pyerrors.input.hadrons

View Source
import os
from collections import Counter
import h5py
import numpy as np
from ..obs import Obs, CObs
from ..correlators import Corr


def _get_files(path, filestem, idl):
    ls = os.listdir(path)

    # Clean up file list
    files = list(filter(lambda x: x.startswith(filestem), ls))

    if not files:
        raise Exception('No files starting with', filestem, 'in folder', path)

    def get_cnfg_number(n):
        return int(n[len(filestem) + 1:-3])

    # Sort according to configuration number
    files.sort(key=get_cnfg_number)

    cnfg_numbers = []
    filtered_files = []
    for line in files:
        no = get_cnfg_number(line)
        if idl:
            if no in list(idl):
                filtered_files.append(line)
                cnfg_numbers.append(no)
        else:
            filtered_files.append(line)
            cnfg_numbers.append(no)

    if idl:
        if Counter(list(idl)) != Counter(cnfg_numbers):
            raise Exception("Not all configurations specified in idl found, configurations " + str(list(Counter(list(idl)) - Counter(cnfg_numbers))) + " are missing.")

    # Check that configurations are evenly spaced
    dc = np.unique(np.diff(cnfg_numbers))
    if np.any(dc < 0):
        raise Exception("Unsorted files")
    if len(dc) == 1:
        idx = range(cnfg_numbers[0], cnfg_numbers[-1] + dc[0], dc[0])
    else:
        raise Exception('Configurations are not evenly spaced.')

    return filtered_files, idx


def read_meson_hd5(path, filestem, ens_id, meson='meson_0', tree='meson', idl=None):
    """Read hadrons meson hdf5 file and extract the meson labeled 'meson'

    Parameters
    -----------------
    path : str
        path to the files to read
    filestem : str
        namestem of the files to read
    ens_id : str
        name of the ensemble, required for internal bookkeeping
    meson : str
        label of the meson to be extracted, standard value meson_0 which
        corresponds to the pseudoscalar pseudoscalar two-point function.
    idl : range
        If specified only configurations in the given range are read in.
    """

    files, idx = _get_files(path, filestem, idl)

    tree = meson.rsplit('_')[0]
    corr_data = []
    infos = []
    for hd5_file in files:
        file = h5py.File(path + '/' + hd5_file, "r")
        raw_data = list(file[tree + '/' + meson + '/corr'])
        real_data = [o[0] for o in raw_data]
        corr_data.append(real_data)
        if not infos:
            for k, i in file[tree + '/' + meson].attrs.items():
                infos.append(k + ': ' + i[0].decode())
        file.close()
    corr_data = np.array(corr_data)

    l_obs = []
    for c in corr_data.T:
        l_obs.append(Obs([c], [ens_id], idl=[idx]))

    corr = Corr(l_obs)
    corr.tag = r", ".join(infos)
    return corr


class Npr_matrix(np.ndarray):

    def __new__(cls, input_array, mom_in=None, mom_out=None):
        obj = np.asarray(input_array).view(cls)
        obj.mom_in = mom_in
        obj.mom_out = mom_out
        return obj

    @property
    def g5H(self):
        """Gamma_5 hermitean conjugate

        Uses the fact that the propagator is gamma5 hermitean, so just the
        in and out momenta of the propagator are exchanged.
        """
        return Npr_matrix(self,
                          mom_in=self.mom_out,
                          mom_out=self.mom_in)

    def _propagate_mom(self, other, name):
        s_mom = getattr(self, name, None)
        o_mom = getattr(other, name, None)
        if s_mom is not None and o_mom is not None:
            if not np.allclose(s_mom, o_mom):
                raise Exception(name + ' does not match.')
        return o_mom if o_mom is not None else s_mom

    def __matmul__(self, other):
        return self.__new__(Npr_matrix,
                            super().__matmul__(other),
                            self._propagate_mom(other, 'mom_in'),
                            self._propagate_mom(other, 'mom_out'))

    def __array_finalize__(self, obj):
        if obj is None:
            return
        self.mom_in = getattr(obj, 'mom_in', None)
        self.mom_out = getattr(obj, 'mom_out', None)


def read_ExternalLeg_hd5(path, filestem, ens_id, idl=None):
    """Read hadrons ExternalLeg hdf5 file and output an array of CObs

    Parameters
    ----------
    path : str
        path to the files to read
    filestem : str
        namestem of the files to read
    ens_id : str
        name of the ensemble, required for internal bookkeeping
    idl : range
        If specified only configurations in the given range are read in.
    """

    files, idx = _get_files(path, filestem, idl)

    mom = None

    corr_data = []
    for hd5_file in files:
        file = h5py.File(path + '/' + hd5_file, "r")
        raw_data = file['ExternalLeg/corr'][0][0].view('complex')
        corr_data.append(raw_data)
        if mom is None:
            mom = np.array(str(file['ExternalLeg/info'].attrs['pIn'])[3:-2].strip().split(), dtype=float)
        file.close()
    corr_data = np.array(corr_data)

    rolled_array = np.rollaxis(corr_data, 0, 5)

    matrix = np.empty((rolled_array.shape[:-1]), dtype=object)
    for si, sj, ci, cj in np.ndindex(rolled_array.shape[:-1]):
        real = Obs([rolled_array[si, sj, ci, cj].real], [ens_id], idl=[idx])
        imag = Obs([rolled_array[si, sj, ci, cj].imag], [ens_id], idl=[idx])
        matrix[si, sj, ci, cj] = CObs(real, imag)

    return Npr_matrix(matrix, mom_in=mom)


def read_Bilinear_hd5(path, filestem, ens_id, idl=None):
    """Read hadrons Bilinear hdf5 file and output an array of CObs

    Parameters
    ----------
    path : str
        path to the files to read
    filestem : str
        namestem of the files to read
    ens_id : str
        name of the ensemble, required for internal bookkeeping
    idl : range
        If specified only configurations in the given range are read in.
    """

    files, idx = _get_files(path, filestem, idl)

    mom_in = None
    mom_out = None

    corr_data = {}
    for hd5_file in files:
        file = h5py.File(path + '/' + hd5_file, "r")
        for i in range(16):
            name = file['Bilinear/Bilinear_' + str(i) + '/info'].attrs['gamma'][0].decode('UTF-8')
            if name not in corr_data:
                corr_data[name] = []
            raw_data = file['Bilinear/Bilinear_' + str(i) + '/corr'][0][0].view('complex')
            corr_data[name].append(raw_data)
            if mom_in is None:
                mom_in = np.array(str(file['Bilinear/Bilinear_' + str(i) + '/info'].attrs['pIn'])[3:-2].strip().split(), dtype=float)
            if mom_out is None:
                mom_out = np.array(str(file['Bilinear/Bilinear_' + str(i) + '/info'].attrs['pOut'])[3:-2].strip().split(), dtype=float)

        file.close()

    result_dict = {}

    for key, data in corr_data.items():
        local_data = np.array(data)

        rolled_array = np.rollaxis(local_data, 0, 5)

        matrix = np.empty((rolled_array.shape[:-1]), dtype=object)
        for si, sj, ci, cj in np.ndindex(rolled_array.shape[:-1]):
            real = Obs([rolled_array[si, sj, ci, cj].real], [ens_id], idl=[idx])
            imag = Obs([rolled_array[si, sj, ci, cj].imag], [ens_id], idl=[idx])
            matrix[si, sj, ci, cj] = CObs(real, imag)

        result_dict[key] = Npr_matrix(matrix, mom_in=mom_in, mom_out=mom_out)

    return result_dict


def read_Fourquark_hd5(path, filestem, ens_id, idl=None, vertices=["VA", "AV"]):
    """Read hadrons FourquarkFullyConnected hdf5 file and output an array of CObs

    Parameters
    ----------
    path : str
        path to the files to read
    filestem : str
        namestem of the files to read
    ens_id : str
        name of the ensemble, required for internal bookkeeping
    idl : range
        If specified only configurations in the given range are read in.
    vertices : list
        Vertex functions to be extracted.
    """

    files, idx = _get_files(path, filestem, idl)

    mom_in = None
    mom_out = None

    vertex_names = []
    for vertex in vertices:
        vertex_names += _get_lorentz_names(vertex)

    corr_data = {}

    tree = 'FourQuarkFullyConnected/FourQuarkFullyConnected_'

    for hd5_file in files:
        file = h5py.File(path + '/' + hd5_file, "r")

        for i in range(32):
            name = (file[tree + str(i) + '/info'].attrs['gammaA'][0].decode('UTF-8'), file[tree + str(i) + '/info'].attrs['gammaB'][0].decode('UTF-8'))
            if name in vertex_names:
                if name not in corr_data:
                    corr_data[name] = []
                raw_data = file[tree + str(i) + '/corr'][0][0].view('complex')
                corr_data[name].append(raw_data)
                if mom_in is None:
                    mom_in = np.array(str(file[tree + str(i) + '/info'].attrs['pIn'])[3:-2].strip().split(), dtype=float)
                if mom_out is None:
                    mom_out = np.array(str(file[tree + str(i) + '/info'].attrs['pOut'])[3:-2].strip().split(), dtype=float)

        file.close()

    intermediate_dict = {}

    for vertex in vertices:
        lorentz_names = _get_lorentz_names(vertex)
        for v_name in lorentz_names:
            if vertex not in intermediate_dict:
                intermediate_dict[vertex] = np.array(corr_data[v_name])
            else:
                intermediate_dict[vertex] += np.array(corr_data[v_name])

    result_dict = {}

    for key, data in intermediate_dict.items():

        rolled_array = np.moveaxis(data, 0, 8)

        matrix = np.empty((rolled_array.shape[:-1]), dtype=object)
        for index in np.ndindex(rolled_array.shape[:-1]):
            real = Obs([rolled_array[index].real], [ens_id], idl=[idx])
            imag = Obs([rolled_array[index].imag], [ens_id], idl=[idx])
            matrix[index] = CObs(real, imag)

        result_dict[key] = Npr_matrix(matrix, mom_in=mom_in, mom_out=mom_out)

    return result_dict


def _get_lorentz_names(name):
    assert len(name) == 2

    res = []

    if not set(name) <= set(['S', 'P', 'V', 'A', 'T']):
        raise Exception("Name can only contain 'S', 'P', 'V', 'A' or 'T'")

    if 'S' in name or 'P' in name:
        if not set(name) <= set(['S', 'P']):
            raise Exception("'" + name + "' is not a Lorentz scalar")

        g_names = {'S': 'Identity',
                   'P': 'Gamma5'}

        res.append((g_names[name[0]], g_names[name[1]]))

    elif 'T' in name:
        if not set(name) <= set(['T']):
            raise Exception("'" + name + "' is not a Lorentz scalar")
        raise Exception("Tensor operators not yet implemented.")
    else:
        if not set(name) <= set(['V', 'A']):
            raise Exception("'" + name + "' is not a Lorentz scalar")
        lorentz_index = ['X', 'Y', 'Z', 'T']

        for ind in lorentz_index:
            res.append(('Gamma' + ind + (name[0] == 'A') * 'Gamma5',
                        'Gamma' + ind + (name[1] == 'A') * 'Gamma5'))

    return res
#   def read_meson_hd5(path, filestem, ens_id, meson='meson_0', tree='meson', idl=None):
View Source
def read_meson_hd5(path, filestem, ens_id, meson='meson_0', tree='meson', idl=None):
    """Read hadrons meson hdf5 file and extract the meson labeled 'meson'

    Parameters
    -----------------
    path : str
        path to the files to read
    filestem : str
        namestem of the files to read
    ens_id : str
        name of the ensemble, required for internal bookkeeping
    meson : str
        label of the meson to be extracted, standard value meson_0 which
        corresponds to the pseudoscalar pseudoscalar two-point function.
    idl : range
        If specified only configurations in the given range are read in.
    """

    files, idx = _get_files(path, filestem, idl)

    tree = meson.rsplit('_')[0]
    corr_data = []
    infos = []
    for hd5_file in files:
        file = h5py.File(path + '/' + hd5_file, "r")
        raw_data = list(file[tree + '/' + meson + '/corr'])
        real_data = [o[0] for o in raw_data]
        corr_data.append(real_data)
        if not infos:
            for k, i in file[tree + '/' + meson].attrs.items():
                infos.append(k + ': ' + i[0].decode())
        file.close()
    corr_data = np.array(corr_data)

    l_obs = []
    for c in corr_data.T:
        l_obs.append(Obs([c], [ens_id], idl=[idx]))

    corr = Corr(l_obs)
    corr.tag = r", ".join(infos)
    return corr

Read hadrons meson hdf5 file and extract the meson labeled 'meson'

Parameters
  • path (str): path to the files to read
  • filestem (str): namestem of the files to read
  • ens_id (str): name of the ensemble, required for internal bookkeeping
  • meson (str): label of the meson to be extracted, standard value meson_0 which corresponds to the pseudoscalar pseudoscalar two-point function.
  • idl (range): If specified only configurations in the given range are read in.
#   class Npr_matrix(numpy.ndarray):
View Source
class Npr_matrix(np.ndarray):

    def __new__(cls, input_array, mom_in=None, mom_out=None):
        obj = np.asarray(input_array).view(cls)
        obj.mom_in = mom_in
        obj.mom_out = mom_out
        return obj

    @property
    def g5H(self):
        """Gamma_5 hermitean conjugate

        Uses the fact that the propagator is gamma5 hermitean, so just the
        in and out momenta of the propagator are exchanged.
        """
        return Npr_matrix(self,
                          mom_in=self.mom_out,
                          mom_out=self.mom_in)

    def _propagate_mom(self, other, name):
        s_mom = getattr(self, name, None)
        o_mom = getattr(other, name, None)
        if s_mom is not None and o_mom is not None:
            if not np.allclose(s_mom, o_mom):
                raise Exception(name + ' does not match.')
        return o_mom if o_mom is not None else s_mom

    def __matmul__(self, other):
        return self.__new__(Npr_matrix,
                            super().__matmul__(other),
                            self._propagate_mom(other, 'mom_in'),
                            self._propagate_mom(other, 'mom_out'))

    def __array_finalize__(self, obj):
        if obj is None:
            return
        self.mom_in = getattr(obj, 'mom_in', None)
        self.mom_out = getattr(obj, 'mom_out', None)

ndarray(shape, dtype=float, buffer=None, offset=0, strides=None, order=None)

An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory, whether it is an integer, a floating point number, or something else, etc.)

Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The parameters given here refer to a low-level method (ndarray(...)) for instantiating an array.

For more information, refer to the numpy module and examine the methods and attributes of an array.

Parameters
  • (for the __new__ method; see Notes below)
  • shape (tuple of ints): Shape of created array.
  • dtype (data-type, optional): Any object that can be interpreted as a numpy data type.
  • buffer (object exposing buffer interface, optional): Used to fill the array with data.
  • offset (int, optional): Offset of array data in buffer.
  • strides (tuple of ints, optional): Strides of data in memory.
  • order ({'C', 'F'}, optional): Row-major (C-style) or column-major (Fortran-style) order.
Attributes
  • T (ndarray): Transpose of the array.
  • data (buffer): The array's elements, in memory.
  • dtype (dtype object): Describes the format of the elements in the array.
  • flags (dict): Dictionary containing information related to memory use, e.g., 'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc.
  • flat (numpy.flatiter object): Flattened version of the array as an iterator. The iterator allows assignments, e.g., x.flat = 3 (See ndarray.flat for assignment examples; TODO).
  • imag (ndarray): Imaginary part of the array.
  • real (ndarray): Real part of the array.
  • size (int): Number of elements in the array.
  • itemsize (int): The memory use of each array element in bytes.
  • nbytes (int): The total number of bytes required to store the array data, i.e., itemsize * size.
  • ndim (int): The array's number of dimensions.
  • shape (tuple of ints): Shape of the array.
  • strides (tuple of ints): The step-size required to move from one element to the next in memory. For example, a contiguous (3, 4) array of type int16 in C-order has strides (8, 2). This implies that to move from element to element in memory requires jumps of 2 bytes. To move from row-to-row, one needs to jump 8 bytes at a time (2 * 4).
  • ctypes (ctypes object): Class containing properties of the array needed for interaction with ctypes.
  • base (ndarray): If the array is a view into another array, that array is its base (unless that array is also a view). The base array is where the array data is actually stored.
See Also

array: Construct an array.
zeros: Create an array, each element of which is zero.
empty: Create an array, but leave its allocated memory unchanged (i.e., it contains "garbage").
dtype: Create a data-type.
numpy.typing.NDArray: An ndarray alias :term:generic <generic type> w.r.t. its dtype.type <numpy.dtype.type>.

Notes

There are two modes of creating an array using __new__:

  1. If buffer is None, then only shape, dtype, and order are used.
  2. If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No __init__ method is needed because the array is fully initialized after the __new__ method.

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways of constructing an ndarray.

First mode, buffer is None:

>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[0.0e+000, 0.0e+000], # random
       [     nan, 2.5e-323]])

Second mode:

>>> np.ndarray((2,), buffer=np.array([1,2,3]),
...            offset=np.int_().itemsize,
...            dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])
#   Npr_matrix()
#   g5H

Gamma_5 hermitean conjugate

Uses the fact that the propagator is gamma5 hermitean, so just the in and out momenta of the propagator are exchanged.

Inherited Members
numpy.ndarray
dumps
dump
all
any
argmax
argmin
argpartition
argsort
astype
byteswap
choose
clip
compress
conj
conjugate
copy
cumprod
cumsum
diagonal
dot
fill
flatten
getfield
item
itemset
max
mean
min
newbyteorder
nonzero
partition
prod
ptp
put
ravel
repeat
reshape
resize
round
searchsorted
setfield
setflags
sort
squeeze
std
sum
swapaxes
take
tobytes
tofile
tolist
tostring
trace
transpose
var
view
ndim
flags
shape
strides
data
itemsize
size
nbytes
base
dtype
real
imag
flat
ctypes
T
#   def read_ExternalLeg_hd5(path, filestem, ens_id, idl=None):
View Source
def read_ExternalLeg_hd5(path, filestem, ens_id, idl=None):
    """Read hadrons ExternalLeg hdf5 file and output an array of CObs

    Parameters
    ----------
    path : str
        path to the files to read
    filestem : str
        namestem of the files to read
    ens_id : str
        name of the ensemble, required for internal bookkeeping
    idl : range
        If specified only configurations in the given range are read in.
    """

    files, idx = _get_files(path, filestem, idl)

    mom = None

    corr_data = []
    for hd5_file in files:
        file = h5py.File(path + '/' + hd5_file, "r")
        raw_data = file['ExternalLeg/corr'][0][0].view('complex')
        corr_data.append(raw_data)
        if mom is None:
            mom = np.array(str(file['ExternalLeg/info'].attrs['pIn'])[3:-2].strip().split(), dtype=float)
        file.close()
    corr_data = np.array(corr_data)

    rolled_array = np.rollaxis(corr_data, 0, 5)

    matrix = np.empty((rolled_array.shape[:-1]), dtype=object)
    for si, sj, ci, cj in np.ndindex(rolled_array.shape[:-1]):
        real = Obs([rolled_array[si, sj, ci, cj].real], [ens_id], idl=[idx])
        imag = Obs([rolled_array[si, sj, ci, cj].imag], [ens_id], idl=[idx])
        matrix[si, sj, ci, cj] = CObs(real, imag)

    return Npr_matrix(matrix, mom_in=mom)

Read hadrons ExternalLeg hdf5 file and output an array of CObs

Parameters
  • path (str): path to the files to read
  • filestem (str): namestem of the files to read
  • ens_id (str): name of the ensemble, required for internal bookkeeping
  • idl (range): If specified only configurations in the given range are read in.
#   def read_Bilinear_hd5(path, filestem, ens_id, idl=None):
View Source
def read_Bilinear_hd5(path, filestem, ens_id, idl=None):
    """Read hadrons Bilinear hdf5 file and output an array of CObs

    Parameters
    ----------
    path : str
        path to the files to read
    filestem : str
        namestem of the files to read
    ens_id : str
        name of the ensemble, required for internal bookkeeping
    idl : range
        If specified only configurations in the given range are read in.
    """

    files, idx = _get_files(path, filestem, idl)

    mom_in = None
    mom_out = None

    corr_data = {}
    for hd5_file in files:
        file = h5py.File(path + '/' + hd5_file, "r")
        for i in range(16):
            name = file['Bilinear/Bilinear_' + str(i) + '/info'].attrs['gamma'][0].decode('UTF-8')
            if name not in corr_data:
                corr_data[name] = []
            raw_data = file['Bilinear/Bilinear_' + str(i) + '/corr'][0][0].view('complex')
            corr_data[name].append(raw_data)
            if mom_in is None:
                mom_in = np.array(str(file['Bilinear/Bilinear_' + str(i) + '/info'].attrs['pIn'])[3:-2].strip().split(), dtype=float)
            if mom_out is None:
                mom_out = np.array(str(file['Bilinear/Bilinear_' + str(i) + '/info'].attrs['pOut'])[3:-2].strip().split(), dtype=float)

        file.close()

    result_dict = {}

    for key, data in corr_data.items():
        local_data = np.array(data)

        rolled_array = np.rollaxis(local_data, 0, 5)

        matrix = np.empty((rolled_array.shape[:-1]), dtype=object)
        for si, sj, ci, cj in np.ndindex(rolled_array.shape[:-1]):
            real = Obs([rolled_array[si, sj, ci, cj].real], [ens_id], idl=[idx])
            imag = Obs([rolled_array[si, sj, ci, cj].imag], [ens_id], idl=[idx])
            matrix[si, sj, ci, cj] = CObs(real, imag)

        result_dict[key] = Npr_matrix(matrix, mom_in=mom_in, mom_out=mom_out)

    return result_dict

Read hadrons Bilinear hdf5 file and output an array of CObs

Parameters
  • path (str): path to the files to read
  • filestem (str): namestem of the files to read
  • ens_id (str): name of the ensemble, required for internal bookkeeping
  • idl (range): If specified only configurations in the given range are read in.
#   def read_Fourquark_hd5(path, filestem, ens_id, idl=None, vertices=['VA', 'AV']):
View Source
def read_Fourquark_hd5(path, filestem, ens_id, idl=None, vertices=["VA", "AV"]):
    """Read hadrons FourquarkFullyConnected hdf5 file and output an array of CObs

    Parameters
    ----------
    path : str
        path to the files to read
    filestem : str
        namestem of the files to read
    ens_id : str
        name of the ensemble, required for internal bookkeeping
    idl : range
        If specified only configurations in the given range are read in.
    vertices : list
        Vertex functions to be extracted.
    """

    files, idx = _get_files(path, filestem, idl)

    mom_in = None
    mom_out = None

    vertex_names = []
    for vertex in vertices:
        vertex_names += _get_lorentz_names(vertex)

    corr_data = {}

    tree = 'FourQuarkFullyConnected/FourQuarkFullyConnected_'

    for hd5_file in files:
        file = h5py.File(path + '/' + hd5_file, "r")

        for i in range(32):
            name = (file[tree + str(i) + '/info'].attrs['gammaA'][0].decode('UTF-8'), file[tree + str(i) + '/info'].attrs['gammaB'][0].decode('UTF-8'))
            if name in vertex_names:
                if name not in corr_data:
                    corr_data[name] = []
                raw_data = file[tree + str(i) + '/corr'][0][0].view('complex')
                corr_data[name].append(raw_data)
                if mom_in is None:
                    mom_in = np.array(str(file[tree + str(i) + '/info'].attrs['pIn'])[3:-2].strip().split(), dtype=float)
                if mom_out is None:
                    mom_out = np.array(str(file[tree + str(i) + '/info'].attrs['pOut'])[3:-2].strip().split(), dtype=float)

        file.close()

    intermediate_dict = {}

    for vertex in vertices:
        lorentz_names = _get_lorentz_names(vertex)
        for v_name in lorentz_names:
            if vertex not in intermediate_dict:
                intermediate_dict[vertex] = np.array(corr_data[v_name])
            else:
                intermediate_dict[vertex] += np.array(corr_data[v_name])

    result_dict = {}

    for key, data in intermediate_dict.items():

        rolled_array = np.moveaxis(data, 0, 8)

        matrix = np.empty((rolled_array.shape[:-1]), dtype=object)
        for index in np.ndindex(rolled_array.shape[:-1]):
            real = Obs([rolled_array[index].real], [ens_id], idl=[idx])
            imag = Obs([rolled_array[index].imag], [ens_id], idl=[idx])
            matrix[index] = CObs(real, imag)

        result_dict[key] = Npr_matrix(matrix, mom_in=mom_in, mom_out=mom_out)

    return result_dict

Read hadrons FourquarkFullyConnected hdf5 file and output an array of CObs

Parameters
  • path (str): path to the files to read
  • filestem (str): namestem of the files to read
  • ens_id (str): name of the ensemble, required for internal bookkeeping
  • idl (range): If specified only configurations in the given range are read in.
  • vertices (list): Vertex functions to be extracted.