pyerrors.input.hadrons
View Source
import os import h5py import numpy as np from ..obs import Obs, CObs from ..correlators import Corr def _get_files(path, filestem, idl): ls = os.listdir(path) # Clean up file list files = list(filter(lambda x: x.startswith(filestem), ls)) if not files: raise Exception('No files starting with', filestem, 'in folder', path) def get_cnfg_number(n): return int(n[len(filestem) + 1:-3]) # Sort according to configuration number files.sort(key=get_cnfg_number) cnfg_numbers = [] filtered_files = [] for line in files: no = get_cnfg_number(line) if idl: if no in list(idl): filtered_files.append(line) cnfg_numbers.append(no) else: filtered_files.append(line) cnfg_numbers.append(no) # Check that configurations are evenly spaced dc = np.unique(np.diff(cnfg_numbers)) if np.any(dc < 0): raise Exception("Unsorted files") if len(dc) == 1: idx = range(cnfg_numbers[0], cnfg_numbers[-1] + dc[0], dc[0]) else: raise Exception('Configurations are not evenly spaced.') return filtered_files, idx def read_meson_hd5(path, filestem, ens_id, meson='meson_0', tree='meson', idl=None): """Read hadrons meson hdf5 file and extract the meson labeled 'meson' Parameters ----------------- path : str path to the files to read filestem : str namestem of the files to read ens_id : str name of the ensemble, required for internal bookkeeping meson : str label of the meson to be extracted, standard value meson_0 which corresponds to the pseudoscalar pseudoscalar two-point function. tree : str Label of the upmost directory in the hdf5 file, default 'meson' for outputs of the Meson module. Can be altered to read input from other modules with similar structures. idl : range If specified only configurations in the given range are read in. """ files, idx = _get_files(path, filestem, idl) corr_data = [] infos = [] for hd5_file in files: file = h5py.File(path + '/' + hd5_file, "r") raw_data = list(file[tree + '/' + meson + '/corr']) real_data = [o[0] for o in raw_data] corr_data.append(real_data) if not infos: for k, i in file[tree + '/' + meson].attrs.items(): infos.append(k + ': ' + i[0].decode()) file.close() corr_data = np.array(corr_data) l_obs = [] for c in corr_data.T: l_obs.append(Obs([c], [ens_id], idl=[idx])) corr = Corr(l_obs) corr.tag = r", ".join(infos) return corr class Npr_matrix(np.ndarray): def __new__(cls, input_array, mom_in=None, mom_out=None): obj = np.asarray(input_array).view(cls) obj.mom_in = mom_in obj.mom_out = mom_out return obj @property def g5H(self): """Gamma_5 hermitean conjugate Uses the fact that the propagator is gamma5 hermitean, so just the in and out momenta of the propagator are exchanged. """ return Npr_matrix(self, mom_in=self.mom_out, mom_out=self.mom_in) def _propagate_mom(self, other, name): s_mom = getattr(self, name, None) o_mom = getattr(other, name, None) if s_mom is not None and o_mom is not None: if not np.allclose(s_mom, o_mom): raise Exception(name + ' does not match.') return o_mom if o_mom is not None else s_mom def __matmul__(self, other): return self.__new__(Npr_matrix, super().__matmul__(other), self._propagate_mom(other, 'mom_in'), self._propagate_mom(other, 'mom_out')) def __array_finalize__(self, obj): if obj is None: return self.mom_in = getattr(obj, 'mom_in', None) self.mom_out = getattr(obj, 'mom_out', None) def read_ExternalLeg_hd5(path, filestem, ens_id, idl=None): """Read hadrons ExternalLeg hdf5 file and output an array of CObs Parameters ---------- path : str path to the files to read filestem : str namestem of the files to read ens_id : str name of the ensemble, required for internal bookkeeping idl : range If specified only configurations in the given range are read in. """ files, idx = _get_files(path, filestem, idl) mom = None corr_data = [] for hd5_file in files: file = h5py.File(path + '/' + hd5_file, "r") raw_data = file['ExternalLeg/corr'][0][0].view('complex') corr_data.append(raw_data) if mom is None: mom = np.array(str(file['ExternalLeg/info'].attrs['pIn'])[3:-2].strip().split(' '), dtype=int) file.close() corr_data = np.array(corr_data) rolled_array = np.rollaxis(corr_data, 0, 5) matrix = np.empty((rolled_array.shape[:-1]), dtype=object) for si, sj, ci, cj in np.ndindex(rolled_array.shape[:-1]): real = Obs([rolled_array[si, sj, ci, cj].real], [ens_id], idl=[idx]) imag = Obs([rolled_array[si, sj, ci, cj].imag], [ens_id], idl=[idx]) matrix[si, sj, ci, cj] = CObs(real, imag) return Npr_matrix(matrix, mom_in=mom) def read_Bilinear_hd5(path, filestem, ens_id, idl=None): """Read hadrons Bilinear hdf5 file and output an array of CObs Parameters ---------- path : str path to the files to read filestem : str namestem of the files to read ens_id : str name of the ensemble, required for internal bookkeeping idl : range If specified only configurations in the given range are read in. """ files, idx = _get_files(path, filestem, idl) mom_in = None mom_out = None corr_data = {} for hd5_file in files: file = h5py.File(path + '/' + hd5_file, "r") for i in range(16): name = file['Bilinear/Bilinear_' + str(i) + '/info'].attrs['gamma'][0].decode('UTF-8') if name not in corr_data: corr_data[name] = [] raw_data = file['Bilinear/Bilinear_' + str(i) + '/corr'][0][0].view('complex') corr_data[name].append(raw_data) if mom_in is None: mom_in = np.array(str(file['Bilinear/Bilinear_' + str(i) + '/info'].attrs['pIn'])[3:-2].strip().split(' '), dtype=int) if mom_out is None: mom_out = np.array(str(file['Bilinear/Bilinear_' + str(i) + '/info'].attrs['pOut'])[3:-2].strip().split(' '), dtype=int) file.close() result_dict = {} for key, data in corr_data.items(): local_data = np.array(data) rolled_array = np.rollaxis(local_data, 0, 5) matrix = np.empty((rolled_array.shape[:-1]), dtype=object) for si, sj, ci, cj in np.ndindex(rolled_array.shape[:-1]): real = Obs([rolled_array[si, sj, ci, cj].real], [ens_id], idl=[idx]) imag = Obs([rolled_array[si, sj, ci, cj].imag], [ens_id], idl=[idx]) matrix[si, sj, ci, cj] = CObs(real, imag) result_dict[key] = Npr_matrix(matrix, mom_in=mom_in, mom_out=mom_out) return result_dict def read_Fourquark_hd5(path, filestem, ens_id, idl=None, vertices=["VA", "AV"]): """Read hadrons FourquarkFullyConnected hdf5 file and output an array of CObs Parameters ---------- path : str path to the files to read filestem : str namestem of the files to read ens_id : str name of the ensemble, required for internal bookkeeping idl : range If specified only configurations in the given range are read in. vertices : list Vertex functions to be extracted. """ files, idx = _get_files(path, filestem, idl) mom_in = None mom_out = None vertex_names = [] for vertex in vertices: vertex_names += _get_lorentz_names(vertex) corr_data = {} tree = 'FourQuarkFullyConnected/FourQuarkFullyConnected_' for hd5_file in files: file = h5py.File(path + '/' + hd5_file, "r") for i in range(32): name = (file[tree + str(i) + '/info'].attrs['gammaA'][0].decode('UTF-8'), file[tree + str(i) + '/info'].attrs['gammaB'][0].decode('UTF-8')) if name in vertex_names: if name not in corr_data: corr_data[name] = [] raw_data = file[tree + str(i) + '/corr'][0][0].view('complex') corr_data[name].append(raw_data) if mom_in is None: mom_in = np.array(str(file[tree + str(i) + '/info'].attrs['pIn'])[3:-2].strip().split(' '), dtype=int) if mom_out is None: mom_out = np.array(str(file[tree + str(i) + '/info'].attrs['pOut'])[3:-2].strip().split(' '), dtype=int) file.close() intermediate_dict = {} for vertex in vertices: lorentz_names = _get_lorentz_names(vertex) for v_name in lorentz_names: if vertex not in intermediate_dict: intermediate_dict[vertex] = np.array(corr_data[v_name]) else: intermediate_dict[vertex] += np.array(corr_data[v_name]) result_dict = {} for key, data in intermediate_dict.items(): rolled_array = np.moveaxis(data, 0, 8) matrix = np.empty((rolled_array.shape[:-1]), dtype=object) for index in np.ndindex(rolled_array.shape[:-1]): real = Obs([rolled_array[index].real], [ens_id], idl=[idx]) imag = Obs([rolled_array[index].imag], [ens_id], idl=[idx]) matrix[index] = CObs(real, imag) result_dict[key] = Npr_matrix(matrix, mom_in=mom_in, mom_out=mom_out) return result_dict def _get_lorentz_names(name): assert len(name) == 2 res = [] if not set(name) <= set(['S', 'P', 'V', 'A', 'T']): raise Exception("Name can only contain 'S', 'P', 'V', 'A' or 'T'") if 'S' in name or 'P' in name: if not set(name) <= set(['S', 'P']): raise Exception("'" + name + "' is not a Lorentz scalar") g_names = {'S': 'Identity', 'P': 'Gamma5'} res.append((g_names[name[0]], g_names[name[1]])) elif 'T' in name: if not set(name) <= set(['T']): raise Exception("'" + name + "' is not a Lorentz scalar") raise Exception("Tensor operators not yet implemented.") else: if not set(name) <= set(['V', 'A']): raise Exception("'" + name + "' is not a Lorentz scalar") lorentz_index = ['X', 'Y', 'Z', 'T'] for ind in lorentz_index: res.append(('Gamma' + ind + (name[0] == 'A') * 'Gamma5', 'Gamma' + ind + (name[1] == 'A') * 'Gamma5')) return res
View Source
def read_meson_hd5(path, filestem, ens_id, meson='meson_0', tree='meson', idl=None): """Read hadrons meson hdf5 file and extract the meson labeled 'meson' Parameters ----------------- path : str path to the files to read filestem : str namestem of the files to read ens_id : str name of the ensemble, required for internal bookkeeping meson : str label of the meson to be extracted, standard value meson_0 which corresponds to the pseudoscalar pseudoscalar two-point function. tree : str Label of the upmost directory in the hdf5 file, default 'meson' for outputs of the Meson module. Can be altered to read input from other modules with similar structures. idl : range If specified only configurations in the given range are read in. """ files, idx = _get_files(path, filestem, idl) corr_data = [] infos = [] for hd5_file in files: file = h5py.File(path + '/' + hd5_file, "r") raw_data = list(file[tree + '/' + meson + '/corr']) real_data = [o[0] for o in raw_data] corr_data.append(real_data) if not infos: for k, i in file[tree + '/' + meson].attrs.items(): infos.append(k + ': ' + i[0].decode()) file.close() corr_data = np.array(corr_data) l_obs = [] for c in corr_data.T: l_obs.append(Obs([c], [ens_id], idl=[idx])) corr = Corr(l_obs) corr.tag = r", ".join(infos) return corr
Read hadrons meson hdf5 file and extract the meson labeled 'meson'
Parameters
- path (str): path to the files to read
- filestem (str): namestem of the files to read
- ens_id (str): name of the ensemble, required for internal bookkeeping
- meson (str): label of the meson to be extracted, standard value meson_0 which corresponds to the pseudoscalar pseudoscalar two-point function.
- tree (str): Label of the upmost directory in the hdf5 file, default 'meson' for outputs of the Meson module. Can be altered to read input from other modules with similar structures.
- idl (range): If specified only configurations in the given range are read in.
View Source
class Npr_matrix(np.ndarray): def __new__(cls, input_array, mom_in=None, mom_out=None): obj = np.asarray(input_array).view(cls) obj.mom_in = mom_in obj.mom_out = mom_out return obj @property def g5H(self): """Gamma_5 hermitean conjugate Uses the fact that the propagator is gamma5 hermitean, so just the in and out momenta of the propagator are exchanged. """ return Npr_matrix(self, mom_in=self.mom_out, mom_out=self.mom_in) def _propagate_mom(self, other, name): s_mom = getattr(self, name, None) o_mom = getattr(other, name, None) if s_mom is not None and o_mom is not None: if not np.allclose(s_mom, o_mom): raise Exception(name + ' does not match.') return o_mom if o_mom is not None else s_mom def __matmul__(self, other): return self.__new__(Npr_matrix, super().__matmul__(other), self._propagate_mom(other, 'mom_in'), self._propagate_mom(other, 'mom_out')) def __array_finalize__(self, obj): if obj is None: return self.mom_in = getattr(obj, 'mom_in', None) self.mom_out = getattr(obj, 'mom_out', None)
ndarray(shape, dtype=float, buffer=None, offset=0, strides=None, order=None)
An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory, whether it is an integer, a floating point number, or something else, etc.)
Arrays should be constructed using array
, zeros
or empty
(refer
to the See Also section below). The parameters given here refer to
a low-level method (ndarray(...)
) for instantiating an array.
For more information, refer to the numpy
module and examine the
methods and attributes of an array.
Parameters
- (for the __new__ method; see Notes below)
- shape (tuple of ints): Shape of created array.
- dtype (data-type, optional): Any object that can be interpreted as a numpy data type.
- buffer (object exposing buffer interface, optional): Used to fill the array with data.
- offset (int, optional): Offset of array data in buffer.
- strides (tuple of ints, optional): Strides of data in memory.
- order ({'C', 'F'}, optional): Row-major (C-style) or column-major (Fortran-style) order.
Attributes
- T (ndarray): Transpose of the array.
- data (buffer): The array's elements, in memory.
- dtype (dtype object): Describes the format of the elements in the array.
- flags (dict): Dictionary containing information related to memory use, e.g., 'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc.
- flat (numpy.flatiter object):
Flattened version of the array as an iterator. The iterator
allows assignments, e.g.,
x.flat = 3
(Seendarray.flat
for assignment examples; TODO). - imag (ndarray): Imaginary part of the array.
- real (ndarray): Real part of the array.
- size (int): Number of elements in the array.
- itemsize (int): The memory use of each array element in bytes.
- nbytes (int):
The total number of bytes required to store the array data,
i.e.,
itemsize * size
. - ndim (int): The array's number of dimensions.
- shape (tuple of ints): Shape of the array.
- strides (tuple of ints):
The step-size required to move from one element to the next in
memory. For example, a contiguous
(3, 4)
array of typeint16
in C-order has strides(8, 2)
. This implies that to move from element to element in memory requires jumps of 2 bytes. To move from row-to-row, one needs to jump 8 bytes at a time (2 * 4
). - ctypes (ctypes object): Class containing properties of the array needed for interaction with ctypes.
- base (ndarray):
If the array is a view into another array, that array is its
base
(unless that array is also a view). Thebase
array is where the array data is actually stored.
See Also
array
: Construct an array.
zeros
: Create an array, each element of which is zero.
empty
: Create an array, but leave its allocated memory unchanged (i.e.,
it contains "garbage").
dtype
: Create a data-type.
numpy.typing.NDArray
: A :term:generic <generic type>
version
of ndarray.
Notes
There are two modes of creating an array using __new__
:
- If
buffer
is None, then onlyshape
,dtype
, andorder
are used. - If
buffer
is an object exposing the buffer interface, then all keywords are interpreted.
No __init__
method is needed because the array is fully initialized
after the __new__
method.
Examples
These examples illustrate the low-level ndarray
constructor. Refer
to the See Also
section above for easier ways of constructing an
ndarray.
First mode, buffer
is None:
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[0.0e+000, 0.0e+000], # random
[ nan, 2.5e-323]])
Second mode:
>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])
Gamma_5 hermitean conjugate
Uses the fact that the propagator is gamma5 hermitean, so just the in and out momenta of the propagator are exchanged.
Inherited Members
- numpy.ndarray
- dumps
- dump
- all
- any
- argmax
- argmin
- argpartition
- argsort
- astype
- byteswap
- choose
- clip
- compress
- conj
- conjugate
- copy
- cumprod
- cumsum
- diagonal
- dot
- fill
- flatten
- getfield
- item
- itemset
- max
- mean
- min
- newbyteorder
- nonzero
- partition
- prod
- ptp
- put
- ravel
- repeat
- reshape
- resize
- round
- searchsorted
- setfield
- setflags
- sort
- squeeze
- std
- sum
- swapaxes
- take
- tobytes
- tofile
- tolist
- tostring
- trace
- transpose
- var
- view
- ndim
- flags
- shape
- strides
- data
- itemsize
- size
- nbytes
- base
- dtype
- real
- imag
- flat
- ctypes
- T
View Source
def read_ExternalLeg_hd5(path, filestem, ens_id, idl=None): """Read hadrons ExternalLeg hdf5 file and output an array of CObs Parameters ---------- path : str path to the files to read filestem : str namestem of the files to read ens_id : str name of the ensemble, required for internal bookkeeping idl : range If specified only configurations in the given range are read in. """ files, idx = _get_files(path, filestem, idl) mom = None corr_data = [] for hd5_file in files: file = h5py.File(path + '/' + hd5_file, "r") raw_data = file['ExternalLeg/corr'][0][0].view('complex') corr_data.append(raw_data) if mom is None: mom = np.array(str(file['ExternalLeg/info'].attrs['pIn'])[3:-2].strip().split(' '), dtype=int) file.close() corr_data = np.array(corr_data) rolled_array = np.rollaxis(corr_data, 0, 5) matrix = np.empty((rolled_array.shape[:-1]), dtype=object) for si, sj, ci, cj in np.ndindex(rolled_array.shape[:-1]): real = Obs([rolled_array[si, sj, ci, cj].real], [ens_id], idl=[idx]) imag = Obs([rolled_array[si, sj, ci, cj].imag], [ens_id], idl=[idx]) matrix[si, sj, ci, cj] = CObs(real, imag) return Npr_matrix(matrix, mom_in=mom)
Read hadrons ExternalLeg hdf5 file and output an array of CObs
Parameters
- path (str): path to the files to read
- filestem (str): namestem of the files to read
- ens_id (str): name of the ensemble, required for internal bookkeeping
- idl (range): If specified only configurations in the given range are read in.
View Source
def read_Bilinear_hd5(path, filestem, ens_id, idl=None): """Read hadrons Bilinear hdf5 file and output an array of CObs Parameters ---------- path : str path to the files to read filestem : str namestem of the files to read ens_id : str name of the ensemble, required for internal bookkeeping idl : range If specified only configurations in the given range are read in. """ files, idx = _get_files(path, filestem, idl) mom_in = None mom_out = None corr_data = {} for hd5_file in files: file = h5py.File(path + '/' + hd5_file, "r") for i in range(16): name = file['Bilinear/Bilinear_' + str(i) + '/info'].attrs['gamma'][0].decode('UTF-8') if name not in corr_data: corr_data[name] = [] raw_data = file['Bilinear/Bilinear_' + str(i) + '/corr'][0][0].view('complex') corr_data[name].append(raw_data) if mom_in is None: mom_in = np.array(str(file['Bilinear/Bilinear_' + str(i) + '/info'].attrs['pIn'])[3:-2].strip().split(' '), dtype=int) if mom_out is None: mom_out = np.array(str(file['Bilinear/Bilinear_' + str(i) + '/info'].attrs['pOut'])[3:-2].strip().split(' '), dtype=int) file.close() result_dict = {} for key, data in corr_data.items(): local_data = np.array(data) rolled_array = np.rollaxis(local_data, 0, 5) matrix = np.empty((rolled_array.shape[:-1]), dtype=object) for si, sj, ci, cj in np.ndindex(rolled_array.shape[:-1]): real = Obs([rolled_array[si, sj, ci, cj].real], [ens_id], idl=[idx]) imag = Obs([rolled_array[si, sj, ci, cj].imag], [ens_id], idl=[idx]) matrix[si, sj, ci, cj] = CObs(real, imag) result_dict[key] = Npr_matrix(matrix, mom_in=mom_in, mom_out=mom_out) return result_dict
Read hadrons Bilinear hdf5 file and output an array of CObs
Parameters
- path (str): path to the files to read
- filestem (str): namestem of the files to read
- ens_id (str): name of the ensemble, required for internal bookkeeping
- idl (range): If specified only configurations in the given range are read in.
View Source
def read_Fourquark_hd5(path, filestem, ens_id, idl=None, vertices=["VA", "AV"]): """Read hadrons FourquarkFullyConnected hdf5 file and output an array of CObs Parameters ---------- path : str path to the files to read filestem : str namestem of the files to read ens_id : str name of the ensemble, required for internal bookkeeping idl : range If specified only configurations in the given range are read in. vertices : list Vertex functions to be extracted. """ files, idx = _get_files(path, filestem, idl) mom_in = None mom_out = None vertex_names = [] for vertex in vertices: vertex_names += _get_lorentz_names(vertex) corr_data = {} tree = 'FourQuarkFullyConnected/FourQuarkFullyConnected_' for hd5_file in files: file = h5py.File(path + '/' + hd5_file, "r") for i in range(32): name = (file[tree + str(i) + '/info'].attrs['gammaA'][0].decode('UTF-8'), file[tree + str(i) + '/info'].attrs['gammaB'][0].decode('UTF-8')) if name in vertex_names: if name not in corr_data: corr_data[name] = [] raw_data = file[tree + str(i) + '/corr'][0][0].view('complex') corr_data[name].append(raw_data) if mom_in is None: mom_in = np.array(str(file[tree + str(i) + '/info'].attrs['pIn'])[3:-2].strip().split(' '), dtype=int) if mom_out is None: mom_out = np.array(str(file[tree + str(i) + '/info'].attrs['pOut'])[3:-2].strip().split(' '), dtype=int) file.close() intermediate_dict = {} for vertex in vertices: lorentz_names = _get_lorentz_names(vertex) for v_name in lorentz_names: if vertex not in intermediate_dict: intermediate_dict[vertex] = np.array(corr_data[v_name]) else: intermediate_dict[vertex] += np.array(corr_data[v_name]) result_dict = {} for key, data in intermediate_dict.items(): rolled_array = np.moveaxis(data, 0, 8) matrix = np.empty((rolled_array.shape[:-1]), dtype=object) for index in np.ndindex(rolled_array.shape[:-1]): real = Obs([rolled_array[index].real], [ens_id], idl=[idx]) imag = Obs([rolled_array[index].imag], [ens_id], idl=[idx]) matrix[index] = CObs(real, imag) result_dict[key] = Npr_matrix(matrix, mom_in=mom_in, mom_out=mom_out) return result_dict
Read hadrons FourquarkFullyConnected hdf5 file and output an array of CObs
Parameters
- path (str): path to the files to read
- filestem (str): namestem of the files to read
- ens_id (str): name of the ensemble, required for internal bookkeeping
- idl (range): If specified only configurations in the given range are read in.
- vertices (list): Vertex functions to be extracted.