in loc_priors] 363 364 if np.any(np.asarray(dp_f) <= 0.0): 365 raise Exception('No prior errors available, run the gamma method first.') 366 367 if 'initial_guess' in kwargs: 368 x0 = kwargs.get('initial_guess') 369 if len(x0) != n_parms: 370 raise Exception('Initial guess does not have the correct length.') 371 else: 372 x0 = p_f 373 374 def chisqfunc(p): 375 model = func(p, x) 376 chisq = anp.sum(((y_f - model) / dy_f) ** 2) + anp.sum(((p_f - p) / dp_f) ** 2) 377 return chisq 378 379 if not silent: 380 print('Method: migrad') 381 382 m = iminuit.Minuit(chisqfunc, x0) 383 m.errordef = 1 384 m.print_level = 0 385 if 'tol' in kwargs: 386 m.tol = kwargs.get('tol') 387 else: 388 m.tol = 1e-4 389 m.migrad() 390 params = np.asarray(m.values) 391 392 output.chisquare_by_dof = m.fval / len(x) 393 394 output.method = 'migrad' 395 396 if not silent: 397 print('chisquare/d.o.f.:', output.chisquare_by_dof) 398 399 if not m.fmin.is_valid: 400 raise Exception('The minimization procedure did not converge.') 401 402 hess_inv = np.linalg.pinv(jacobian(jacobian(chisqfunc))(params)) 403 404 def chisqfunc_compact(d): 405 model = func(d[:n_parms], x) 406 chisq = anp.sum(((d[n_parms: n_parms + len(x)] - model) / dy_f) ** 2) + anp.sum(((d[n_parms + len(x):] - d[:n_parms]) / dp_f) ** 2) 407 return chisq 408 409 jac_jac = jacobian(jacobian(chisqfunc_compact))(np.concatenate((params, y_f, p_f))) 410 411 deriv = -hess_inv @ jac_jac[:n_parms, n_parms:] 412 413 result = [] 414 for i in range(n_parms): 415 result.append(derived_observable(lambda x, **kwargs: (x[0] + np.finfo(np.float64).eps) / (y[0].value + np.finfo(np.float64).eps) * params[i], list(y) + list(loc_priors), man_grad=list(deriv[i]))) 416 417 output.fit_parameters = result 418 output.chisquare = chisqfunc(np.asarray(params)) 419 420 if kwargs.get('resplot') is True: 421 residual_plot(x, y, func, result) 422 423 if kwargs.get('qqplot') is True: 424 qqplot(x, y, func, result) 425 426 return output 427 428 429def _standard_fit(x, y, func, silent=False, **kwargs): 430 431 output = Fit_result() 432 433 output.fit_function = func 434 435 x = np.asarray(x) 436 437 if x.shape[-1] != len(y): 438 raise Exception('x and y input have to have the same length') 439 440 if len(x.shape) > 2: 441 raise Exception('Unknown format for x values') 442 443 if not callable(func): 444 raise TypeError('func has to be a function.') 445 446 for i in range(25): 447 try: 448 func(np.arange(i), x.T[0]) 449 except Exception: 450 pass 451 else: 452 break 453 454 n_parms = i 455 456 if not silent: 457 print('Fit with', n_parms, 'parameter' + 's' * (n_parms > 1)) 458 459 y_f = [o.value for o in y] 460 dy_f = [o.dvalue for o in y] 461 462 if np.any(np.asarray(dy_f) <= 0.0): 463 raise Exception('No y errors available, run the gamma method first.') 464 465 if 'initial_guess' in kwargs: 466 x0 = kwargs.get('initial_guess') 467 if len(x0) != n_parms: 468 raise Exception('Initial guess does not have the correct length: %d vs. %d' % (len(x0), n_parms)) 469 else: 470 x0 = [0.1] * n_parms 471 472 if kwargs.get('correlated_fit') is True: 473 corr = covariance(y, correlation=True, **kwargs) 474 covdiag = np.diag(1 / np.asarray(dy_f)) 475 condn = np.linalg.cond(corr) 476 if condn > 0.1 / np.finfo(float).eps: 477 raise Exception(f"Cannot invert correlation matrix as its condition number exceeds machine precision ({condn:1.2e})") 478 if condn > 1 / np.sqrt(np.finfo(float).eps): 479 warnings.warn("Correlation matrix may be ill-conditioned, condition number: {%1.2e}" % (condn), RuntimeWarning) 480 chol = np.linalg.cholesky(corr) 481 chol_inv = scipy.linalg.solve_triangular(chol, covdiag, lower=True) 482 483 def chisqfunc_corr(p): 484 model = func(p, x) 485 chisq = anp.sum(anp.dot(chol_inv, (y_f - model)) ** 2) 486 return chisq 487 488 def chisqfunc(p): 489 model = func(p, x) 490 chisq = anp.sum(((y_f - model) / dy_f) ** 2) 491 return chisq 492 493 output.method = kwargs.get('method', 'Levenberg-Marquardt') 494 if not silent: 495 print('Method:', output.method) 496 497 if output.method != 'Levenberg-Marquardt': 498 if output.method == 'migrad': 499 fit_result = iminuit.minimize(chisqfunc, x0, tol=1e-4) # Stopping criterion 0.002 * tol * errordef 500 if kwargs.get('correlated_fit') is True: 501 fit_result = iminuit.minimize(chisqfunc_corr, fit_result.x, tol=1e-4) # Stopping criterion 0.002 * tol * errordef 502 output.iterations = fit_result.nfev 503 else: 504 fit_result = scipy.optimize.minimize(chisqfunc, x0, method=kwargs.get('method'), tol=1e-12) 505 if kwargs.get('correlated_fit') is True: 506 fit_result = scipy.optimize.minimize(chisqfunc_corr, fit_result.x, method=kwargs.get('method'), tol=1e-12) 507 output.iterations = fit_result.nit 508 509 chisquare = fit_result.fun 510 511 else: 512 if kwargs.get('correlated_fit') is True: 513 def chisqfunc_residuals_corr(p): 514 model = func(p, x) 515 chisq = anp.dot(chol_inv, (y_f - model)) 516 return chisq 517 518 def chisqfunc_residuals(p): 519 model = func(p, x) 520 chisq = ((y_f - model) / dy_f) 521 return chisq 522 523 fit_result = scipy.optimize.least_squares(chisqfunc_residuals, x0, method='lm', ftol=1e-15, gtol=1e-15, xtol=1e-15) 524 if kwargs.get('correlated_fit') is True: 525 fit_result = scipy.optimize.least_squares(chisqfunc_residuals_corr, fit_result.x, method='lm', ftol=1e-15, gtol=1e-15, xtol=1e-15) 526 527 chisquare = np.sum(fit_result.fun ** 2) 528 if kwargs.get('correlated_fit') is True: 529 assert np.isclose(chisquare, chisqfunc_corr(fit_result.x), atol=1e-14) 530 else: 531 assert np.isclose(chisquare, chisqfunc(fit_result.x), atol=1e-14) 532 533 output.iterations = fit_result.nfev 534 535 if not fit_result.success: 536 raise Exception('The minimization procedure did not converge.') 537 538 if x.shape[-1] - n_parms > 0: 539 output.chisquare_by_dof = chisquare / (x.shape[-1] - n_parms) 540 else: 541 output.chisquare_by_dof = float('nan') 542 543 output.message = fit_result.message 544 if not silent: 545 print(fit_result.message) 546 print('chisquare/d.o.f.:', output.chisquare_by_dof) 547 548 if kwargs.get('expected_chisquare') is True: 549 if kwargs.get('correlated_fit') is not True: 550 W = np.diag(1 / np.asarray(dy_f)) 551 cov = covariance(y) 552 A = W @ jacobian(func)(fit_result.x, x) 553 P_phi = A @ np.linalg.pinv(A.T @ A) @ A.T 554 expected_chisquare = np.trace((np.identity(x.shape[-1]) - P_phi) @ W @ cov @ W) 555 output.chisquare_by_expected_chisquare = chisquare / expected_chisquare 556 if not silent: 557 print('chisquare/expected_chisquare:', 558 output.chisquare_by_expected_chisquare) 559 560 fitp = fit_result.x 561 try: 562 hess = jacobian(jacobian(chisqfunc))(fitp) 563 except TypeError: 564 raise Exception("It is required to use autograd.numpy instead of numpy within fit functions, see the documentation for details.") from None 565 566 if kwargs.get('correlated_fit') is True: 567 def chisqfunc_compact(d): 568 model = func(d[:n_parms], x) 569 chisq = anp.sum(anp.dot(chol_inv, (d[n_parms:] - model)) ** 2) 570 return chisq 571 572 else: 573 def chisqfunc_compact(d): 574 model = func(d[:n_parms], x) 575 chisq = anp.sum(((d[n_parms:] - model) / dy_f) ** 2) 576 return chisq 577 578 jac_jac = jacobian(jacobian(chisqfunc_compact))(np.concatenate((fitp, y_f))) 579 580 # Compute hess^{-1} @ jac_jac[:n_parms, n_parms:] using LAPACK dgesv 581 try: 582 deriv = -scipy.linalg.solve(hess, jac_jac[:n_parms, n_parms:]) 583 except np.linalg.LinAlgError: 584 raise Exception("Cannot invert hessian matrix.") 585 586 result = [] 587 for i in range(n_parms): 588 result.append(derived_observable(lambda x, **kwargs: (x[0] + np.finfo(np.float64).eps) / (y[0].value + np.finfo(np.float64).eps) * fit_result.x[i], list(y), man_grad=list(deriv[i]))) 589 590 output.fit_parameters = result 591 592 output.chisquare = chisquare 593 output.dof = x.shape[-1] - n_parms 594 output.p_value = 1 - chi2.cdf(output.chisquare, output.dof) 595 596 if kwargs.get('resplot') is True: 597 residual_plot(x, y, func, result) 598 599 if kwargs.get('qqplot') is True: 600 qqplot(x, y, func, result) 601 602 return output 603 604 605def fit_lin(x, y, **kwargs): 606 """Performs a linear fit to y = n + m * x and returns two Obs n, m. 607 608 Parameters 609 ---------- 610 x : list 611 Can either be a list of floats in which case no xerror is assumed, or 612 a list of Obs, where the dvalues of the Obs are used as xerror for the fit. 613 y : list 614 List of Obs, the dvalues of the Obs are used as yerror for the fit. 615 """ 616 617 def f(a, x): 618 y = a[0] + a[1] * x 619 return y 620 621 if all(isinstance(n, Obs) for n in x): 622 out = total_least_squares(x, y, f, **kwargs) 623 return out.fit_parameters 624 elif all(isinstance(n, float) or isinstance(n, int) for n in x) or isinstance(x, np.ndarray): 625 out = least_squares(x, y, f, **kwargs) 626 return out.fit_parameters 627 else: 628 raise Exception('Unsupported types for x') 629 630 631def qqplot(x, o_y, func, p): 632 """Generates a quantile-quantile plot of the fit result which can be used to 633 check if the residuals of the fit are gaussian distributed. 634 """ 635 636 residuals = [] 637 for i_x, i_y in zip(x, o_y): 638 residuals.append((i_y - func(p, i_x)) / i_y.dvalue) 639 residuals = sorted(residuals) 640 my_y = [o.value for o in residuals] 641 probplot = scipy.stats.probplot(my_y) 642 my_x = probplot[0][0] 643 plt.figure(figsize=(8, 8 / 1.618)) 644 plt.errorbar(my_x, my_y, fmt='o') 645 fit_start = my_x[0] 646 fit_stop = my_x[-1] 647 samples = np.arange(fit_start, fit_stop, 0.01) 648 plt.plot(samples, samples, 'k--', zorder=11, label='Standard normal distribution') 649 plt.plot(samples, probplot[1][0] * samples + probplot[1][1], zorder=10, label='Least squares fit, r=' + str(np.around(probplot[1][2], 3)), marker='', ls='-') 650 651 plt.xlabel('Theoretical quantiles') 652 plt.ylabel('Ordered Values') 653 plt.legend() 654 plt.draw() 655 656 657def residual_plot(x, y, func, fit_res): 658 """ Generates a plot which compares the fit to the data and displays the corresponding residuals""" 659 sorted_x = sorted(x) 660 xstart = sorted_x[0] - 0.5 * (sorted_x[1] - sorted_x[0]) 661 xstop = sorted_x[-1] + 0.5 * (sorted_x[-1] - sorted_x[-2]) 662 x_samples = np.arange(xstart, xstop + 0.01, 0.01) 663 664 plt.figure(figsize=(8, 8 / 1.618)) 665 gs = gridspec.GridSpec(2, 1, height_ratios=[3, 1], wspace=0.0, hspace=0.0) 666 ax0 = plt.subplot(gs[0]) 667 ax0.errorbar(x, [o.value for o in y], yerr=[o.dvalue for o in y], ls='none', fmt='o', capsize=3, markersize=5, label='Data') 668 ax0.plot(x_samples, func([o.value for o in fit_res], x_samples), label='Fit', zorder=10, ls='-', ms=0) 669 ax0.set_xticklabels([]) 670 ax0.set_xlim([xstart, xstop]) 671 ax0.set_xticklabels([]) 672 ax0.legend() 673 674 residuals = (np.asarray([o.value for o in y]) - func([o.value for o in fit_res], x)) / np.asarray([o.dvalue for o in y]) 675 ax1 = plt.subplot(gs[1]) 676 ax1.plot(x, residuals, 'ko', ls='none', markersize=5) 677 ax1.tick_params(direction='out') 678 ax1.tick_params(axis="x", bottom=True, top=True, labelbottom=True) 679 ax1.axhline(y=0.0, ls='--', color='k', marker=" ") 680 ax1.fill_between(x_samples, -1.0, 1.0, alpha=0.1, facecolor='k') 681 ax1.set_xlim([xstart, xstop]) 682 ax1.set_ylabel('Residuals') 683 plt.subplots_adjust(wspace=None, hspace=None) 684 plt.draw() 685 686 687def error_band(x, func, beta): 688 """Returns the error band for an array of sample values x, for given fit function func with optimized parameters beta.""" 689 cov = covariance(beta) 690 if np.any(np.abs(cov - cov.T) > 1000 * np.finfo(np.float64).eps): 691 warnings.warn("Covariance matrix is not symmetric within floating point precision", RuntimeWarning) 692 693 deriv = [] 694 for i, item in enumerate(x): 695 deriv.append(np.array(egrad(func)([o.value for o in beta], item))) 696 697 err = [] 698 for i, item in enumerate(x): 699 err.append(np.sqrt(deriv[i] @ cov @ deriv[i])) 700 err = np.array(err) 701 702 return err 703 704 705def ks_test(objects=None): 706 """Performs a Kolmogorov–Smirnov test for the p-values of all fit object. 707 708 Parameters 709 ---------- 710 objects : list 711 List of fit results to include in the analysis (optional). 712 """ 713 714 if objects is None: 715 obs_list = [] 716 for obj in gc.get_objects(): 717 if isinstance(obj, Fit_result): 718 obs_list.append(obj) 719 else: 720 obs_list = objects 721 722 p_values = [o.p_value for o in obs_list] 723 724 bins = len(p_values) 725 x = np.arange(0, 1.001, 0.001) 726 plt.plot(x, x, 'k', zorder=1) 727 plt.xlim(0, 1) 728 plt.ylim(0, 1) 729 plt.xlabel('p-value') 730 plt.ylabel('Cumulative probability') 731 plt.title(str(bins) + ' p-values') 732 733 n = np.arange(1, bins + 1) / np.float64(bins) 734 Xs = np.sort(p_values) 735 plt.step(Xs, n) 736 diffs = n - Xs 737 loc_max_diff = np.argmax(np.abs(diffs)) 738 loc = Xs[loc_max_diff] 739 plt.annotate('', xy=(loc, loc), xytext=(loc, loc + diffs[loc_max_diff]), arrowprops=dict(arrowstyle='<->', shrinkA=0, shrinkB=0)) 740 plt.draw() 741 742 print(scipy.stats.kstest(p_values, 'uniform'))
19class Fit_result(Sequence): 20 """Represents fit results. 21 22 Attributes 23 ---------- 24 fit_parameters : list 25 results for the individual fit parameters, 26 also accessible via indices. 27 """ 28 29 def __init__(self): 30 self.fit_parameters = None 31 32 def __getitem__(self, idx): 33 return self.fit_parameters[idx] 34 35 def __len__(self): 36 return len(self.fit_parameters) 37 38 def gamma_method(self): 39 """Apply the gamma method to all fit parameters""" 40 [o.gamma_method() for o in self.fit_parameters] 41 42 def __str__(self): 43 my_str = 'Goodness of fit:\n' 44 if hasattr(self, 'chisquare_by_dof'): 45 my_str += '\u03C7\u00b2/d.o.f. = ' + f'{self.chisquare_by_dof:2.6f}' + '\n' 46 elif hasattr(self, 'residual_variance'): 47 my_str += 'residual variance = ' + f'{self.residual_variance:2.6f}' + '\n' 48 if hasattr(self, 'chisquare_by_expected_chisquare'): 49 my_str += '\u03C7\u00b2/\u03C7\u00b2exp = ' + f'{self.chisquare_by_expected_chisquare:2.6f}' + '\n' 50 if hasattr(self, 'p_value'): 51 my_str += 'p-value = ' + f'{self.p_value:2.4f}' + '\n' 52 my_str += 'Fit parameters:\n' 53 for i_par, par in enumerate(self.fit_parameters): 54 my_str += str(i_par) + '\t' + ' ' * int(par >= 0) + str(par).rjust(int(par < 0.0)) + '\n' 55 return my_str 56 57 def __repr__(self): 58 m = max(map(len, list(self.__dict__.keys()))) + 1 59 return '\n'.join([key.rjust(m) + ': ' + repr(value) for key, value in sorted(self.__dict__.items())])
Represents fit results.
Attributes
- fit_parameters (list): results for the individual fit parameters, also accessible via indices.
38 def gamma_method(self): 39 """Apply the gamma method to all fit parameters""" 40 [o.gamma_method() for o in self.fit_parameters]
Apply the gamma method to all fit parameters
Inherited Members
- collections.abc.Sequence
- index
- count
62def least_squares(x, y, func, priors=None, silent=False, **kwargs): 63 r'''Performs a non-linear fit to y = func(x). 64 65 Parameters 66 ---------- 67 x : list 68 list of floats. 69 y : list 70 list of Obs. 71 func : object 72 fit function, has to be of the form 73 74 ```python 75 import autograd.numpy as anp 76 77 def func(a, x): 78 return a[0] + a[1] * x + a[2] * anp.sinh(x) 79 ``` 80 81 For multiple x values func can be of the form 82 83 ```python 84 def func(a, x): 85 (x1, x2) = x 86 return a[0] * x1 ** 2 + a[1] * x2 87 ``` 88 89 It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation 90 will not work. 91 priors : list, optional 92 priors has to be a list with an entry for every parameter in the fit. The entries can either be 93 Obs (e.g. results from a previous fit) or strings containing a value and an error formatted like 94 0.548(23), 500(40) or 0.5(0.4) 95 silent : bool, optional 96 If true all output to the console is omitted (default False). 97 initial_guess : list 98 can provide an initial guess for the input parameters. Relevant for 99 non-linear fits with many parameters. In case of correlated fits the guess is used to perform 100 an uncorrelated fit which then serves as guess for the correlated fit. 101 method : str, optional 102 can be used to choose an alternative method for the minimization of chisquare. 103 The possible methods are the ones which can be used for scipy.optimize.minimize and 104 migrad of iminuit. If no method is specified, Levenberg-Marquard is used. 105 Reliable alternatives are migrad, Powell and Nelder-Mead. 106 correlated_fit : bool 107 If True, use the full inverse covariance matrix in the definition of the chisquare cost function. 108 For details about how the covariance matrix is estimated see `pyerrors.obs.covariance`. 109 In practice the correlation matrix is Cholesky decomposed and inverted (instead of the covariance matrix). 110 This procedure should be numerically more stable as the correlation matrix is typically better conditioned (Jacobi preconditioning). 111 At the moment this option only works for `prior==None` and when no `method` is given. 112 expected_chisquare : bool 113 If True estimates the expected chisquare which is 114 corrected by effects caused by correlated input data (default False). 115 resplot : bool 116 If True, a plot which displays fit, data and residuals is generated (default False). 117 qqplot : bool 118 If True, a quantile-quantile plot of the fit result is generated (default False). 119 ''' 120 if priors is not None: 121 return _prior_fit(x, y, func, priors, silent=silent, **kwargs) 122 else: 123 return _standard_fit(x, y, func, silent=silent, **kwargs)
Performs a non-linear fit to y = func(x).
Parameters
- x (list): list of floats.
- y (list): list of Obs.
func (object): fit function, has to be of the form
import autograd.numpy as anp def func(a, x): return a[0] + a[1] * x + a[2] * anp.sinh(x)
For multiple x values func can be of the form
def func(a, x): (x1, x2) = x return a[0] * x1 ** 2 + a[1] * x2
It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation will not work.
- priors (list, optional): priors has to be a list with an entry for every parameter in the fit. The entries can either be Obs (e.g. results from a previous fit) or strings containing a value and an error formatted like 0.548(23), 500(40) or 0.5(0.4)
- silent (bool, optional): If true all output to the console is omitted (default False).
- initial_guess (list): can provide an initial guess for the input parameters. Relevant for non-linear fits with many parameters. In case of correlated fits the guess is used to perform an uncorrelated fit which then serves as guess for the correlated fit.
- method (str, optional): can be used to choose an alternative method for the minimization of chisquare. The possible methods are the ones which can be used for scipy.optimize.minimize and migrad of iminuit. If no method is specified, Levenberg-Marquard is used. Reliable alternatives are migrad, Powell and Nelder-Mead.
- correlated_fit (bool):
If True, use the full inverse covariance matrix in the definition of the chisquare cost function.
For details about how the covariance matrix is estimated see
pyerrors.obs.covariance
. In practice the correlation matrix is Cholesky decomposed and inverted (instead of the covariance matrix). This procedure should be numerically more stable as the correlation matrix is typically better conditioned (Jacobi preconditioning). At the moment this option only works forprior==None
and when nomethod
is given. - expected_chisquare (bool): If True estimates the expected chisquare which is corrected by effects caused by correlated input data (default False).
- resplot (bool): If True, a plot which displays fit, data and residuals is generated (default False).
- qqplot (bool): If True, a quantile-quantile plot of the fit result is generated (default False).
126def total_least_squares(x, y, func, silent=False, **kwargs): 127 r'''Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters. 128 129 Parameters 130 ---------- 131 x : list 132 list of Obs, or a tuple of lists of Obs 133 y : list 134 list of Obs. The dvalues of the Obs are used as x- and yerror for the fit. 135 func : object 136 func has to be of the form 137 138 ```python 139 import autograd.numpy as anp 140 141 def func(a, x): 142 return a[0] + a[1] * x + a[2] * anp.sinh(x) 143 ``` 144 145 For multiple x values func can be of the form 146 147 ```python 148 def func(a, x): 149 (x1, x2) = x 150 return a[0] * x1 ** 2 + a[1] * x2 151 ``` 152 153 It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation 154 will not work. 155 silent : bool, optional 156 If true all output to the console is omitted (default False). 157 initial_guess : list 158 can provide an initial guess for the input parameters. Relevant for non-linear 159 fits with many parameters. 160 expected_chisquare : bool 161 If true prints the expected chisquare which is 162 corrected by effects caused by correlated input data. 163 This can take a while as the full correlation matrix 164 has to be calculated (default False). 165 166 Notes 167 ----- 168 Based on the orthogonal distance regression module of scipy 169 ''' 170 171 output = Fit_result() 172 173 output.fit_function = func 174 175 x = np.array(x) 176 177 x_shape = x.shape 178 179 if not callable(func): 180 raise TypeError('func has to be a function.') 181 182 for i in range(25): 183 try: 184 func(np.arange(i), x.T[0]) 185 except Exception: 186 pass 187 else: 188 break 189 190 n_parms = i 191 if not silent: 192 print('Fit with', n_parms, 'parameter' + 's' * (n_parms > 1)) 193 194 x_f = np.vectorize(lambda o: o.value)(x) 195 dx_f = np.vectorize(lambda o: o.dvalue)(x) 196 y_f = np.array([o.value for o in y]) 197 dy_f = np.array([o.dvalue for o in y]) 198 199 if np.any(np.asarray(dx_f) <= 0.0): 200 raise Exception('No x errors available, run the gamma method first.') 201 202 if np.any(np.asarray(dy_f) <= 0.0): 203 raise Exception('No y errors available, run the gamma method first.') 204 205 if 'initial_guess' in kwargs: 206 x0 = kwargs.get('initial_guess') 207 if len(x0) != n_parms: 208 raise Exception('Initial guess does not have the correct length: %d vs. %d' % (len(x0), n_parms)) 209 else: 210 x0 = [1] * n_parms 211 212 data = RealData(x_f, y_f, sx=dx_f, sy=dy_f) 213 model = Model(func) 214 odr = ODR(data, model, x0, partol=np.finfo(np.float64).eps) 215 odr.set_job(fit_type=0, deriv=1) 216 out = odr.run() 217 218 output.residual_variance = out.res_var 219 220 output.method = 'ODR' 221 222 output.message = out.stopreason 223 224 output.xplus = out.xplus 225 226 if not silent: 227 print('Method: ODR') 228 print(*out.stopreason) 229 print('Residual variance:', output.residual_variance) 230 231 if out.info > 3: 232 raise Exception('The minimization procedure did not converge.') 233 234 m = x_f.size 235 236 def odr_chisquare(p): 237 model = func(p[:n_parms], p[n_parms:].reshape(x_shape)) 238 chisq = anp.sum(((y_f - model) / dy_f) ** 2) + anp.sum(((x_f - p[n_parms:].reshape(x_shape)) / dx_f) ** 2) 239 return chisq 240 241 if kwargs.get('expected_chisquare') is True: 242 W = np.diag(1 / np.asarray(np.concatenate((dy_f.ravel(), dx_f.ravel())))) 243 244 if kwargs.get('covariance') is not None: 245 cov = kwargs.get('covariance') 246 else: 247 cov = covariance(np.concatenate((y, x.ravel()))) 248 249 number_of_x_parameters = int(m / x_f.shape[-1]) 250 251 old_jac = jacobian(func)(out.beta, out.xplus) 252 fused_row1 = np.concatenate((old_jac, np.concatenate((number_of_x_parameters * [np.zeros(old_jac.shape)]), axis=0))) 253 fused_row2 = np.concatenate((jacobian(lambda x, y: func(y, x))(out.xplus, out.beta).reshape(x_f.shape[-1], x_f.shape[-1] * number_of_x_parameters), np.identity(number_of_x_parameters * old_jac.shape[0]))) 254 new_jac = np.concatenate((fused_row1, fused_row2), axis=1) 255 256 A = W @ new_jac 257 P_phi = A @ np.linalg.pinv(A.T @ A) @ A.T 258 expected_chisquare = np.trace((np.identity(P_phi.shape[0]) - P_phi) @ W @ cov @ W) 259 if expected_chisquare <= 0.0: 260 warnings.warn("Negative expected_chisquare.", RuntimeWarning) 261 expected_chisquare = np.abs(expected_chisquare) 262 output.chisquare_by_expected_chisquare = odr_chisquare(np.concatenate((out.beta, out.xplus.ravel()))) / expected_chisquare 263 if not silent: 264 print('chisquare/expected_chisquare:', 265 output.chisquare_by_expected_chisquare) 266 267 fitp = out.beta 268 try: 269 hess = jacobian(jacobian(odr_chisquare))(np.concatenate((fitp, out.xplus.ravel()))) 270 except TypeError: 271 raise Exception("It is required to use autograd.numpy instead of numpy within fit functions, see the documentation for details.") from None 272 273 def odr_chisquare_compact_x(d): 274 model = func(d[:n_parms], d[n_parms:n_parms + m].reshape(x_shape)) 275 chisq = anp.sum(((y_f - model) / dy_f) ** 2) + anp.sum(((d[n_parms + m:].reshape(x_shape) - d[n_parms:n_parms + m].reshape(x_shape)) / dx_f) ** 2) 276 return chisq 277 278 jac_jac_x = jacobian(jacobian(odr_chisquare_compact_x))(np.concatenate((fitp, out.xplus.ravel(), x_f.ravel()))) 279 280 # Compute hess^{-1} @ jac_jac_x[:n_parms + m, n_parms + m:] using LAPACK dgesv 281 try: 282 deriv_x = -scipy.linalg.solve(hess, jac_jac_x[:n_parms + m, n_parms + m:]) 283 except np.linalg.LinAlgError: 284 raise Exception("Cannot invert hessian matrix.") 285 286 def odr_chisquare_compact_y(d): 287 model = func(d[:n_parms], d[n_parms:n_parms + m].reshape(x_shape)) 288 chisq = anp.sum(((d[n_parms + m:] - model) / dy_f) ** 2) + anp.sum(((x_f - d[n_parms:n_parms + m].reshape(x_shape)) / dx_f) ** 2) 289 return chisq 290 291 jac_jac_y = jacobian(jacobian(odr_chisquare_compact_y))(np.concatenate((fitp, out.xplus.ravel(), y_f))) 292 293 # Compute hess^{-1} @ jac_jac_y[:n_parms + m, n_parms + m:] using LAPACK dgesv 294 try: 295 deriv_y = -scipy.linalg.solve(hess, jac_jac_y[:n_parms + m, n_parms + m:]) 296 except np.linalg.LinAlgError: 297 raise Exception("Cannot invert hessian matrix.") 298 299 result = [] 300 for i in range(n_parms): 301 result.append(derived_observable(lambda my_var, **kwargs: (my_var[0] + np.finfo(np.float64).eps) / (x.ravel()[0].value + np.finfo(np.float64).eps) * out.beta[i], list(x.ravel()) + list(y), man_grad=list(deriv_x[i]) + list(deriv_y[i]))) 302 303 output.fit_parameters = result 304 305 output.odr_chisquare = odr_chisquare(np.concatenate((out.beta, out.xplus.ravel()))) 306 output.dof = x.shape[-1] - n_parms 307 output.p_value = 1 - chi2.cdf(output.odr_chisquare, output.dof) 308 309 return output
Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.
Parameters
- x (list): list of Obs, or a tuple of lists of Obs
- y (list): list of Obs. The dvalues of the Obs are used as x- and yerror for the fit.
func (object): func has to be of the form
import autograd.numpy as anp def func(a, x): return a[0] + a[1] * x + a[2] * anp.sinh(x)
For multiple x values func can be of the form
def func(a, x): (x1, x2) = x return a[0] * x1 ** 2 + a[1] * x2
It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation will not work.
- silent (bool, optional): If true all output to the console is omitted (default False).
- initial_guess (list): can provide an initial guess for the input parameters. Relevant for non-linear fits with many parameters.
- expected_chisquare (bool): If true prints the expected chisquare which is corrected by effects caused by correlated input data. This can take a while as the full correlation matrix has to be calculated (default False).
Notes
Based on the orthogonal distance regression module of scipy
606def fit_lin(x, y, **kwargs): 607 """Performs a linear fit to y = n + m * x and returns two Obs n, m. 608 609 Parameters 610 ---------- 611 x : list 612 Can either be a list of floats in which case no xerror is assumed, or 613 a list of Obs, where the dvalues of the Obs are used as xerror for the fit. 614 y : list 615 List of Obs, the dvalues of the Obs are used as yerror for the fit. 616 """ 617 618 def f(a, x): 619 y = a[0] + a[1] * x 620 return y 621 622 if all(isinstance(n, Obs) for n in x): 623 out = total_least_squares(x, y, f, **kwargs) 624 return out.fit_parameters 625 elif all(isinstance(n, float) or isinstance(n, int) for n in x) or isinstance(x, np.ndarray): 626 out = least_squares(x, y, f, **kwargs) 627 return out.fit_parameters 628 else: 629 raise Exception('Unsupported types for x')
Performs a linear fit to y = n + m * x and returns two Obs n, m.
Parameters
- x (list): Can either be a list of floats in which case no xerror is assumed, or a list of Obs, where the dvalues of the Obs are used as xerror for the fit.
- y (list): List of Obs, the dvalues of the Obs are used as yerror for the fit.
632def qqplot(x, o_y, func, p): 633 """Generates a quantile-quantile plot of the fit result which can be used to 634 check if the residuals of the fit are gaussian distributed. 635 """ 636 637 residuals = [] 638 for i_x, i_y in zip(x, o_y): 639 residuals.append((i_y - func(p, i_x)) / i_y.dvalue) 640 residuals = sorted(residuals) 641 my_y = [o.value for o in residuals] 642 probplot = scipy.stats.probplot(my_y) 643 my_x = probplot[0][0] 644 plt.figure(figsize=(8, 8 / 1.618)) 645 plt.errorbar(my_x, my_y, fmt='o') 646 fit_start = my_x[0] 647 fit_stop = my_x[-1] 648 samples = np.arange(fit_start, fit_stop, 0.01) 649 plt.plot(samples, samples, 'k--', zorder=11, label='Standard normal distribution') 650 plt.plot(samples, probplot[1][0] * samples + probplot[1][1], zorder=10, label='Least squares fit, r=' + str(np.around(probplot[1][2], 3)), marker='', ls='-') 651 652 plt.xlabel('Theoretical quantiles') 653 plt.ylabel('Ordered Values') 654 plt.legend() 655 plt.draw()
Generates a quantile-quantile plot of the fit result which can be used to check if the residuals of the fit are gaussian distributed.
658def residual_plot(x, y, func, fit_res): 659 """ Generates a plot which compares the fit to the data and displays the corresponding residuals""" 660 sorted_x = sorted(x) 661 xstart = sorted_x[0] - 0.5 * (sorted_x[1] - sorted_x[0]) 662 xstop = sorted_x[-1] + 0.5 * (sorted_x[-1] - sorted_x[-2]) 663 x_samples = np.arange(xstart, xstop + 0.01, 0.01) 664 665 plt.figure(figsize=(8, 8 / 1.618)) 666 gs = gridspec.GridSpec(2, 1, height_ratios=[3, 1], wspace=0.0, hspace=0.0) 667 ax0 = plt.subplot(gs[0]) 668 ax0.errorbar(x, [o.value for o in y], yerr=[o.dvalue for o in y], ls='none', fmt='o', capsize=3, markersize=5, label='Data') 669 ax0.plot(x_samples, func([o.value for o in fit_res], x_samples), label='Fit', zorder=10, ls='-', ms=0) 670 ax0.set_xticklabels([]) 671 ax0.set_xlim([xstart, xstop]) 672 ax0.set_xticklabels([]) 673 ax0.legend() 674 675 residuals = (np.asarray([o.value for o in y]) - func([o.value for o in fit_res], x)) / np.asarray([o.dvalue for o in y]) 676 ax1 = plt.subplot(gs[1]) 677 ax1.plot(x, residuals, 'ko', ls='none', markersize=5) 678 ax1.tick_params(direction='out') 679 ax1.tick_params(axis="x", bottom=True, top=True, labelbottom=True) 680 ax1.axhline(y=0.0, ls='--', color='k', marker=" ") 681 ax1.fill_between(x_samples, -1.0, 1.0, alpha=0.1, facecolor='k') 682 ax1.set_xlim([xstart, xstop]) 683 ax1.set_ylabel('Residuals') 684 plt.subplots_adjust(wspace=None, hspace=None) 685 plt.draw()
Generates a plot which compares the fit to the data and displays the corresponding residuals
688def error_band(x, func, beta): 689 """Returns the error band for an array of sample values x, for given fit function func with optimized parameters beta.""" 690 cov = covariance(beta) 691 if np.any(np.abs(cov - cov.T) > 1000 * np.finfo(np.float64).eps): 692 warnings.warn("Covariance matrix is not symmetric within floating point precision", RuntimeWarning) 693 694 deriv = [] 695 for i, item in enumerate(x): 696 deriv.append(np.array(egrad(func)([o.value for o in beta], item))) 697 698 err = [] 699 for i, item in enumerate(x): 700 err.append(np.sqrt(deriv[i] @ cov @ deriv[i])) 701 err = np.array(err) 702 703 return err
Returns the error band for an array of sample values x, for given fit function func with optimized parameters beta.
706def ks_test(objects=None): 707 """Performs a Kolmogorov–Smirnov test for the p-values of all fit object. 708 709 Parameters 710 ---------- 711 objects : list 712 List of fit results to include in the analysis (optional). 713 """ 714 715 if objects is None: 716 obs_list = [] 717 for obj in gc.get_objects(): 718 if isinstance(obj, Fit_result): 719 obs_list.append(obj) 720 else: 721 obs_list = objects 722 723 p_values = [o.p_value for o in obs_list] 724 725 bins = len(p_values) 726 x = np.arange(0, 1.001, 0.001) 727 plt.plot(x, x, 'k', zorder=1) 728 plt.xlim(0, 1) 729 plt.ylim(0, 1) 730 plt.xlabel('p-value') 731 plt.ylabel('Cumulative probability') 732 plt.title(str(bins) + ' p-values') 733 734 n = np.arange(1, bins + 1) / np.float64(bins) 735 Xs = np.sort(p_values) 736 plt.step(Xs, n) 737 diffs = n - Xs 738 loc_max_diff = np.argmax(np.abs(diffs)) 739 loc = Xs[loc_max_diff] 740 plt.annotate('', xy=(loc, loc), xytext=(loc, loc + diffs[loc_max_diff]), arrowprops=dict(arrowstyle='<->', shrinkA=0, shrinkB=0)) 741 plt.draw() 742 743 print(scipy.stats.kstest(p_values, 'uniform'))
Performs a Kolmogorov–Smirnov test for the p-values of all fit object.
Parameters
- objects (list): List of fit results to include in the analysis (optional).