window.pdocSearch = (function(){ /** elasticlunr - http://weixsong.github.io * Copyright (C) 2017 Oliver Nightingale * Copyright (C) 2017 Wei Song * MIT Licensed */!function(){function e(e){if(null===e||"object"!=typeof e)return e;var t=e.constructor();for(var n in e)e.hasOwnProperty(n)&&(t[n]=e[n]);return t}var t=function(e){var n=new t.Index;return n.pipeline.add(t.trimmer,t.stopWordFilter,t.stemmer),e&&e.call(n,n),n};t.version="0.9.5",lunr=t,t.utils={},t.utils.warn=function(e){return function(t){e.console&&console.warn&&console.warn(t)}}(this),t.utils.toString=function(e){return void 0===e||null===e?"":e.toString()},t.EventEmitter=function(){this.events={}},t.EventEmitter.prototype.addListener=function(){var e=Array.prototype.slice.call(arguments),t=e.pop(),n=e;if("function"!=typeof t)throw new TypeError("last argument must be a function");n.forEach(function(e){this.hasHandler(e)||(this.events[e]=[]),this.events[e].push(t)},this)},t.EventEmitter.prototype.removeListener=function(e,t){if(this.hasHandler(e)){var n=this.events[e].indexOf(t);-1!==n&&(this.events[e].splice(n,1),0==this.events[e].length&&delete this.events[e])}},t.EventEmitter.prototype.emit=function(e){if(this.hasHandler(e)){var t=Array.prototype.slice.call(arguments,1);this.events[e].forEach(function(e){e.apply(void 0,t)},this)}},t.EventEmitter.prototype.hasHandler=function(e){return e in this.events},t.tokenizer=function(e){if(!arguments.length||null===e||void 0===e)return[];if(Array.isArray(e)){var n=e.filter(function(e){return null===e||void 0===e?!1:!0});n=n.map(function(e){return t.utils.toString(e).toLowerCase()});var i=[];return n.forEach(function(e){var n=e.split(t.tokenizer.seperator);i=i.concat(n)},this),i}return e.toString().trim().toLowerCase().split(t.tokenizer.seperator)},t.tokenizer.defaultSeperator=/[\s\-]+/,t.tokenizer.seperator=t.tokenizer.defaultSeperator,t.tokenizer.setSeperator=function(e){null!==e&&void 0!==e&&"object"==typeof e&&(t.tokenizer.seperator=e)},t.tokenizer.resetSeperator=function(){t.tokenizer.seperator=t.tokenizer.defaultSeperator},t.tokenizer.getSeperator=function(){return t.tokenizer.seperator},t.Pipeline=function(){this._queue=[]},t.Pipeline.registeredFunctions={},t.Pipeline.registerFunction=function(e,n){n in t.Pipeline.registeredFunctions&&t.utils.warn("Overwriting existing registered function: "+n),e.label=n,t.Pipeline.registeredFunctions[n]=e},t.Pipeline.getRegisteredFunction=function(e){return e in t.Pipeline.registeredFunctions!=!0?null:t.Pipeline.registeredFunctions[e]},t.Pipeline.warnIfFunctionNotRegistered=function(e){var n=e.label&&e.label in this.registeredFunctions;n||t.utils.warn("Function is not registered with pipeline. This may cause problems when serialising the index.\n",e)},t.Pipeline.load=function(e){var n=new t.Pipeline;return e.forEach(function(e){var i=t.Pipeline.getRegisteredFunction(e);if(!i)throw new Error("Cannot load un-registered function: "+e);n.add(i)}),n},t.Pipeline.prototype.add=function(){var e=Array.prototype.slice.call(arguments);e.forEach(function(e){t.Pipeline.warnIfFunctionNotRegistered(e),this._queue.push(e)},this)},t.Pipeline.prototype.after=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i+1,0,n)},t.Pipeline.prototype.before=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i,0,n)},t.Pipeline.prototype.remove=function(e){var t=this._queue.indexOf(e);-1!==t&&this._queue.splice(t,1)},t.Pipeline.prototype.run=function(e){for(var t=[],n=e.length,i=this._queue.length,o=0;n>o;o++){for(var r=e[o],s=0;i>s&&(r=this._queue[s](r,o,e),void 0!==r&&null!==r);s++);void 0!==r&&null!==r&&t.push(r)}return t},t.Pipeline.prototype.reset=function(){this._queue=[]},t.Pipeline.prototype.get=function(){return this._queue},t.Pipeline.prototype.toJSON=function(){return this._queue.map(function(e){return t.Pipeline.warnIfFunctionNotRegistered(e),e.label})},t.Index=function(){this._fields=[],this._ref="id",this.pipeline=new t.Pipeline,this.documentStore=new t.DocumentStore,this.index={},this.eventEmitter=new t.EventEmitter,this._idfCache={},this.on("add","remove","update",function(){this._idfCache={}}.bind(this))},t.Index.prototype.on=function(){var e=Array.prototype.slice.call(arguments);return this.eventEmitter.addListener.apply(this.eventEmitter,e)},t.Index.prototype.off=function(e,t){return this.eventEmitter.removeListener(e,t)},t.Index.load=function(e){e.version!==t.version&&t.utils.warn("version mismatch: current "+t.version+" importing "+e.version);var n=new this;n._fields=e.fields,n._ref=e.ref,n.documentStore=t.DocumentStore.load(e.documentStore),n.pipeline=t.Pipeline.load(e.pipeline),n.index={};for(var i in e.index)n.index[i]=t.InvertedIndex.load(e.index[i]);return n},t.Index.prototype.addField=function(e){return this._fields.push(e),this.index[e]=new t.InvertedIndex,this},t.Index.prototype.setRef=function(e){return this._ref=e,this},t.Index.prototype.saveDocument=function(e){return this.documentStore=new t.DocumentStore(e),this},t.Index.prototype.addDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.addDoc(i,e),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));this.documentStore.addFieldLength(i,n,o.length);var r={};o.forEach(function(e){e in r?r[e]+=1:r[e]=1},this);for(var s in r){var u=r[s];u=Math.sqrt(u),this.index[n].addToken(s,{ref:i,tf:u})}},this),n&&this.eventEmitter.emit("add",e,this)}},t.Index.prototype.removeDocByRef=function(e){if(e&&this.documentStore.isDocStored()!==!1&&this.documentStore.hasDoc(e)){var t=this.documentStore.getDoc(e);this.removeDoc(t,!1)}},t.Index.prototype.removeDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.hasDoc(i)&&(this.documentStore.removeDoc(i),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));o.forEach(function(e){this.index[n].removeToken(e,i)},this)},this),n&&this.eventEmitter.emit("remove",e,this))}},t.Index.prototype.updateDoc=function(e,t){var t=void 0===t?!0:t;this.removeDocByRef(e[this._ref],!1),this.addDoc(e,!1),t&&this.eventEmitter.emit("update",e,this)},t.Index.prototype.idf=function(e,t){var n="@"+t+"/"+e;if(Object.prototype.hasOwnProperty.call(this._idfCache,n))return this._idfCache[n];var i=this.index[t].getDocFreq(e),o=1+Math.log(this.documentStore.length/(i+1));return this._idfCache[n]=o,o},t.Index.prototype.getFields=function(){return this._fields.slice()},t.Index.prototype.search=function(e,n){if(!e)return[];e="string"==typeof e?{any:e}:JSON.parse(JSON.stringify(e));var i=null;null!=n&&(i=JSON.stringify(n));for(var o=new t.Configuration(i,this.getFields()).get(),r={},s=Object.keys(e),u=0;u0&&t.push(e);for(var i in n)"docs"!==i&&"df"!==i&&this.expandToken(e+i,t,n[i]);return t},t.InvertedIndex.prototype.toJSON=function(){return{root:this.root}},t.Configuration=function(e,n){var e=e||"";if(void 0==n||null==n)throw new Error("fields should not be null");this.config={};var i;try{i=JSON.parse(e),this.buildUserConfig(i,n)}catch(o){t.utils.warn("user configuration parse failed, will use default configuration"),this.buildDefaultConfig(n)}},t.Configuration.prototype.buildDefaultConfig=function(e){this.reset(),e.forEach(function(e){this.config[e]={boost:1,bool:"OR",expand:!1}},this)},t.Configuration.prototype.buildUserConfig=function(e,n){var i="OR",o=!1;if(this.reset(),"bool"in e&&(i=e.bool||i),"expand"in e&&(o=e.expand||o),"fields"in e)for(var r in e.fields)if(n.indexOf(r)>-1){var s=e.fields[r],u=o;void 0!=s.expand&&(u=s.expand),this.config[r]={boost:s.boost||0===s.boost?s.boost:1,bool:s.bool||i,expand:u}}else t.utils.warn("field name in user configuration not found in index instance fields");else this.addAllFields2UserConfig(i,o,n)},t.Configuration.prototype.addAllFields2UserConfig=function(e,t,n){n.forEach(function(n){this.config[n]={boost:1,bool:e,expand:t}},this)},t.Configuration.prototype.get=function(){return this.config},t.Configuration.prototype.reset=function(){this.config={}},lunr.SortedSet=function(){this.length=0,this.elements=[]},lunr.SortedSet.load=function(e){var t=new this;return t.elements=e,t.length=e.length,t},lunr.SortedSet.prototype.add=function(){var e,t;for(e=0;e1;){if(r===e)return o;e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o]}return r===e?o:-1},lunr.SortedSet.prototype.locationFor=function(e){for(var t=0,n=this.elements.length,i=n-t,o=t+Math.floor(i/2),r=this.elements[o];i>1;)e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o];return r>e?o:e>r?o+1:void 0},lunr.SortedSet.prototype.intersect=function(e){for(var t=new lunr.SortedSet,n=0,i=0,o=this.length,r=e.length,s=this.elements,u=e.elements;;){if(n>o-1||i>r-1)break;s[n]!==u[i]?s[n]u[i]&&i++:(t.add(s[n]),n++,i++)}return t},lunr.SortedSet.prototype.clone=function(){var e=new lunr.SortedSet;return e.elements=this.toArray(),e.length=e.elements.length,e},lunr.SortedSet.prototype.union=function(e){var t,n,i;this.length>=e.length?(t=this,n=e):(t=e,n=this),i=t.clone();for(var o=0,r=n.toArray();oWhat is pyerrors?\n\n

pyerrors is a python package for error computation and propagation of Markov chain Monte Carlo data.\nIt is based on the gamma method arXiv:hep-lat/0306017. Some of its features are:

\n\n
    \n
  • automatic differentiation as suggested in arXiv:1809.01289 (partly based on the autograd package)
  • \n
  • treatment of slow modes in the simulation as suggested in arXiv:1009.5228
  • \n
  • coherent error propagation for data from different Markov chains
  • \n
  • non-linear fits with x- and y-errors and exact linear error propagation based on automatic differentiation as introduced in [arXiv:1809.01289]
  • \n
  • real and complex matrix operations and their error propagation based on automatic differentiation (cholesky decomposition, calculation of eigenvalues and eigenvectors, singular value decomposition...)
  • \n
\n\n

Getting started

\n\n
import numpy as np\nimport pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name'])\nmy_new_obs = 2 * np.log(my_obs) / my_obs\nmy_new_obs.gamma_method()\nmy_new_obs.details()\nprint(my_new_obs)\n
\n\n

The Obs class

\n\n

pyerrors.obs.Obs

\n\n
import pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name'])\n
\n\n

Multiple ensembles/replica

\n\n

Error propagation for multiple ensembles (Markov chains with different simulation parameters) is handeled automatically. Ensembles are uniquely identified by their name.

\n\n

Example:

\n\n
obs1 = pe.Obs([samples1], ['ensemble1'])\nobs2 = pe.Obs([samples1], ['ensemble2'])\n\nmy_sum = obs1 + obs2\nmy_sum.details()\n> Result         2.00596631e+00 +/- 0.00000000e+00 +/- 0.00000000e+00 (0.000%)\n> 1500 samples in 2 ensembles:\n>    ensemble1: ['ensemble1']\n>    ensemble2: ['ensemble2']\n
\n\n

pyerrors identifies multiple replica (independent Markov chains with identical simulation parameters) by the vertical bar | in the name of the dataset.

\n\n

Example:

\n\n
obs1 = pe.Obs([samples1], ['ensemble1|r01'])\nobs2 = pe.Obs([samples1], ['ensemble1|r02'])\n\nmy_sum = obs1 + obs2\nmy_sum.details()\n> Result         2.00596631e+00 +/- 0.00000000e+00 +/- 0.00000000e+00 (0.000%)\n> 1500 samples in 1 ensemble:\n>    ensemble1: ['ensemble1|r01', 'ensemble1|r02']\n
\n\n

Irregular Monte Carlo chains

\n\n

Irregular Monte Carlo chains can be initilized with the parameter idl.

\n\n

Example:

\n\n
# Observable defined on configurations 20 to 519\nobs1 = pe.Obs([samples1], ['ensemble1'], idl=[range(20, 520)])\n# Observable defined on every second configuration between 5 and 1003\nobs2 = pe.Obs([samples2], ['ensemble1'], idl=[range(5, 1005, 2)])\n# Observable defined on configurations 2, 9, 28, 29 and 501\nobs3 = pe.Obs([samples3], ['ensemble1'], idl=[[2, 9, 28, 29, 501]])\n
\n\n

Warning: Irregular Monte Carlo chains can result in odd patterns in the autocorrelation functions.\nMake sure to check the with e.g. pyerrors.obs.Obs.plot_rho or pyerrors.obs.Obs.plot_tauint.

\n\n

Error propagation

\n\n

Automatic differentiation, cite Alberto,

\n\n

numpy overloaded

\n\n
import numpy as np\nimport pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name'])\nmy_new_obs = 2 * np.log(my_obs) / my_obs\nmy_new_obs.gamma_method()\nmy_new_obs.details()\n
\n\n

Error estimation

\n\n

pyerrors.obs.Obs.gamma_method

\n\n

$\\delta_i\\delta_j$

\n\n

Exponential tails

\n\n

Covariance

\n\n

Correlators

\n\n

pyerrors.correlators.Corr

\n\n

Optimization / fits / roots

\n\n

pyerrors.fits\npyerrors.roots

\n\n

Complex observables

\n\n

pyerrors.obs.CObs

\n\n

Matrix operations

\n\n

pyerrors.linalg

\n\n

Input

\n\n

pyerrors.input

\n"}, "pyerrors.correlators": {"fullname": "pyerrors.correlators", "modulename": "pyerrors.correlators", "qualname": "", "type": "module", "doc": "

\n"}, "pyerrors.correlators.Corr": {"fullname": "pyerrors.correlators.Corr", "modulename": "pyerrors.correlators", "qualname": "Corr", "type": "class", "doc": "

The class for a correlator (time dependent sequence of pe.Obs).

\n\n

Everything, this class does, can be achieved using lists or arrays of Obs.\nBut it is simply more convenient to have a dedicated object for correlators.\nOne often wants to add or multiply correlators of the same length at every timeslice and it is inconvinient\nto iterate over all timeslices for every operation. This is especially true, when dealing with smearing matrices.

\n\n

The correlator can have two types of content: An Obs at every timeslice OR a GEVP\nsmearing matrix at every timeslice. Other dependency (eg. spacial) are not supported.

\n"}, "pyerrors.correlators.Corr.__init__": {"fullname": "pyerrors.correlators.Corr.__init__", "modulename": "pyerrors.correlators", "qualname": "Corr.__init__", "type": "function", "doc": "

\n", "parameters": ["self", "data_input", "padding_front", "padding_back", "prange"], "funcdef": "def"}, "pyerrors.correlators.Corr.reweighted": {"fullname": "pyerrors.correlators.Corr.reweighted", "modulename": "pyerrors.correlators", "qualname": "Corr.reweighted", "type": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.gamma_method": {"fullname": "pyerrors.correlators.Corr.gamma_method", "modulename": "pyerrors.correlators", "qualname": "Corr.gamma_method", "type": "function", "doc": "

Apply the gamma method to the content of the Corr.

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.projected": {"fullname": "pyerrors.correlators.Corr.projected", "modulename": "pyerrors.correlators", "qualname": "Corr.projected", "type": "function", "doc": "

\n", "parameters": ["self", "vector_l", "vector_r"], "funcdef": "def"}, "pyerrors.correlators.Corr.sum": {"fullname": "pyerrors.correlators.Corr.sum", "modulename": "pyerrors.correlators", "qualname": "Corr.sum", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.smearing": {"fullname": "pyerrors.correlators.Corr.smearing", "modulename": "pyerrors.correlators", "qualname": "Corr.smearing", "type": "function", "doc": "

\n", "parameters": ["self", "i", "j"], "funcdef": "def"}, "pyerrors.correlators.Corr.plottable": {"fullname": "pyerrors.correlators.Corr.plottable", "modulename": "pyerrors.correlators", "qualname": "Corr.plottable", "type": "function", "doc": "

Outputs the correlator in a plotable format.

\n\n

Outputs three lists containing the timeslice index, the value on each\ntimeslice and the error on each timeslice.

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.symmetric": {"fullname": "pyerrors.correlators.Corr.symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.symmetric", "type": "function", "doc": "

Symmetrize the correlator around x0=0.

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.anti_symmetric": {"fullname": "pyerrors.correlators.Corr.anti_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.anti_symmetric", "type": "function", "doc": "

Anti-symmetrize the correlator around x0=0.

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.smearing_symmetric": {"fullname": "pyerrors.correlators.Corr.smearing_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.smearing_symmetric", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.GEVP": {"fullname": "pyerrors.correlators.Corr.GEVP", "modulename": "pyerrors.correlators", "qualname": "Corr.GEVP", "type": "function", "doc": "

\n", "parameters": ["self", "t0", "ts", "state"], "funcdef": "def"}, "pyerrors.correlators.Corr.Eigenvalue": {"fullname": "pyerrors.correlators.Corr.Eigenvalue", "modulename": "pyerrors.correlators", "qualname": "Corr.Eigenvalue", "type": "function", "doc": "

\n", "parameters": ["self", "t0", "state"], "funcdef": "def"}, "pyerrors.correlators.Corr.roll": {"fullname": "pyerrors.correlators.Corr.roll", "modulename": "pyerrors.correlators", "qualname": "Corr.roll", "type": "function", "doc": "

Periodically shift the correlator by dt timeslices

\n\n
Parameters
\n\n
    \n
  • dt (int):\nnumber of timeslices
  • \n
\n", "parameters": ["self", "dt"], "funcdef": "def"}, "pyerrors.correlators.Corr.reverse": {"fullname": "pyerrors.correlators.Corr.reverse", "modulename": "pyerrors.correlators", "qualname": "Corr.reverse", "type": "function", "doc": "

Reverse the time ordering of the Corr

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.correlate": {"fullname": "pyerrors.correlators.Corr.correlate", "modulename": "pyerrors.correlators", "qualname": "Corr.correlate", "type": "function", "doc": "

Correlate the correlator with another correlator or Obs

\n", "parameters": ["self", "partner"], "funcdef": "def"}, "pyerrors.correlators.Corr.reweight": {"fullname": "pyerrors.correlators.Corr.reweight", "modulename": "pyerrors.correlators", "qualname": "Corr.reweight", "type": "function", "doc": "

Reweight the correlator.

\n\n
Parameters
\n\n
    \n
  • weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
  • \n
  • all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl.
  • \n
\n", "parameters": ["self", "weight", "kwargs"], "funcdef": "def"}, "pyerrors.correlators.Corr.T_symmetry": {"fullname": "pyerrors.correlators.Corr.T_symmetry", "modulename": "pyerrors.correlators", "qualname": "Corr.T_symmetry", "type": "function", "doc": "

Return the time symmetry average of the correlator and its partner

\n\n
Parameters
\n\n
    \n
  • partner (Corr):\nTime symmetry partner of the Corr
  • \n
  • partity (int):\nParity quantum number of the correlator, can be +1 or -1
  • \n
\n", "parameters": ["self", "partner", "parity"], "funcdef": "def"}, "pyerrors.correlators.Corr.deriv": {"fullname": "pyerrors.correlators.Corr.deriv", "modulename": "pyerrors.correlators", "qualname": "Corr.deriv", "type": "function", "doc": "

Return the first derivative of the correlator with respect to x0.

\n\n
Parameters
\n\n
    \n
  • symmetric (bool):\ndecides whether symmertic of simple finite differences are used. Default: True
  • \n
\n", "parameters": ["self", "symmetric"], "funcdef": "def"}, "pyerrors.correlators.Corr.second_deriv": {"fullname": "pyerrors.correlators.Corr.second_deriv", "modulename": "pyerrors.correlators", "qualname": "Corr.second_deriv", "type": "function", "doc": "

Return the second derivative of the correlator with respect to x0.

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.m_eff": {"fullname": "pyerrors.correlators.Corr.m_eff", "modulename": "pyerrors.correlators", "qualname": "Corr.m_eff", "type": "function", "doc": "

Returns the effective mass of the correlator as correlator object

\n\n
Parameters
\n\n
    \n
  • variant (str):\nlog: uses the standard effective mass log(C(t) / C(t+1))\ncosh : Use periodicitiy of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m.\nsinh : Use anti-periodicitiy of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m.\nSee, e.g., arXiv:1205.5380
  • \n
  • guess (float):\nguess for the root finder, only relevant for the root variant
  • \n
\n", "parameters": ["self", "variant", "guess"], "funcdef": "def"}, "pyerrors.correlators.Corr.fit": {"fullname": "pyerrors.correlators.Corr.fit", "modulename": "pyerrors.correlators", "qualname": "Corr.fit", "type": "function", "doc": "

Fits function to the data

\n\n
Parameters
\n\n
    \n
  • function (obj):\nfunction to fit to the data. See fits.least_squares for details.
  • \n
  • fitrange (list):\nRange in which the function is to be fitted to the data.\nIf not specified, self.prange or all timeslices are used.
  • \n
  • silent (bool):\nDecides whether output is printed to the standard output.
  • \n
\n", "parameters": ["self", "function", "fitrange", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.correlators.Corr.plateau": {"fullname": "pyerrors.correlators.Corr.plateau", "modulename": "pyerrors.correlators", "qualname": "Corr.plateau", "type": "function", "doc": "

Extract a plateu value from a Corr object

\n\n
Parameters
\n\n
    \n
  • plateau_range (list):\nlist with two entries, indicating the first and the last timeslice\nof the plateau region.
  • \n
  • method (str):\nmethod to extract the plateau.\n 'fit' fits a constant to the plateau region\n 'avg', 'average' or 'mean' just average over the given timeslices.
  • \n
\n", "parameters": ["self", "plateau_range", "method"], "funcdef": "def"}, "pyerrors.correlators.Corr.set_prange": {"fullname": "pyerrors.correlators.Corr.set_prange", "modulename": "pyerrors.correlators", "qualname": "Corr.set_prange", "type": "function", "doc": "

Sets the attribute prange of the Corr object.

\n", "parameters": ["self", "prange"], "funcdef": "def"}, "pyerrors.correlators.Corr.show": {"fullname": "pyerrors.correlators.Corr.show", "modulename": "pyerrors.correlators", "qualname": "Corr.show", "type": "function", "doc": "

Plots the correlator, uses tag as label if available.

\n\n
Parameters
\n\n
    \n
  • x_range (list):\nlist of two values, determining the range of the x-axis e.g. [4, 8]
  • \n
  • comp (Corr or list of Corr):\nCorrelator or list of correlators which are plotted for comparison.
  • \n
  • logscale (bool):\nSets y-axis to logscale
  • \n
  • plateau (Obs):\nplateau to be visualized in the figure
  • \n
  • fit_res (Fit_result):\nFit_result object to be visualized
  • \n
  • ylabel (str):\nLabel for the y-axis
  • \n
  • save (str):\npath to file in which the figure should be saved
  • \n
\n", "parameters": ["self", "x_range", "comp", "y_range", "logscale", "plateau", "fit_res", "ylabel", "save"], "funcdef": "def"}, "pyerrors.correlators.Corr.dump": {"fullname": "pyerrors.correlators.Corr.dump", "modulename": "pyerrors.correlators", "qualname": "Corr.dump", "type": "function", "doc": "

Dumps the Corr into a pickel file

\n\n
Parameters
\n\n
    \n
  • filename (str):\nName of the file
  • \n
\n", "parameters": ["self", "filename"], "funcdef": "def"}, "pyerrors.correlators.Corr.print": {"fullname": "pyerrors.correlators.Corr.print", "modulename": "pyerrors.correlators", "qualname": "Corr.print", "type": "function", "doc": "

\n", "parameters": ["self", "range"], "funcdef": "def"}, "pyerrors.correlators.Corr.sqrt": {"fullname": "pyerrors.correlators.Corr.sqrt", "modulename": "pyerrors.correlators", "qualname": "Corr.sqrt", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.log": {"fullname": "pyerrors.correlators.Corr.log", "modulename": "pyerrors.correlators", "qualname": "Corr.log", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.exp": {"fullname": "pyerrors.correlators.Corr.exp", "modulename": "pyerrors.correlators", "qualname": "Corr.exp", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.sin": {"fullname": "pyerrors.correlators.Corr.sin", "modulename": "pyerrors.correlators", "qualname": "Corr.sin", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.cos": {"fullname": "pyerrors.correlators.Corr.cos", "modulename": "pyerrors.correlators", "qualname": "Corr.cos", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.tan": {"fullname": "pyerrors.correlators.Corr.tan", "modulename": "pyerrors.correlators", "qualname": "Corr.tan", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.sinh": {"fullname": "pyerrors.correlators.Corr.sinh", "modulename": "pyerrors.correlators", "qualname": "Corr.sinh", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.cosh": {"fullname": "pyerrors.correlators.Corr.cosh", "modulename": "pyerrors.correlators", "qualname": "Corr.cosh", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.tanh": {"fullname": "pyerrors.correlators.Corr.tanh", "modulename": "pyerrors.correlators", "qualname": "Corr.tanh", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.arcsin": {"fullname": "pyerrors.correlators.Corr.arcsin", "modulename": "pyerrors.correlators", "qualname": "Corr.arcsin", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.arccos": {"fullname": "pyerrors.correlators.Corr.arccos", "modulename": "pyerrors.correlators", "qualname": "Corr.arccos", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.arctan": {"fullname": "pyerrors.correlators.Corr.arctan", "modulename": "pyerrors.correlators", "qualname": "Corr.arctan", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.arcsinh": {"fullname": "pyerrors.correlators.Corr.arcsinh", "modulename": "pyerrors.correlators", "qualname": "Corr.arcsinh", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.arccosh": {"fullname": "pyerrors.correlators.Corr.arccosh", "modulename": "pyerrors.correlators", "qualname": "Corr.arccosh", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.arctanh": {"fullname": "pyerrors.correlators.Corr.arctanh", "modulename": "pyerrors.correlators", "qualname": "Corr.arctanh", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.dirac": {"fullname": "pyerrors.dirac", "modulename": "pyerrors.dirac", "qualname": "", "type": "module", "doc": "

\n"}, "pyerrors.dirac.Grid_gamma": {"fullname": "pyerrors.dirac.Grid_gamma", "modulename": "pyerrors.dirac", "qualname": "Grid_gamma", "type": "function", "doc": "

Returns gamma matrix in Grid labeling.

\n", "parameters": ["gamma_tag"], "funcdef": "def"}, "pyerrors.fits": {"fullname": "pyerrors.fits", "modulename": "pyerrors.fits", "qualname": "", "type": "module", "doc": "

\n"}, "pyerrors.fits.Fit_result": {"fullname": "pyerrors.fits.Fit_result", "modulename": "pyerrors.fits", "qualname": "Fit_result", "type": "class", "doc": "

Represents fit results.

\n\n
Attributes
\n\n
    \n
  • fit_parameters (list):\nresults for the individual fit parameters,\nalso accesible via indices.
  • \n
\n"}, "pyerrors.fits.Fit_result.__init__": {"fullname": "pyerrors.fits.Fit_result.__init__", "modulename": "pyerrors.fits", "qualname": "Fit_result.__init__", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.fits.Fit_result.gamma_method": {"fullname": "pyerrors.fits.Fit_result.gamma_method", "modulename": "pyerrors.fits", "qualname": "Fit_result.gamma_method", "type": "function", "doc": "

Apply the gamma method to all fit parameters

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.fits.least_squares": {"fullname": "pyerrors.fits.least_squares", "modulename": "pyerrors.fits", "qualname": "least_squares", "type": "function", "doc": "

Performs a non-linear fit to y = func(x).

\n\n
Parameters
\n\n
    \n
  • x (list):\nlist of floats.
  • \n
  • y (list):\nlist of Obs.
  • \n
  • func (object):\nfit function, has to be of the form

    \n\n
    def func(a, x):\n   y = a[0] + a[1] * x + a[2] * anp.sinh(x)\n   return y\n
    \n\n

    For multiple x values func can be of the form

    \n\n
    def func(a, x):\n   (x1, x2) = x\n   return a[0] * x1 ** 2 + a[1] * x2\n
    \n\n

    It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work

  • \n
  • priors (list, optional):\npriors has to be a list with an entry for every parameter in the fit. The entries can either be\nObs (e.g. results from a previous fit) or strings containing a value and an error formatted like\n0.548(23), 500(40) or 0.5(0.4)\nIt is important for the subsequent error estimation that the e_tag for the gamma method is large\nenough.
  • \n
  • silent (bool, optional):\nIf true all output to the console is omitted (default False).
  • \n
  • initial_guess (list):\ncan provide an initial guess for the input parameters. Relevant for\n non-linear fits with many parameters.
  • \n
  • method (str):\ncan be used to choose an alternative method for the minimization of chisquare.\nThe possible methods are the ones which can be used for scipy.optimize.minimize and\nmigrad of iminuit. If no method is specified, Levenberg-Marquard is used.\nReliable alternatives are migrad, Powell and Nelder-Mead.
  • \n
  • resplot (bool):\nIf true, a plot which displays fit, data and residuals is generated (default False).
  • \n
  • qqplot (bool):\nIf true, a quantile-quantile plot of the fit result is generated (default False).
  • \n
  • expected_chisquare (bool):\nIf true prints the expected chisquare which is\ncorrected by effects caused by correlated input data.\nThis can take a while as the full correlation matrix\nhas to be calculated (default False).
  • \n
\n", "parameters": ["x", "y", "func", "priors", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.fits.total_least_squares": {"fullname": "pyerrors.fits.total_least_squares", "modulename": "pyerrors.fits", "qualname": "total_least_squares", "type": "function", "doc": "

Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.

\n\n
Parameters
\n\n
    \n
  • x (list):\nlist of Obs, or a tuple of lists of Obs
  • \n
  • y (list):\nlist of Obs. The dvalues of the Obs are used as x- and yerror for the fit.
  • \n
  • func (object):\nfunc has to be of the form

    \n\n
    def func(a, x):\n   y = a[0] + a[1] * x + a[2] * anp.sinh(x)\n   return y\n
    \n\n

    For multiple x values func can be of the form

    \n\n
    def func(a, x):\n   (x1, x2) = x\n   return a[0] * x1 ** 2 + a[1] * x2\n
    \n\n

    It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.

  • \n
  • silent (bool, optional):\nIf true all output to the console is omitted (default False).
  • \n
  • initial_guess (list):\ncan provide an initial guess for the input parameters. Relevant for non-linear\nfits with many parameters.
  • \n
  • expected_chisquare (bool):\nIf true prints the expected chisquare which is\ncorrected by effects caused by correlated input data.\nThis can take a while as the full correlation matrix\nhas to be calculated (default False).
  • \n
  • Based on the orthogonal distance regression module of scipy
  • \n
\n", "parameters": ["x", "y", "func", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.fits.prior_fit": {"fullname": "pyerrors.fits.prior_fit", "modulename": "pyerrors.fits", "qualname": "prior_fit", "type": "function", "doc": "

\n", "parameters": ["x", "y", "func", "priors", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.fits.standard_fit": {"fullname": "pyerrors.fits.standard_fit", "modulename": "pyerrors.fits", "qualname": "standard_fit", "type": "function", "doc": "

\n", "parameters": ["x", "y", "func", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.fits.odr_fit": {"fullname": "pyerrors.fits.odr_fit", "modulename": "pyerrors.fits", "qualname": "odr_fit", "type": "function", "doc": "

\n", "parameters": ["x", "y", "func", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.fits.fit_lin": {"fullname": "pyerrors.fits.fit_lin", "modulename": "pyerrors.fits", "qualname": "fit_lin", "type": "function", "doc": "

Performs a linear fit to y = n + m * x and returns two Obs n, m.

\n\n

y has to be a list of Obs, the dvalues of the Obs are used as yerror for the fit.\nx can either be a list of floats in which case no xerror is assumed, or\na list of Obs, where the dvalues of the Obs are used as xerror for the fit.

\n", "parameters": ["x", "y", "kwargs"], "funcdef": "def"}, "pyerrors.fits.qqplot": {"fullname": "pyerrors.fits.qqplot", "modulename": "pyerrors.fits", "qualname": "qqplot", "type": "function", "doc": "

Generates a quantile-quantile plot of the fit result which can be used to\ncheck if the residuals of the fit are gaussian distributed.

\n", "parameters": ["x", "o_y", "func", "p"], "funcdef": "def"}, "pyerrors.fits.residual_plot": {"fullname": "pyerrors.fits.residual_plot", "modulename": "pyerrors.fits", "qualname": "residual_plot", "type": "function", "doc": "

Generates a plot which compares the fit to the data and displays the corresponding residuals

\n", "parameters": ["x", "y", "func", "fit_res"], "funcdef": "def"}, "pyerrors.fits.covariance_matrix": {"fullname": "pyerrors.fits.covariance_matrix", "modulename": "pyerrors.fits", "qualname": "covariance_matrix", "type": "function", "doc": "

Returns the covariance matrix of y.

\n", "parameters": ["y"], "funcdef": "def"}, "pyerrors.fits.error_band": {"fullname": "pyerrors.fits.error_band", "modulename": "pyerrors.fits", "qualname": "error_band", "type": "function", "doc": "

Returns the error band for an array of sample values x, for given fit function func with optimized parameters beta.

\n", "parameters": ["x", "func", "beta"], "funcdef": "def"}, "pyerrors.fits.ks_test": {"fullname": "pyerrors.fits.ks_test", "modulename": "pyerrors.fits", "qualname": "ks_test", "type": "function", "doc": "

Performs a Kolmogorov\u2013Smirnov test for the Q-values of all fit object.

\n\n

If no list is given all Obs in memory are used.

\n\n

Disclaimer: The determination of the individual Q-values as well as this function have not been tested yet.

\n", "parameters": ["obs"], "funcdef": "def"}, "pyerrors.fits.fit_general": {"fullname": "pyerrors.fits.fit_general", "modulename": "pyerrors.fits", "qualname": "fit_general", "type": "function", "doc": "

Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.

\n\n

Plausibility of the results should be checked. To control the numerical differentiation\nthe kwargs of numdifftools.step_generators.MaxStepGenerator can be used.

\n\n

func has to be of the form

\n\n

def func(a, x):\n y = a[0] + a[1] * x + a[2] * np.sinh(x)\n return y

\n\n

y has to be a list of Obs, the dvalues of the Obs are used as yerror for the fit.\nx can either be a list of floats in which case no xerror is assumed, or\na list of Obs, where the dvalues of the Obs are used as xerror for the fit.

\n\n
Keyword arguments
\n\n

silent -- If true all output to the console is omitted (default False).\ninitial_guess -- can provide an initial guess for the input parameters. Relevant for non-linear fits\n with many parameters.

\n", "parameters": ["x", "y", "func", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.input": {"fullname": "pyerrors.input", "modulename": "pyerrors.input", "qualname": "", "type": "module", "doc": "

\n"}, "pyerrors.input.bdio": {"fullname": "pyerrors.input.bdio", "modulename": "pyerrors.input.bdio", "qualname": "", "type": "module", "doc": "

\n"}, "pyerrors.input.bdio.read_ADerrors": {"fullname": "pyerrors.input.bdio.read_ADerrors", "modulename": "pyerrors.input.bdio", "qualname": "read_ADerrors", "type": "function", "doc": "

Extract generic MCMC data from a bdio file

\n\n

read_ADerrors requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

\n\n

all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

\n\n
Parameters
\n\n
    \n
  • file_path -- path to the bdio file
  • \n
  • bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
  • \n
\n", "parameters": ["file_path", "bdio_path", "kwargs"], "funcdef": "def"}, "pyerrors.input.bdio.write_ADerrors": {"fullname": "pyerrors.input.bdio.write_ADerrors", "modulename": "pyerrors.input.bdio", "qualname": "write_ADerrors", "type": "function", "doc": "

Write Obs to a bdio file according to ADerrors conventions

\n\n

read_mesons requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

\n\n

all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

\n\n
Parameters
\n\n
    \n
  • file_path -- path to the bdio file
  • \n
  • bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
  • \n
\n", "parameters": ["obs_list", "file_path", "bdio_path", "kwargs"], "funcdef": "def"}, "pyerrors.input.bdio.read_mesons": {"fullname": "pyerrors.input.bdio.read_mesons", "modulename": "pyerrors.input.bdio", "qualname": "read_mesons", "type": "function", "doc": "

Extract mesons data from a bdio file and return it as a dictionary

\n\n

The dictionary can be accessed with a tuple consisting of (type, source_position, kappa1, kappa2)

\n\n

read_mesons requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

\n\n

all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

\n\n
Parameters
\n\n
    \n
  • file_path -- path to the bdio file
  • \n
  • bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
  • \n
  • stop -- stops reading at given configuration number (default None)
  • \n
  • alternative_ensemble_name -- Manually overwrite ensemble name
  • \n
\n", "parameters": ["file_path", "bdio_path", "kwargs"], "funcdef": "def"}, "pyerrors.input.bdio.read_dSdm": {"fullname": "pyerrors.input.bdio.read_dSdm", "modulename": "pyerrors.input.bdio", "qualname": "read_dSdm", "type": "function", "doc": "

Extract dSdm data from a bdio file and return it as a dictionary

\n\n

The dictionary can be accessed with a tuple consisting of (type, kappa)

\n\n

read_dSdm requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

\n\n

all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

\n\n
Parameters
\n\n
    \n
  • file_path -- path to the bdio file
  • \n
  • bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
  • \n
  • stop -- stops reading at given configuration number (default None)
  • \n
\n", "parameters": ["file_path", "bdio_path", "kwargs"], "funcdef": "def"}, "pyerrors.input.hadrons": {"fullname": "pyerrors.input.hadrons", "modulename": "pyerrors.input.hadrons", "qualname": "", "type": "module", "doc": "

\n"}, "pyerrors.input.hadrons.read_meson_hd5": {"fullname": "pyerrors.input.hadrons.read_meson_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_meson_hd5", "type": "function", "doc": "

Read hadrons meson hdf5 file and extract the meson labeled 'meson'

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the files to read
  • \n
  • filestem (str):\nnamestem of the files to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • meson (str):\nlabel of the meson to be extracted, standard value meson_0 which\ncorresponds to the pseudoscalar pseudoscalar two-point function.
  • \n
  • tree (str):\nLabel of the upmost directory in the hdf5 file, default 'meson'\nfor outputs of the Meson module. Can be altered to read input\nfrom other modules with similar structures.
  • \n
\n", "parameters": ["path", "filestem", "ens_id", "meson", "tree"], "funcdef": "def"}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"fullname": "pyerrors.input.hadrons.read_ExternalLeg_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_ExternalLeg_hd5", "type": "function", "doc": "

Read hadrons ExternalLeg hdf5 file and output an array of CObs

\n\n
Parameters
\n\n
    \n
  • path -- path to the files to read
  • \n
  • filestem -- namestem of the files to read
  • \n
  • ens_id -- name of the ensemble, required for internal bookkeeping
  • \n
  • order -- order in which the array is to be reshaped,: 'F' for the first index changing fastest (9 4x4 matrices) default.\n'C' for the last index changing fastest (16 3x3 matrices),
  • \n
\n", "parameters": ["path", "filestem", "ens_id", "order"], "funcdef": "def"}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"fullname": "pyerrors.input.hadrons.read_Bilinear_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_Bilinear_hd5", "type": "function", "doc": "

Read hadrons Bilinear hdf5 file and output an array of CObs

\n\n
Parameters
\n\n
    \n
  • path -- path to the files to read
  • \n
  • filestem -- namestem of the files to read
  • \n
  • ens_id -- name of the ensemble, required for internal bookkeeping
  • \n
  • order -- order in which the array is to be reshaped,: 'F' for the first index changing fastest (9 4x4 matrices) default.\n'C' for the last index changing fastest (16 3x3 matrices),
  • \n
\n", "parameters": ["path", "filestem", "ens_id", "order"], "funcdef": "def"}, "pyerrors.input.misc": {"fullname": "pyerrors.input.misc", "modulename": "pyerrors.input.misc", "qualname": "", "type": "module", "doc": "

\n"}, "pyerrors.input.misc.read_pbp": {"fullname": "pyerrors.input.misc.read_pbp", "modulename": "pyerrors.input.misc", "qualname": "read_pbp", "type": "function", "doc": "

Read pbp format from given folder structure. Returns a list of length nrw

\n\n
Keyword arguments
\n\n

r_start -- list which contains the first config to be read for each replicum\nr_stop -- list which contains the last config to be read for each replicum

\n", "parameters": ["path", "prefix", "kwargs"], "funcdef": "def"}, "pyerrors.input.openQCD": {"fullname": "pyerrors.input.openQCD", "modulename": "pyerrors.input.openQCD", "qualname": "", "type": "module", "doc": "

\n"}, "pyerrors.input.openQCD.read_rwms": {"fullname": "pyerrors.input.openQCD.read_rwms", "modulename": "pyerrors.input.openQCD", "qualname": "read_rwms", "type": "function", "doc": "

Read rwms format from given folder structure. Returns a list of length nrw

\n\n
Parameters
\n\n
    \n
  • version (str):\nversion of openQCD, default 2.0
  • \n
  • r_start (list):\nlist which contains the first config to be read for each replicum
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum
  • \n
  • postfix (str):\npostfix of the file to read, e.g. '.ms1' for openQCD-files
  • \n
\n", "parameters": ["path", "prefix", "version", "names", "kwargs"], "funcdef": "def"}, "pyerrors.input.openQCD.extract_t0": {"fullname": "pyerrors.input.openQCD.extract_t0", "modulename": "pyerrors.input.openQCD", "qualname": "extract_t0", "type": "function", "doc": "

Extract t0 from given .ms.dat files. Returns t0 as Obs.

\n\n

It is assumed that all boundary effects have sufficiently decayed at x0=xmin.\nThe data around the zero crossing of t^2 - 0.3 is fitted with a linear function\nfrom which the exact root is extracted.\nOnly works with openQCD v 1.2.

\n\n
Parameters
\n\n
    \n
  • path (str):\nPath to .ms.dat files
  • \n
  • prefix (str):\nEnsemble prefix
  • \n
  • dtr_read (int):\nDetermines how many trajectories should be skipped when reading the ms.dat files.\nCorresponds to dtr_cnfg / dtr_ms in the openQCD input file.
  • \n
  • xmin (int):\nFirst timeslice where the boundary effects have sufficiently decayed.
  • \n
  • spatial_extent (int):\nspatial extent of the lattice, required for normalization.
  • \n
  • fit_range (int):\nNumber of data points left and right of the zero crossing to be included in the linear fit. (Default: 5)
  • \n
  • r_start (list):\nlist which contains the first config to be read for each replicum.
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum.
  • \n
  • plaquette (bool):\nIf true extract the plaquette estimate of t0 instead.
  • \n
\n", "parameters": ["path", "prefix", "dtr_read", "xmin", "spatial_extent", "fit_range", "kwargs"], "funcdef": "def"}, "pyerrors.input.sfcf": {"fullname": "pyerrors.input.sfcf", "modulename": "pyerrors.input.sfcf", "qualname": "", "type": "module", "doc": "

\n"}, "pyerrors.input.sfcf.read_sfcf": {"fullname": "pyerrors.input.sfcf.read_sfcf", "modulename": "pyerrors.input.sfcf", "qualname": "read_sfcf", "type": "function", "doc": "

Read sfcf C format from given folder structure.

\n\n
Parameters
\n\n
    \n
  • im -- if True, read imaginary instead of real part of the correlation function.
  • \n
  • single -- if True, read a boundary-to-boundary correlation function with a single value
  • \n
  • b2b -- if True, read a time-dependent boundary-to-boundary correlation function
  • \n
  • names -- Alternative labeling for replicas/ensembles. Has to have the appropriate length
  • \n
\n", "parameters": ["path", "prefix", "name", "kwargs"], "funcdef": "def"}, "pyerrors.input.sfcf.read_sfcf_c": {"fullname": "pyerrors.input.sfcf.read_sfcf_c", "modulename": "pyerrors.input.sfcf", "qualname": "read_sfcf_c", "type": "function", "doc": "

Read sfcf c format from given folder structure.

\n\n
Parameters
\n\n
    \n
  • quarks -- Label of the quarks used in the sfcf input file
  • \n
  • noffset -- Offset of the source (only relevant when wavefunctions are used)
  • \n
  • wf -- ID of wave function
  • \n
  • wf2 -- ID of the second wavefunction (only relevant for boundary-to-boundary correlation functions)
  • \n
  • im -- if True, read imaginary instead of real part of the correlation function.
  • \n
  • b2b -- if True, read a time-dependent boundary-to-boundary correlation function
  • \n
  • names -- Alternative labeling for replicas/ensembles. Has to have the appropriate length
  • \n
  • ens_name (str):\nreplaces the name of the ensemble
  • \n
\n", "parameters": ["path", "prefix", "name", "quarks", "noffset", "wf", "wf2", "kwargs"], "funcdef": "def"}, "pyerrors.input.sfcf.read_qtop": {"fullname": "pyerrors.input.sfcf.read_qtop", "modulename": "pyerrors.input.sfcf", "qualname": "read_qtop", "type": "function", "doc": "

Read qtop format from given folder structure.

\n\n
Parameters
\n\n
    \n
  • target -- specifies the topological sector to be reweighted to (default 0)
  • \n
  • full -- if true read the charge instead of the reweighting factor.
  • \n
\n", "parameters": ["path", "prefix", "kwargs"], "funcdef": "def"}, "pyerrors.jackknifing": {"fullname": "pyerrors.jackknifing", "modulename": "pyerrors.jackknifing", "qualname": "", "type": "module", "doc": "

\n"}, "pyerrors.jackknifing.Jack": {"fullname": "pyerrors.jackknifing.Jack", "modulename": "pyerrors.jackknifing", "qualname": "Jack", "type": "class", "doc": "

\n"}, "pyerrors.jackknifing.Jack.__init__": {"fullname": "pyerrors.jackknifing.Jack.__init__", "modulename": "pyerrors.jackknifing", "qualname": "Jack.__init__", "type": "function", "doc": "

\n", "parameters": ["self", "value", "jacks"], "funcdef": "def"}, "pyerrors.jackknifing.Jack.print": {"fullname": "pyerrors.jackknifing.Jack.print", "modulename": "pyerrors.jackknifing", "qualname": "Jack.print", "type": "function", "doc": "

Print basic properties of the Jack.

\n", "parameters": ["self", "kwargs"], "funcdef": "def"}, "pyerrors.jackknifing.Jack.plot_tauint": {"fullname": "pyerrors.jackknifing.Jack.plot_tauint", "modulename": "pyerrors.jackknifing", "qualname": "Jack.plot_tauint", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.jackknifing.Jack.plot_history": {"fullname": "pyerrors.jackknifing.Jack.plot_history", "modulename": "pyerrors.jackknifing", "qualname": "Jack.plot_history", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.jackknifing.Jack.dump": {"fullname": "pyerrors.jackknifing.Jack.dump", "modulename": "pyerrors.jackknifing", "qualname": "Jack.dump", "type": "function", "doc": "

Dump the Jack to a pickle file 'name'.

\n\n

Keyword arguments:\npath -- specifies a custom path for the file (default '.')

\n", "parameters": ["self", "name", "kwargs"], "funcdef": "def"}, "pyerrors.jackknifing.generate_jack": {"fullname": "pyerrors.jackknifing.generate_jack", "modulename": "pyerrors.jackknifing", "qualname": "generate_jack", "type": "function", "doc": "

\n", "parameters": ["obs", "kwargs"], "funcdef": "def"}, "pyerrors.jackknifing.derived_jack": {"fullname": "pyerrors.jackknifing.derived_jack", "modulename": "pyerrors.jackknifing", "qualname": "derived_jack", "type": "function", "doc": "

Construct a derived Jack according to func(data, **kwargs).

\n\n
Parameters
\n\n
    \n
  • func -- arbitrary function of the form func(data, **kwargs). For the automatic differentiation to work,: all numpy functions have to have the autograd wrapper (use 'import autograd.numpy as np').
  • \n
  • data -- list of Jacks, e.g. [jack1, jack2, jack3].
  • \n
\n\n
Notes
\n\n

For simple mathematical operations it can be practical to use anonymous functions.\nFor the ratio of two jacks one can e.g. use

\n\n

new_jack = derived_jack(lambda x : x[0] / x[1], [jack1, jack2])

\n", "parameters": ["func", "data", "kwargs"], "funcdef": "def"}, "pyerrors.linalg": {"fullname": "pyerrors.linalg", "modulename": "pyerrors.linalg", "qualname": "", "type": "module", "doc": "

\n"}, "pyerrors.linalg.derived_array": {"fullname": "pyerrors.linalg.derived_array", "modulename": "pyerrors.linalg", "qualname": "derived_array", "type": "function", "doc": "

Construct a derived Obs according to func(data, **kwargs) of matrix value data\nusing automatic differentiation.

\n\n
Parameters
\n\n
    \n
  • func -- arbitrary function of the form func(data, **kwargs). For the: automatic differentiation to work, all numpy functions have to have\nthe autograd wrapper (use 'import autograd.numpy as anp').
  • \n
  • data -- list of Obs, e.g. [obs1, obs2, obs3].
  • \n
  • man_grad -- manually supply a list or an array which contains the jacobian: of func. Use cautiously, supplying the wrong derivative will\nnot be intercepted.
  • \n
\n", "parameters": ["func", "data", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.matmul": {"fullname": "pyerrors.linalg.matmul", "modulename": "pyerrors.linalg", "qualname": "matmul", "type": "function", "doc": "

Matrix multiply all operands.

\n\n

Supports real and complex valued matrices and is faster compared to\nstandard multiplication via the @ operator.

\n", "parameters": ["operands"], "funcdef": "def"}, "pyerrors.linalg.inv": {"fullname": "pyerrors.linalg.inv", "modulename": "pyerrors.linalg", "qualname": "inv", "type": "function", "doc": "

Inverse of Obs or CObs valued matrices.

\n", "parameters": ["x"], "funcdef": "def"}, "pyerrors.linalg.cholesky": {"fullname": "pyerrors.linalg.cholesky", "modulename": "pyerrors.linalg", "qualname": "cholesky", "type": "function", "doc": "

Cholesky decompostion of Obs or CObs valued matrices.

\n", "parameters": ["x"], "funcdef": "def"}, "pyerrors.linalg.scalar_mat_op": {"fullname": "pyerrors.linalg.scalar_mat_op", "modulename": "pyerrors.linalg", "qualname": "scalar_mat_op", "type": "function", "doc": "

Computes the matrix to scalar operation op to a given matrix of Obs.

\n", "parameters": ["op", "obs", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.eigh": {"fullname": "pyerrors.linalg.eigh", "modulename": "pyerrors.linalg", "qualname": "eigh", "type": "function", "doc": "

Computes the eigenvalues and eigenvectors of a given hermitian matrix of Obs according to np.linalg.eigh.

\n", "parameters": ["obs", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.eig": {"fullname": "pyerrors.linalg.eig", "modulename": "pyerrors.linalg", "qualname": "eig", "type": "function", "doc": "

Computes the eigenvalues of a given matrix of Obs according to np.linalg.eig.

\n", "parameters": ["obs", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.pinv": {"fullname": "pyerrors.linalg.pinv", "modulename": "pyerrors.linalg", "qualname": "pinv", "type": "function", "doc": "

Computes the Moore-Penrose pseudoinverse of a matrix of Obs.

\n", "parameters": ["obs", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.svd": {"fullname": "pyerrors.linalg.svd", "modulename": "pyerrors.linalg", "qualname": "svd", "type": "function", "doc": "

Computes the singular value decomposition of a matrix of Obs.

\n", "parameters": ["obs", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.slogdet": {"fullname": "pyerrors.linalg.slogdet", "modulename": "pyerrors.linalg", "qualname": "slogdet", "type": "function", "doc": "

Computes the determinant of a matrix of Obs via np.linalg.slogdet.

\n", "parameters": ["obs", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.grad_eig": {"fullname": "pyerrors.linalg.grad_eig", "modulename": "pyerrors.linalg", "qualname": "grad_eig", "type": "function", "doc": "

Gradient of a general square (complex valued) matrix

\n", "parameters": ["ans", "x"], "funcdef": "def"}, "pyerrors.misc": {"fullname": "pyerrors.misc", "modulename": "pyerrors.misc", "qualname": "", "type": "module", "doc": "

\n"}, "pyerrors.misc.gen_correlated_data": {"fullname": "pyerrors.misc.gen_correlated_data", "modulename": "pyerrors.misc", "qualname": "gen_correlated_data", "type": "function", "doc": "

Generate observables with given covariance and autocorrelation times.

\n\n
Parameters
\n\n
    \n
  • means -- list containing the mean value of each observable.
  • \n
  • cov -- covariance matrix for the data to be geneated.
  • \n
  • name -- ensemble name for the data to be geneated.
  • \n
  • tau -- can either be a real number or a list with an entry for: every dataset.
  • \n
  • samples -- number of samples to be generated for each observable.
  • \n
\n", "parameters": ["means", "cov", "name", "tau", "samples"], "funcdef": "def"}, "pyerrors.mpm": {"fullname": "pyerrors.mpm", "modulename": "pyerrors.mpm", "qualname": "", "type": "module", "doc": "

\n"}, "pyerrors.mpm.matrix_pencil_method": {"fullname": "pyerrors.mpm.matrix_pencil_method", "modulename": "pyerrors.mpm", "qualname": "matrix_pencil_method", "type": "function", "doc": "

Matrix pencil method to extract k energy levels from data

\n\n

Implementation of the matrix pencil method based on\neq. (2.17) of Y. Hua, T. K. Sarkar, IEEE Trans. Acoust. 38, 814-824 (1990)

\n\n
Parameters
\n\n
    \n
  • data -- can be a list of Obs for the analysis of a single correlator, or a list of lists: of Obs if several correlators are to analyzed at once.
  • \n
  • k -- Number of states to extract (default 1).
  • \n
  • p -- matrix pencil parameter which filters noise. The optimal value is expected between: len(data)/3 and 2*len(data)/3. The computation is more expensive the closer p is\nto len(data)/2 but could possibly suppress more noise (default len(data)//2).
  • \n
\n", "parameters": ["corrs", "k", "p", "kwargs"], "funcdef": "def"}, "pyerrors.mpm.matrix_pencil_method_old": {"fullname": "pyerrors.mpm.matrix_pencil_method_old", "modulename": "pyerrors.mpm", "qualname": "matrix_pencil_method_old", "type": "function", "doc": "

Older impleentation of the matrix pencil method with pencil p on given data to\n extract energy levels.

\n\n
Parameters
\n\n
    \n
  • data -- lists of Obs, where the nth entry is considered to be the correlation function: at x0=n+offset.
  • \n
  • p -- matrix pencil parameter which corresponds to the number of energy levels to extract.: higher values for p can help decreasing noise.
  • \n
  • noise_level -- If this argument is not None an additional prefiltering via singular: value decomposition is performed in which all singular values below 10^(-noise_level)\ntimes the largest singular value are discarded. This increases the computation time.
  • \n
  • verbose -- if larger than zero details about the noise filtering are printed to stdout: (default 1)
  • \n
\n", "parameters": ["data", "p", "noise_level", "verbose", "kwargs"], "funcdef": "def"}, "pyerrors.npr": {"fullname": "pyerrors.npr", "modulename": "pyerrors.npr", "qualname": "", "type": "module", "doc": "

\n"}, "pyerrors.npr.Npr_matrix": {"fullname": "pyerrors.npr.Npr_matrix", "modulename": "pyerrors.npr", "qualname": "Npr_matrix", "type": "class", "doc": "

ndarray(shape, dtype=float, buffer=None, offset=0,\n strides=None, order=None)

\n\n

An array object represents a multidimensional, homogeneous array\nof fixed-size items. An associated data-type object describes the\nformat of each element in the array (its byte-order, how many bytes it\noccupies in memory, whether it is an integer, a floating point number,\nor something else, etc.)

\n\n

Arrays should be constructed using array, zeros or empty (refer\nto the See Also section below). The parameters given here refer to\na low-level method (ndarray(...)) for instantiating an array.

\n\n

For more information, refer to the numpy module and examine the\nmethods and attributes of an array.

\n\n
Parameters
\n\n
    \n
  • (for the __new__ method; see Notes below)
  • \n
  • shape (tuple of ints):\nShape of created array.
  • \n
  • dtype (data-type, optional):\nAny object that can be interpreted as a numpy data type.
  • \n
  • buffer (object exposing buffer interface, optional):\nUsed to fill the array with data.
  • \n
  • offset (int, optional):\nOffset of array data in buffer.
  • \n
  • strides (tuple of ints, optional):\nStrides of data in memory.
  • \n
  • order ({'C', 'F'}, optional):\nRow-major (C-style) or column-major (Fortran-style) order.
  • \n
\n\n
Attributes
\n\n
    \n
  • T (ndarray):\nTranspose of the array.
  • \n
  • data (buffer):\nThe array's elements, in memory.
  • \n
  • dtype (dtype object):\nDescribes the format of the elements in the array.
  • \n
  • flags (dict):\nDictionary containing information related to memory use, e.g.,\n'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc.
  • \n
  • flat (numpy.flatiter object):\nFlattened version of the array as an iterator. The iterator\nallows assignments, e.g., x.flat = 3 (See ndarray.flat for\nassignment examples; TODO).
  • \n
  • imag (ndarray):\nImaginary part of the array.
  • \n
  • real (ndarray):\nReal part of the array.
  • \n
  • size (int):\nNumber of elements in the array.
  • \n
  • itemsize (int):\nThe memory use of each array element in bytes.
  • \n
  • nbytes (int):\nThe total number of bytes required to store the array data,\ni.e., itemsize * size.
  • \n
  • ndim (int):\nThe array's number of dimensions.
  • \n
  • shape (tuple of ints):\nShape of the array.
  • \n
  • strides (tuple of ints):\nThe step-size required to move from one element to the next in\nmemory. For example, a contiguous (3, 4) array of type\nint16 in C-order has strides (8, 2). This implies that\nto move from element to element in memory requires jumps of 2 bytes.\nTo move from row-to-row, one needs to jump 8 bytes at a time\n(2 * 4).
  • \n
  • ctypes (ctypes object):\nClass containing properties of the array needed for interaction\nwith ctypes.
  • \n
  • base (ndarray):\nIf the array is a view into another array, that array is its base\n(unless that array is also a view). The base array is where the\narray data is actually stored.
  • \n
\n\n
See Also
\n\n

array: Construct an array.
\nzeros: Create an array, each element of which is zero.
\nempty: Create an array, but leave its allocated memory unchanged (i.e.,\nit contains \"garbage\").
\ndtype: Create a data-type.
\nnumpy.typing.NDArray: A :term:generic <generic type> version\nof ndarray.

\n\n
Notes
\n\n

There are two modes of creating an array using __new__:

\n\n
    \n
  1. If buffer is None, then only shape, dtype, and order\nare used.
  2. \n
  3. If buffer is an object exposing the buffer interface, then\nall keywords are interpreted.
  4. \n
\n\n

No __init__ method is needed because the array is fully initialized\nafter the __new__ method.

\n\n
Examples
\n\n

These examples illustrate the low-level ndarray constructor. Refer\nto the See Also section above for easier ways of constructing an\nndarray.

\n\n

First mode, buffer is None:

\n\n
>>> np.ndarray(shape=(2,2), dtype=float, order='F')\narray([[0.0e+000, 0.0e+000], # random\n       [     nan, 2.5e-323]])\n
\n\n

Second mode:

\n\n
>>> np.ndarray((2,), buffer=np.array([1,2,3]),\n...            offset=np.int_().itemsize,\n...            dtype=int) # offset = 1*itemsize, i.e. skip first element\narray([2, 3])\n
\n"}, "pyerrors.npr.Npr_matrix.__init__": {"fullname": "pyerrors.npr.Npr_matrix.__init__", "modulename": "pyerrors.npr", "qualname": "Npr_matrix.__init__", "type": "function", "doc": "

\n", "parameters": [], "funcdef": "def"}, "pyerrors.npr.Npr_matrix.g5H": {"fullname": "pyerrors.npr.Npr_matrix.g5H", "modulename": "pyerrors.npr", "qualname": "Npr_matrix.g5H", "type": "variable", "doc": "

Gamma_5 hermitean conjugate

\n\n

Returns gamma_5 @ M.T.conj() @ gamma_5 and exchanges in and out going\nmomenta. Works only for 12x12 matrices.

\n"}, "pyerrors.npr.inv_propagator": {"fullname": "pyerrors.npr.inv_propagator", "modulename": "pyerrors.npr", "qualname": "inv_propagator", "type": "function", "doc": "

Inverts a 12x12 quark propagator

\n", "parameters": ["prop"], "funcdef": "def"}, "pyerrors.npr.Zq": {"fullname": "pyerrors.npr.Zq", "modulename": "pyerrors.npr", "qualname": "Zq", "type": "function", "doc": "

Calculates the quark field renormalization constant Zq

\n\n
Parameters
\n\n
    \n
  • inv_prop (array):\nInverted 12x12 quark propagator
  • \n
  • fermion (str):\nFermion type for which the tree-level propagator is used\n in the calculation of Zq. Default Wilson.
  • \n
\n", "parameters": ["inv_prop", "fermion"], "funcdef": "def"}, "pyerrors.obs": {"fullname": "pyerrors.obs", "modulename": "pyerrors.obs", "qualname": "", "type": "module", "doc": "

\n"}, "pyerrors.obs.Obs": {"fullname": "pyerrors.obs.Obs", "modulename": "pyerrors.obs", "qualname": "Obs", "type": "class", "doc": "

Class for a general observable.

\n\n

Instances of Obs are the basic objects of a pyerrors error analysis.\nThey are initialized with a list which contains arrays of samples for\ndifferent ensembles/replica and another list of same length which contains\nthe names of the ensembles/replica. Mathematical operations can be\nperformed on instances. The result is another instance of Obs. The error of\nan instance can be computed with the gamma_method. Also contains additional\nmethods for output and visualization of the error calculation.

\n\n
Attributes
\n\n
    \n
  • S_global (float):\nStandard value for S (default 2.0)
  • \n
  • S_dict (dict):\nDictionary for S values. If an entry for a given ensemble\nexists this overwrites the standard value for that ensemble.
  • \n
  • tau_exp_global (float):\nStandard value for tau_exp (default 0.0)
  • \n
  • tau_exp_dict (dict):\nDictionary for tau_exp values. If an entry for a given ensemble exists\nthis overwrites the standard value for that ensemble.
  • \n
  • N_sigma_global (float):\nStandard value for N_sigma (default 1.0)
  • \n
\n"}, "pyerrors.obs.Obs.__init__": {"fullname": "pyerrors.obs.Obs.__init__", "modulename": "pyerrors.obs", "qualname": "Obs.__init__", "type": "function", "doc": "

Initialize Obs object.

\n\n
Parameters
\n\n
    \n
  • samples (list):\nlist of numpy arrays containing the Monte Carlo samples
  • \n
  • names (list):\nlist of strings labeling the indivdual samples
  • \n
  • idl (list, optional):\nlist of ranges or lists on which the samples are defined
  • \n
  • means (list, optional):\nlist of mean values for the case that the mean values were\nalready subtracted from the samples
  • \n
\n", "parameters": ["self", "samples", "names", "idl", "means", "kwargs"], "funcdef": "def"}, "pyerrors.obs.Obs.S_global": {"fullname": "pyerrors.obs.Obs.S_global", "modulename": "pyerrors.obs", "qualname": "Obs.S_global", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.S_dict": {"fullname": "pyerrors.obs.Obs.S_dict", "modulename": "pyerrors.obs", "qualname": "Obs.S_dict", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.tau_exp_global": {"fullname": "pyerrors.obs.Obs.tau_exp_global", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp_global", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.tau_exp_dict": {"fullname": "pyerrors.obs.Obs.tau_exp_dict", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp_dict", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.N_sigma_global": {"fullname": "pyerrors.obs.Obs.N_sigma_global", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma_global", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.filter_eps": {"fullname": "pyerrors.obs.Obs.filter_eps", "modulename": "pyerrors.obs", "qualname": "Obs.filter_eps", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.names": {"fullname": "pyerrors.obs.Obs.names", "modulename": "pyerrors.obs", "qualname": "Obs.names", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.shape": {"fullname": "pyerrors.obs.Obs.shape", "modulename": "pyerrors.obs", "qualname": "Obs.shape", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.r_values": {"fullname": "pyerrors.obs.Obs.r_values", "modulename": "pyerrors.obs", "qualname": "Obs.r_values", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.deltas": {"fullname": "pyerrors.obs.Obs.deltas", "modulename": "pyerrors.obs", "qualname": "Obs.deltas", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.idl": {"fullname": "pyerrors.obs.Obs.idl", "modulename": "pyerrors.obs", "qualname": "Obs.idl", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.is_merged": {"fullname": "pyerrors.obs.Obs.is_merged", "modulename": "pyerrors.obs", "qualname": "Obs.is_merged", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.N": {"fullname": "pyerrors.obs.Obs.N", "modulename": "pyerrors.obs", "qualname": "Obs.N", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.ddvalue": {"fullname": "pyerrors.obs.Obs.ddvalue", "modulename": "pyerrors.obs", "qualname": "Obs.ddvalue", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.reweighted": {"fullname": "pyerrors.obs.Obs.reweighted", "modulename": "pyerrors.obs", "qualname": "Obs.reweighted", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.tag": {"fullname": "pyerrors.obs.Obs.tag", "modulename": "pyerrors.obs", "qualname": "Obs.tag", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.value": {"fullname": "pyerrors.obs.Obs.value", "modulename": "pyerrors.obs", "qualname": "Obs.value", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.dvalue": {"fullname": "pyerrors.obs.Obs.dvalue", "modulename": "pyerrors.obs", "qualname": "Obs.dvalue", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_names": {"fullname": "pyerrors.obs.Obs.e_names", "modulename": "pyerrors.obs", "qualname": "Obs.e_names", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_content": {"fullname": "pyerrors.obs.Obs.e_content", "modulename": "pyerrors.obs", "qualname": "Obs.e_content", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.gamma_method": {"fullname": "pyerrors.obs.Obs.gamma_method", "modulename": "pyerrors.obs", "qualname": "Obs.gamma_method", "type": "function", "doc": "

Calculate the error and related properties of the Obs.

\n\n
Parameters
\n\n
    \n
  • S (float):\nspecifies a custom value for the parameter S (default 2.0), can be\na float or an array of floats for different ensembles
  • \n
  • tau_exp (float):\npositive value triggers the critical slowing down analysis\n(default 0.0), can be a float or an array of floats for different\nensembles
  • \n
  • N_sigma (float):\nnumber of standard deviations from zero until the tail is\nattached to the autocorrelation function (default 1)
  • \n
  • fft (bool):\ndetermines whether the fft algorithm is used for the computation\nof the autocorrelation function (default True)
  • \n
\n", "parameters": ["self", "kwargs"], "funcdef": "def"}, "pyerrors.obs.Obs.expand_deltas": {"fullname": "pyerrors.obs.Obs.expand_deltas", "modulename": "pyerrors.obs", "qualname": "Obs.expand_deltas", "type": "function", "doc": "

Expand deltas defined on idx to a regular, contiguous range, where holes are filled by 0.\n If idx is of type range, the deltas are not changed

\n\n
Parameters
\n\n
    \n
  • deltas -- List of fluctuations
  • \n
  • idx -- List or range of configs on which the deltas are defined.
  • \n
  • shape -- Number of configs in idx.
  • \n
\n", "parameters": ["self", "deltas", "idx", "shape"], "funcdef": "def"}, "pyerrors.obs.Obs.calc_gamma": {"fullname": "pyerrors.obs.Obs.calc_gamma", "modulename": "pyerrors.obs", "qualname": "Obs.calc_gamma", "type": "function", "doc": "

Calculate Gamma_{AA} from the deltas, which are defined on idx.\n idx is assumed to be a contiguous range (possibly with a stepsize != 1)

\n\n
Parameters
\n\n
    \n
  • deltas -- List of fluctuations
  • \n
  • idx -- List or range of configs on which the deltas are defined.
  • \n
  • shape -- Number of configs in idx.
  • \n
  • w_max -- Upper bound for the summation window
  • \n
  • fft -- boolean, which determines whether the fft algorithm is used for: the computation of the autocorrelation function
  • \n
\n", "parameters": ["self", "deltas", "idx", "shape", "w_max", "fft"], "funcdef": "def"}, "pyerrors.obs.Obs.print": {"fullname": "pyerrors.obs.Obs.print", "modulename": "pyerrors.obs", "qualname": "Obs.print", "type": "function", "doc": "

\n", "parameters": ["self", "level"], "funcdef": "def"}, "pyerrors.obs.Obs.details": {"fullname": "pyerrors.obs.Obs.details", "modulename": "pyerrors.obs", "qualname": "Obs.details", "type": "function", "doc": "

Output detailed properties of the Obs.

\n", "parameters": ["self", "ens_content"], "funcdef": "def"}, "pyerrors.obs.Obs.is_zero_within_error": {"fullname": "pyerrors.obs.Obs.is_zero_within_error", "modulename": "pyerrors.obs", "qualname": "Obs.is_zero_within_error", "type": "function", "doc": "

Checks whether the observable is zero within 'sigma' standard errors.

\n\n

Works only properly when the gamma method was run.

\n", "parameters": ["self", "sigma"], "funcdef": "def"}, "pyerrors.obs.Obs.is_zero": {"fullname": "pyerrors.obs.Obs.is_zero", "modulename": "pyerrors.obs", "qualname": "Obs.is_zero", "type": "function", "doc": "

Checks whether the observable is zero within machine precision.

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.plot_tauint": {"fullname": "pyerrors.obs.Obs.plot_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.plot_tauint", "type": "function", "doc": "

Plot integrated autocorrelation time for each ensemble.

\n", "parameters": ["self", "save"], "funcdef": "def"}, "pyerrors.obs.Obs.plot_rho": {"fullname": "pyerrors.obs.Obs.plot_rho", "modulename": "pyerrors.obs", "qualname": "Obs.plot_rho", "type": "function", "doc": "

Plot normalized autocorrelation function time for each ensemble.

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.plot_rep_dist": {"fullname": "pyerrors.obs.Obs.plot_rep_dist", "modulename": "pyerrors.obs", "qualname": "Obs.plot_rep_dist", "type": "function", "doc": "

Plot replica distribution for each ensemble with more than one replicum.

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.plot_history": {"fullname": "pyerrors.obs.Obs.plot_history", "modulename": "pyerrors.obs", "qualname": "Obs.plot_history", "type": "function", "doc": "

Plot derived Monte Carlo history for each ensemble.

\n", "parameters": ["self", "expand"], "funcdef": "def"}, "pyerrors.obs.Obs.plot_piechart": {"fullname": "pyerrors.obs.Obs.plot_piechart", "modulename": "pyerrors.obs", "qualname": "Obs.plot_piechart", "type": "function", "doc": "

Plot piechart which shows the fractional contribution of each\nensemble to the error and returns a dictionary containing the fractions.

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.dump": {"fullname": "pyerrors.obs.Obs.dump", "modulename": "pyerrors.obs", "qualname": "Obs.dump", "type": "function", "doc": "

Dump the Obs to a pickle file 'name'.

\n\n
Parameters
\n\n
    \n
  • path (str):\nspecifies a custom path for the file (default '.')
  • \n
\n", "parameters": ["self", "name", "kwargs"], "funcdef": "def"}, "pyerrors.obs.Obs.sqrt": {"fullname": "pyerrors.obs.Obs.sqrt", "modulename": "pyerrors.obs", "qualname": "Obs.sqrt", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.log": {"fullname": "pyerrors.obs.Obs.log", "modulename": "pyerrors.obs", "qualname": "Obs.log", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.exp": {"fullname": "pyerrors.obs.Obs.exp", "modulename": "pyerrors.obs", "qualname": "Obs.exp", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.sin": {"fullname": "pyerrors.obs.Obs.sin", "modulename": "pyerrors.obs", "qualname": "Obs.sin", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.cos": {"fullname": "pyerrors.obs.Obs.cos", "modulename": "pyerrors.obs", "qualname": "Obs.cos", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.tan": {"fullname": "pyerrors.obs.Obs.tan", "modulename": "pyerrors.obs", "qualname": "Obs.tan", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.arcsin": {"fullname": "pyerrors.obs.Obs.arcsin", "modulename": "pyerrors.obs", "qualname": "Obs.arcsin", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.arccos": {"fullname": "pyerrors.obs.Obs.arccos", "modulename": "pyerrors.obs", "qualname": "Obs.arccos", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.arctan": {"fullname": "pyerrors.obs.Obs.arctan", "modulename": "pyerrors.obs", "qualname": "Obs.arctan", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.sinh": {"fullname": "pyerrors.obs.Obs.sinh", "modulename": "pyerrors.obs", "qualname": "Obs.sinh", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.cosh": {"fullname": "pyerrors.obs.Obs.cosh", "modulename": "pyerrors.obs", "qualname": "Obs.cosh", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.tanh": {"fullname": "pyerrors.obs.Obs.tanh", "modulename": "pyerrors.obs", "qualname": "Obs.tanh", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.arcsinh": {"fullname": "pyerrors.obs.Obs.arcsinh", "modulename": "pyerrors.obs", "qualname": "Obs.arcsinh", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.arccosh": {"fullname": "pyerrors.obs.Obs.arccosh", "modulename": "pyerrors.obs", "qualname": "Obs.arccosh", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.arctanh": {"fullname": "pyerrors.obs.Obs.arctanh", "modulename": "pyerrors.obs", "qualname": "Obs.arctanh", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.sinc": {"fullname": "pyerrors.obs.Obs.sinc", "modulename": "pyerrors.obs", "qualname": "Obs.sinc", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.N_sigma": {"fullname": "pyerrors.obs.Obs.N_sigma", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.S": {"fullname": "pyerrors.obs.Obs.S", "modulename": "pyerrors.obs", "qualname": "Obs.S", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_ddvalue": {"fullname": "pyerrors.obs.Obs.e_ddvalue", "modulename": "pyerrors.obs", "qualname": "Obs.e_ddvalue", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_drho": {"fullname": "pyerrors.obs.Obs.e_drho", "modulename": "pyerrors.obs", "qualname": "Obs.e_drho", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_dtauint": {"fullname": "pyerrors.obs.Obs.e_dtauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_dtauint", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_dvalue": {"fullname": "pyerrors.obs.Obs.e_dvalue", "modulename": "pyerrors.obs", "qualname": "Obs.e_dvalue", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_n_dtauint": {"fullname": "pyerrors.obs.Obs.e_n_dtauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_n_dtauint", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_n_tauint": {"fullname": "pyerrors.obs.Obs.e_n_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_n_tauint", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_rho": {"fullname": "pyerrors.obs.Obs.e_rho", "modulename": "pyerrors.obs", "qualname": "Obs.e_rho", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_tauint": {"fullname": "pyerrors.obs.Obs.e_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_tauint", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_windowsize": {"fullname": "pyerrors.obs.Obs.e_windowsize", "modulename": "pyerrors.obs", "qualname": "Obs.e_windowsize", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.tau_exp": {"fullname": "pyerrors.obs.Obs.tau_exp", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp", "type": "variable", "doc": "

\n"}, "pyerrors.obs.CObs": {"fullname": "pyerrors.obs.CObs", "modulename": "pyerrors.obs", "qualname": "CObs", "type": "class", "doc": "

Class for a complex valued observable.

\n"}, "pyerrors.obs.CObs.__init__": {"fullname": "pyerrors.obs.CObs.__init__", "modulename": "pyerrors.obs", "qualname": "CObs.__init__", "type": "function", "doc": "

\n", "parameters": ["self", "real", "imag"], "funcdef": "def"}, "pyerrors.obs.CObs.tag": {"fullname": "pyerrors.obs.CObs.tag", "modulename": "pyerrors.obs", "qualname": "CObs.tag", "type": "variable", "doc": "

\n"}, "pyerrors.obs.CObs.real": {"fullname": "pyerrors.obs.CObs.real", "modulename": "pyerrors.obs", "qualname": "CObs.real", "type": "variable", "doc": "

\n"}, "pyerrors.obs.CObs.imag": {"fullname": "pyerrors.obs.CObs.imag", "modulename": "pyerrors.obs", "qualname": "CObs.imag", "type": "variable", "doc": "

\n"}, "pyerrors.obs.CObs.gamma_method": {"fullname": "pyerrors.obs.CObs.gamma_method", "modulename": "pyerrors.obs", "qualname": "CObs.gamma_method", "type": "function", "doc": "

Executes the gamma_method for the real and the imaginary part.

\n", "parameters": ["self", "kwargs"], "funcdef": "def"}, "pyerrors.obs.CObs.is_zero": {"fullname": "pyerrors.obs.CObs.is_zero", "modulename": "pyerrors.obs", "qualname": "CObs.is_zero", "type": "function", "doc": "

Checks whether both real and imaginary part are zero within machine precision.

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.CObs.conjugate": {"fullname": "pyerrors.obs.CObs.conjugate", "modulename": "pyerrors.obs", "qualname": "CObs.conjugate", "type": "function", "doc": "

\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.merge_idx": {"fullname": "pyerrors.obs.merge_idx", "modulename": "pyerrors.obs", "qualname": "merge_idx", "type": "function", "doc": "

Returns the union of all lists in idl

\n\n
Parameters
\n\n
    \n
  • idl (list):\nList of lists or ranges.
  • \n
\n", "parameters": ["idl"], "funcdef": "def"}, "pyerrors.obs.expand_deltas_for_merge": {"fullname": "pyerrors.obs.expand_deltas_for_merge", "modulename": "pyerrors.obs", "qualname": "expand_deltas_for_merge", "type": "function", "doc": "

Expand deltas defined on idx to the list of configs that is defined by new_idx.\n New, empy entries are filled by 0. If idx and new_idx are of type range, the smallest\n common divisor of the step sizes is used as new step size.

\n\n
Parameters
\n\n
    \n
  • deltas (list):\nList of fluctuations
  • \n
  • idx (list):\nList or range of configs on which the deltas are defined.\nHas to be a subset of new_idx.
  • \n
  • shape (list):\nNumber of configs in idx.
  • \n
  • new_idx (list):\nList of configs that defines the new range.
  • \n
\n", "parameters": ["deltas", "idx", "shape", "new_idx"], "funcdef": "def"}, "pyerrors.obs.filter_zeroes": {"fullname": "pyerrors.obs.filter_zeroes", "modulename": "pyerrors.obs", "qualname": "filter_zeroes", "type": "function", "doc": "

Filter out all configurations with vanishing fluctuation such that they do not\n contribute to the error estimate anymore. Returns the new names, deltas and\n idl according to the filtering.\n A fluctuation is considered to be vanishing, if it is smaller than eps times\n the mean of the absolute values of all deltas in one list.

\n\n
Parameters
\n\n
    \n
  • names (list):\nList of names
  • \n
  • deltas (dict):\nDict lists of fluctuations
  • \n
  • idx (dict):\nDict of lists or ranges of configs on which the deltas are defined.\nHas to be a subset of new_idx.
  • \n
  • eps (float):\nPrefactor that enters the filter criterion.
  • \n
\n", "parameters": ["names", "deltas", "idl", "eps"], "funcdef": "def"}, "pyerrors.obs.derived_observable": {"fullname": "pyerrors.obs.derived_observable", "modulename": "pyerrors.obs", "qualname": "derived_observable", "type": "function", "doc": "

Construct a derived Obs according to func(data, **kwargs) using automatic differentiation.

\n\n
Parameters
\n\n
    \n
  • func (object):\narbitrary function of the form func(data, **kwargs). For the\nautomatic differentiation to work, all numpy functions have to have\nthe autograd wrapper (use 'import autograd.numpy as anp').
  • \n
  • data (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
  • \n
  • num_grad (bool):\nif True, numerical derivatives are used instead of autograd\n(default False). To control the numerical differentiation the\nkwargs of numdifftools.step_generators.MaxStepGenerator\ncan be used.
  • \n
  • man_grad (list):\nmanually supply a list or an array which contains the jacobian\nof func. Use cautiously, supplying the wrong derivative will\nnot be intercepted.
  • \n
\n\n
Notes
\n\n

For simple mathematical operations it can be practical to use anonymous\nfunctions. For the ratio of two observables one can e.g. use

\n\n

new_obs = derived_observable(lambda x: x[0] / x[1], [obs1, obs2])

\n", "parameters": ["func", "data", "kwargs"], "funcdef": "def"}, "pyerrors.obs.reduce_deltas": {"fullname": "pyerrors.obs.reduce_deltas", "modulename": "pyerrors.obs", "qualname": "reduce_deltas", "type": "function", "doc": "

Extract deltas defined on idx_old on all configs of idx_new.

\n\n
Parameters
\n\n
    \n
  • deltas (list):\nList of fluctuations
  • \n
  • idx_old (list):\nList or range of configs on which the deltas are defined
  • \n
  • idx_new (list):\nList of configs for which we want to extract the deltas.\nHas to be a subset of idx_old.
  • \n
\n", "parameters": ["deltas", "idx_old", "idx_new"], "funcdef": "def"}, "pyerrors.obs.reweight": {"fullname": "pyerrors.obs.reweight", "modulename": "pyerrors.obs", "qualname": "reweight", "type": "function", "doc": "

Reweight a list of observables.

\n\n
Parameters
\n\n
    \n
  • weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
  • \n
  • obs (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
  • \n
  • all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl.
  • \n
\n", "parameters": ["weight", "obs", "kwargs"], "funcdef": "def"}, "pyerrors.obs.correlate": {"fullname": "pyerrors.obs.correlate", "modulename": "pyerrors.obs", "qualname": "correlate", "type": "function", "doc": "

Correlate two observables.

\n\n
Parameters
\n\n
    \n
  • obs_a (Obs):\nFirst observable
  • \n
  • obs_b (Obs):\nSecond observable
  • \n
  • Keep in mind to only correlate primary observables which have not been reweighted
  • \n
  • yet. The reweighting has to be applied after correlating the observables.
  • \n
  • Currently only works if ensembles are identical. This is not really necessary.
  • \n
\n", "parameters": ["obs_a", "obs_b"], "funcdef": "def"}, "pyerrors.obs.covariance": {"fullname": "pyerrors.obs.covariance", "modulename": "pyerrors.obs", "qualname": "covariance", "type": "function", "doc": "

Calculates the covariance of two observables.

\n\n

covariance(obs, obs) is equal to obs.dvalue ** 2\nThe gamma method has to be applied first to both observables.

\n\n

If abs(covariance(obs1, obs2)) > obs1.dvalue * obs2.dvalue, the covariance\nis constrained to the maximum value in order to make sure that covariance\nmatrices are positive semidefinite.

\n\n
Parameters
\n\n
    \n
  • correlation (bool):\nif true the correlation instead of the covariance is\nreturned (default False)
  • \n
\n", "parameters": ["obs1", "obs2", "correlation", "kwargs"], "funcdef": "def"}, "pyerrors.obs.covariance2": {"fullname": "pyerrors.obs.covariance2", "modulename": "pyerrors.obs", "qualname": "covariance2", "type": "function", "doc": "

Alternative implementation of the covariance of two observables.

\n\n

covariance(obs, obs) is equal to obs.dvalue ** 2\nThe gamma method has to be applied first to both observables.

\n\n

If abs(covariance(obs1, obs2)) > obs1.dvalue * obs2.dvalue, the covariance\nis constrained to the maximum value in order to make sure that covariance\nmatrices are positive semidefinite.

\n\n
Keyword arguments
\n\n

correlation -- if true the correlation instead of the covariance is\n returned (default False)

\n", "parameters": ["obs1", "obs2", "correlation", "kwargs"], "funcdef": "def"}, "pyerrors.obs.covariance3": {"fullname": "pyerrors.obs.covariance3", "modulename": "pyerrors.obs", "qualname": "covariance3", "type": "function", "doc": "

Another alternative implementation of the covariance of two observables.

\n\n

covariance2(obs, obs) is equal to obs.dvalue ** 2\nCurrently only works if ensembles are identical.\nThe gamma method has to be applied first to both observables.

\n\n

If abs(covariance2(obs1, obs2)) > obs1.dvalue * obs2.dvalue, the covariance\nis constrained to the maximum value in order to make sure that covariance\nmatrices are positive semidefinite.

\n\n
Keyword arguments
\n\n

correlation -- if true the correlation instead of the covariance is\n returned (default False)\nplot -- if true, the integrated autocorrelation time for each ensemble is\n plotted.

\n", "parameters": ["obs1", "obs2", "correlation", "kwargs"], "funcdef": "def"}, "pyerrors.obs.pseudo_Obs": {"fullname": "pyerrors.obs.pseudo_Obs", "modulename": "pyerrors.obs", "qualname": "pseudo_Obs", "type": "function", "doc": "

Generate a pseudo Obs with given value, dvalue and name

\n\n

The standard number of samples is a 1000. This can be adjusted.

\n", "parameters": ["value", "dvalue", "name", "samples"], "funcdef": "def"}, "pyerrors.obs.dump_object": {"fullname": "pyerrors.obs.dump_object", "modulename": "pyerrors.obs", "qualname": "dump_object", "type": "function", "doc": "

Dump object into pickle file.

\n\n
Parameters
\n\n
    \n
  • obj (object):\nobject to be saved in the pickle file
  • \n
  • name (str):\nname of the file
  • \n
  • path (str):\nspecifies a custom path for the file (default '.')
  • \n
\n", "parameters": ["obj", "name", "kwargs"], "funcdef": "def"}, "pyerrors.obs.load_object": {"fullname": "pyerrors.obs.load_object", "modulename": "pyerrors.obs", "qualname": "load_object", "type": "function", "doc": "

Load object from pickle file.

\n", "parameters": ["path"], "funcdef": "def"}, "pyerrors.obs.merge_obs": {"fullname": "pyerrors.obs.merge_obs", "modulename": "pyerrors.obs", "qualname": "merge_obs", "type": "function", "doc": "

Combine all observables in list_of_obs into one new observable

\n\n
Parameters
\n\n
    \n
  • list_of_obs (list):\nlist of the Obs object to be combined
  • \n
  • It is not possible to combine obs which are based on the same replicum
  • \n
\n", "parameters": ["list_of_obs"], "funcdef": "def"}, "pyerrors.roots": {"fullname": "pyerrors.roots", "modulename": "pyerrors.roots", "qualname": "", "type": "module", "doc": "

\n"}, "pyerrors.roots.find_root": {"fullname": "pyerrors.roots.find_root", "modulename": "pyerrors.roots", "qualname": "find_root", "type": "function", "doc": "

Finds the root of the function func(x, d) where d is an Obs.

\n\n
Parameters
\n\n
    \n
  • d -- Obs passed to the function.
  • \n
  • func -- Function to be minimized. Any numpy functions have to use the autograd.numpy wrapper
  • \n
  • guess -- Initial guess for the minimization.
  • \n
\n", "parameters": ["d", "func", "guess", "kwargs"], "funcdef": "def"}, "pyerrors.version": {"fullname": "pyerrors.version", "modulename": "pyerrors.version", "qualname": "", "type": "module", "doc": "

\n"}}, "docInfo": {"pyerrors": {"qualname": 0, "fullname": 1, "doc": 390}, "pyerrors.correlators": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.correlators.Corr": {"qualname": 1, "fullname": 3, "doc": 51}, "pyerrors.correlators.Corr.__init__": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.reweighted": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.gamma_method": {"qualname": 2, "fullname": 4, "doc": 5}, "pyerrors.correlators.Corr.projected": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.sum": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.smearing": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.plottable": {"qualname": 2, "fullname": 4, "doc": 16}, "pyerrors.correlators.Corr.symmetric": {"qualname": 2, "fullname": 4, "doc": 4}, "pyerrors.correlators.Corr.anti_symmetric": {"qualname": 2, "fullname": 4, "doc": 5}, "pyerrors.correlators.Corr.smearing_symmetric": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.GEVP": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.Eigenvalue": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.roll": {"qualname": 2, "fullname": 4, "doc": 10}, "pyerrors.correlators.Corr.reverse": {"qualname": 2, "fullname": 4, "doc": 4}, "pyerrors.correlators.Corr.correlate": {"qualname": 2, "fullname": 4, "doc": 5}, "pyerrors.correlators.Corr.reweight": {"qualname": 2, "fullname": 4, "doc": 28}, "pyerrors.correlators.Corr.T_symmetry": {"qualname": 2, "fullname": 4, "doc": 21}, "pyerrors.correlators.Corr.deriv": {"qualname": 2, "fullname": 4, "doc": 18}, "pyerrors.correlators.Corr.second_deriv": {"qualname": 2, "fullname": 4, "doc": 6}, "pyerrors.correlators.Corr.m_eff": {"qualname": 2, "fullname": 4, "doc": 60}, "pyerrors.correlators.Corr.fit": {"qualname": 2, "fullname": 4, "doc": 32}, "pyerrors.correlators.Corr.plateau": {"qualname": 2, "fullname": 4, "doc": 34}, "pyerrors.correlators.Corr.set_prange": {"qualname": 2, "fullname": 4, "doc": 5}, "pyerrors.correlators.Corr.show": {"qualname": 2, "fullname": 4, "doc": 56}, "pyerrors.correlators.Corr.dump": {"qualname": 2, "fullname": 4, "doc": 9}, "pyerrors.correlators.Corr.print": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.sqrt": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.log": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.exp": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.sin": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.cos": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.tan": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.sinh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.cosh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.tanh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.arcsin": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.arccos": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.arctan": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.arcsinh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.arccosh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.arctanh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.dirac": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.dirac.Grid_gamma": {"qualname": 1, "fullname": 3, "doc": 5}, "pyerrors.fits": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.fits.Fit_result": {"qualname": 1, "fullname": 3, "doc": 13}, "pyerrors.fits.Fit_result.__init__": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.fits.Fit_result.gamma_method": {"qualname": 2, "fullname": 4, "doc": 5}, "pyerrors.fits.least_squares": {"qualname": 1, "fullname": 3, "doc": 185}, "pyerrors.fits.total_least_squares": {"qualname": 1, "fullname": 3, "doc": 120}, "pyerrors.fits.prior_fit": {"qualname": 1, "fullname": 3, "doc": 0}, "pyerrors.fits.standard_fit": {"qualname": 1, "fullname": 3, "doc": 0}, "pyerrors.fits.odr_fit": {"qualname": 1, "fullname": 3, "doc": 0}, "pyerrors.fits.fit_lin": {"qualname": 1, "fullname": 3, "doc": 33}, "pyerrors.fits.qqplot": {"qualname": 1, "fullname": 3, "doc": 12}, "pyerrors.fits.residual_plot": {"qualname": 1, "fullname": 3, "doc": 8}, "pyerrors.fits.covariance_matrix": {"qualname": 1, "fullname": 3, "doc": 4}, "pyerrors.fits.error_band": {"qualname": 1, "fullname": 3, "doc": 14}, "pyerrors.fits.ks_test": {"qualname": 1, "fullname": 3, "doc": 20}, "pyerrors.fits.fit_general": {"qualname": 1, "fullname": 3, "doc": 79}, "pyerrors.input": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.input.bdio": {"qualname": 0, "fullname": 3, "doc": 0}, "pyerrors.input.bdio.read_ADerrors": {"qualname": 1, "fullname": 4, "doc": 46}, "pyerrors.input.bdio.write_ADerrors": {"qualname": 1, "fullname": 4, "doc": 47}, "pyerrors.input.bdio.read_mesons": {"qualname": 1, "fullname": 4, "doc": 68}, "pyerrors.input.bdio.read_dSdm": {"qualname": 1, "fullname": 4, "doc": 61}, "pyerrors.input.hadrons": {"qualname": 0, "fullname": 3, "doc": 0}, "pyerrors.input.hadrons.read_meson_hd5": {"qualname": 1, "fullname": 4, "doc": 59}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"qualname": 1, "fullname": 4, "doc": 44}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"qualname": 1, "fullname": 4, "doc": 44}, "pyerrors.input.misc": {"qualname": 0, "fullname": 3, "doc": 0}, "pyerrors.input.misc.read_pbp": {"qualname": 1, "fullname": 4, "doc": 28}, "pyerrors.input.openQCD": {"qualname": 0, "fullname": 3, "doc": 0}, "pyerrors.input.openQCD.read_rwms": {"qualname": 1, "fullname": 4, "doc": 46}, "pyerrors.input.openQCD.extract_t0": {"qualname": 1, "fullname": 4, "doc": 115}, "pyerrors.input.sfcf": {"qualname": 0, "fullname": 3, "doc": 0}, "pyerrors.input.sfcf.read_sfcf": {"qualname": 1, "fullname": 4, "doc": 41}, "pyerrors.input.sfcf.read_sfcf_c": {"qualname": 1, "fullname": 4, "doc": 63}, "pyerrors.input.sfcf.read_qtop": {"qualname": 1, "fullname": 4, "doc": 21}, "pyerrors.jackknifing": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.jackknifing.Jack": {"qualname": 1, "fullname": 3, "doc": 0}, "pyerrors.jackknifing.Jack.__init__": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.jackknifing.Jack.print": {"qualname": 2, "fullname": 4, "doc": 4}, "pyerrors.jackknifing.Jack.plot_tauint": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.jackknifing.Jack.plot_history": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.jackknifing.Jack.dump": {"qualname": 2, "fullname": 4, "doc": 13}, "pyerrors.jackknifing.generate_jack": {"qualname": 1, "fullname": 3, "doc": 0}, "pyerrors.jackknifing.derived_jack": {"qualname": 1, "fullname": 3, "doc": 55}, "pyerrors.linalg": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.linalg.derived_array": {"qualname": 1, "fullname": 3, "doc": 53}, "pyerrors.linalg.matmul": {"qualname": 1, "fullname": 3, "doc": 14}, "pyerrors.linalg.inv": {"qualname": 1, "fullname": 3, "doc": 5}, "pyerrors.linalg.cholesky": {"qualname": 1, "fullname": 3, "doc": 6}, "pyerrors.linalg.scalar_mat_op": {"qualname": 1, "fullname": 3, "doc": 8}, "pyerrors.linalg.eigh": {"qualname": 1, "fullname": 3, "doc": 11}, "pyerrors.linalg.eig": {"qualname": 1, "fullname": 3, "doc": 9}, "pyerrors.linalg.pinv": {"qualname": 1, "fullname": 3, "doc": 6}, "pyerrors.linalg.svd": {"qualname": 1, "fullname": 3, "doc": 6}, "pyerrors.linalg.slogdet": {"qualname": 1, "fullname": 3, "doc": 8}, "pyerrors.linalg.grad_eig": {"qualname": 1, "fullname": 3, "doc": 6}, "pyerrors.misc": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.misc.gen_correlated_data": {"qualname": 1, "fullname": 3, "doc": 36}, "pyerrors.mpm": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.mpm.matrix_pencil_method": {"qualname": 1, "fullname": 3, "doc": 72}, "pyerrors.mpm.matrix_pencil_method_old": {"qualname": 1, "fullname": 3, "doc": 70}, "pyerrors.npr": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.npr.Npr_matrix": {"qualname": 1, "fullname": 3, "doc": 425}, "pyerrors.npr.Npr_matrix.__init__": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.npr.Npr_matrix.g5H": {"qualname": 2, "fullname": 4, "doc": 16}, "pyerrors.npr.inv_propagator": {"qualname": 1, "fullname": 3, "doc": 4}, "pyerrors.npr.Zq": {"qualname": 1, "fullname": 3, "doc": 25}, "pyerrors.obs": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.obs.Obs": {"qualname": 1, "fullname": 3, "doc": 94}, "pyerrors.obs.Obs.__init__": {"qualname": 2, "fullname": 4, "doc": 40}, "pyerrors.obs.Obs.S_global": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.S_dict": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.tau_exp_global": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.tau_exp_dict": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.N_sigma_global": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.filter_eps": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.names": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.shape": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.r_values": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.deltas": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.idl": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.is_merged": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.N": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.ddvalue": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.reweighted": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.tag": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.value": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.dvalue": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_names": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_content": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.gamma_method": {"qualname": 2, "fullname": 4, "doc": 63}, "pyerrors.obs.Obs.expand_deltas": {"qualname": 2, "fullname": 4, "doc": 29}, "pyerrors.obs.Obs.calc_gamma": {"qualname": 2, "fullname": 4, "doc": 41}, "pyerrors.obs.Obs.print": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.details": {"qualname": 2, "fullname": 4, "doc": 4}, "pyerrors.obs.Obs.is_zero_within_error": {"qualname": 2, "fullname": 4, "doc": 13}, "pyerrors.obs.Obs.is_zero": {"qualname": 2, "fullname": 4, "doc": 7}, "pyerrors.obs.Obs.plot_tauint": {"qualname": 2, "fullname": 4, "doc": 6}, "pyerrors.obs.Obs.plot_rho": {"qualname": 2, "fullname": 4, "doc": 7}, "pyerrors.obs.Obs.plot_rep_dist": {"qualname": 2, "fullname": 4, "doc": 8}, "pyerrors.obs.Obs.plot_history": {"qualname": 2, "fullname": 4, "doc": 7}, "pyerrors.obs.Obs.plot_piechart": {"qualname": 2, "fullname": 4, "doc": 12}, "pyerrors.obs.Obs.dump": {"qualname": 2, "fullname": 4, "doc": 13}, "pyerrors.obs.Obs.sqrt": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.log": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.exp": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.sin": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.cos": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.tan": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.arcsin": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.arccos": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.arctan": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.sinh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.cosh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.tanh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.arcsinh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.arccosh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.arctanh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.sinc": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.N_sigma": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.S": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_ddvalue": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_drho": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_dtauint": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_dvalue": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_n_dtauint": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_n_tauint": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_rho": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_tauint": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_windowsize": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.tau_exp": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.CObs": {"qualname": 1, "fullname": 3, "doc": 4}, "pyerrors.obs.CObs.__init__": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.CObs.tag": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.CObs.real": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.CObs.imag": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.CObs.gamma_method": {"qualname": 2, "fullname": 4, "doc": 5}, "pyerrors.obs.CObs.is_zero": {"qualname": 2, "fullname": 4, "doc": 10}, "pyerrors.obs.CObs.conjugate": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.merge_idx": {"qualname": 1, "fullname": 3, "doc": 10}, "pyerrors.obs.expand_deltas_for_merge": {"qualname": 1, "fullname": 3, "doc": 52}, "pyerrors.obs.filter_zeroes": {"qualname": 1, "fullname": 3, "doc": 55}, "pyerrors.obs.derived_observable": {"qualname": 1, "fullname": 3, "doc": 93}, "pyerrors.obs.reduce_deltas": {"qualname": 1, "fullname": 3, "doc": 27}, "pyerrors.obs.reweight": {"qualname": 1, "fullname": 3, "doc": 38}, "pyerrors.obs.correlate": {"qualname": 1, "fullname": 3, "doc": 28}, "pyerrors.obs.covariance": {"qualname": 1, "fullname": 3, "doc": 44}, "pyerrors.obs.covariance2": {"qualname": 1, "fullname": 3, "doc": 45}, "pyerrors.obs.covariance3": {"qualname": 1, "fullname": 3, "doc": 58}, "pyerrors.obs.pseudo_Obs": {"qualname": 1, "fullname": 3, "doc": 12}, "pyerrors.obs.dump_object": {"qualname": 1, "fullname": 3, "doc": 22}, "pyerrors.obs.load_object": {"qualname": 1, "fullname": 3, "doc": 4}, "pyerrors.obs.merge_obs": {"qualname": 1, "fullname": 3, "doc": 19}, "pyerrors.roots": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.roots.find_root": {"qualname": 1, "fullname": 3, "doc": 25}, "pyerrors.version": {"qualname": 0, "fullname": 2, "doc": 0}}, "length": 202, "save": true}, "index": {"qualname": {"root": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.sum": {"tf": 1}, "pyerrors.correlators.Corr.smearing": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.smearing_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}}, "df": 42, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}}, "df": 2}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"2": {"docs": {"pyerrors.obs.covariance2": {"tf": 1}}, "df": 1}, "3": {"docs": {"pyerrors.obs.covariance3": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.fits.covariance_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "b": {"docs": {"pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 8}, "n": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 1}}}}}}}}}}, "_": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "_": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.jackknifing.Jack.__init__": {"tf": 1}, "pyerrors.npr.Npr_matrix.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 6}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}, "d": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.obs.CObs.real": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.reduce_deltas": {"tf": 1}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}}, "_": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1}}}}}}, "g": {"5": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 4}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.jackknifing.generate_jack": {"tf": 1}}, "df": 1}}}}}}}}}}, "_": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.grad_eig": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.jackknifing.Jack.print": {"tf": 1}, "pyerrors.obs.Obs.print": {"tf": 1}}, "df": 3}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.prior_fit": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}, "_": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.jackknifing.Jack.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}}, "df": 2}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.jackknifing.Jack.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 2}}}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.plot_rho": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {"pyerrors.obs.Obs.S": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.sum": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.smearing": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.smearing_symmetric": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.shape": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}}, "df": 2}, "c": {"docs": {"pyerrors.obs.Obs.sinc": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.standard_fit": {"tf": 1}}, "df": 1}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.linalg.scalar_mat_op": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.svd": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.linalg.slogdet": {"tf": 1}}, "df": 1}}}}}}, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.S_dict": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.expand_deltas": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "t": {"0": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}}}}}}}, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.Obs.e_names": {"tf": 1}}, "df": 1}}, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_n_tauint": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_content": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.e_ddvalue": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_drho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_dtauint": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.e_dvalue": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_rho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_tauint": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 1}}}}}}}}}, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.Obs.tau_exp_global": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {"pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.deltas": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.dump_object": {"tf": 1}}, "df": 1}}}}}}}}}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.ddvalue": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.dvalue": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.obs.merge_idx": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}}, "df": 3}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.filter_eps": {"tf": 1}}, "df": 1}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.load_object": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.odr_fit": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {"pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.filter_eps": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.shape": {"tf": 1}, "pyerrors.obs.Obs.r_values": {"tf": 1}, "pyerrors.obs.Obs.deltas": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}, "pyerrors.obs.Obs.is_merged": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}, "pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.Obs.print": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.Obs.sinc": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 63}}, "q": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}}, "k": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.jackknifing.Jack": {"tf": 1}, "pyerrors.jackknifing.Jack.__init__": {"tf": 1}, "pyerrors.jackknifing.Jack.print": {"tf": 1}, "pyerrors.jackknifing.Jack.plot_tauint": {"tf": 1}, "pyerrors.jackknifing.Jack.plot_history": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}}, "df": 6}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.npr.inv_propagator": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.idl": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.Obs.is_merged": {"tf": 1}}, "df": 1}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2, "_": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.CObs.imag": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {"pyerrors.obs.Obs.N": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.npr.Npr_matrix.__init__": {"tf": 1}, "pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 3}}}}}}}}}, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.N_sigma": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.names": {"tf": 1}}, "df": 1}}}}, "z": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.npr.Zq": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.value": {"tf": 1}}, "df": 1}}}}}}, "fullname": {"root": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.sum": {"tf": 1}, "pyerrors.correlators.Corr.smearing": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.smearing_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.dirac": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.prior_fit": {"tf": 1}, "pyerrors.fits.standard_fit": {"tf": 1}, "pyerrors.fits.odr_fit": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.covariance_matrix": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.jackknifing": {"tf": 1}, "pyerrors.jackknifing.Jack": {"tf": 1}, "pyerrors.jackknifing.Jack.__init__": {"tf": 1}, "pyerrors.jackknifing.Jack.print": {"tf": 1}, "pyerrors.jackknifing.Jack.plot_tauint": {"tf": 1}, "pyerrors.jackknifing.Jack.plot_history": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.jackknifing.generate_jack": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}, "pyerrors.misc": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.npr": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.npr.Npr_matrix.__init__": {"tf": 1}, "pyerrors.npr.Npr_matrix.g5H": {"tf": 1}, "pyerrors.npr.inv_propagator": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1}, "pyerrors.obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.filter_eps": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.shape": {"tf": 1}, "pyerrors.obs.Obs.r_values": {"tf": 1}, "pyerrors.obs.Obs.deltas": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}, "pyerrors.obs.Obs.is_merged": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}, "pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.Obs.print": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.Obs.sinc": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}, "pyerrors.obs.merge_idx": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reduce_deltas": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1}, "pyerrors.obs.load_object": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.version": {"tf": 1}}, "df": 202}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.jackknifing.Jack.print": {"tf": 1}, "pyerrors.obs.Obs.print": {"tf": 1}}, "df": 3}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.prior_fit": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}, "_": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.jackknifing.Jack.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}}, "df": 2}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.jackknifing.Jack.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 2}}}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.plot_rho": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.sum": {"tf": 1}, "pyerrors.correlators.Corr.smearing": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.smearing_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}}, "df": 42, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.sum": {"tf": 1}, "pyerrors.correlators.Corr.smearing": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.smearing_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 44}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}}, "df": 2}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"2": {"docs": {"pyerrors.obs.covariance2": {"tf": 1}}, "df": 1}, "3": {"docs": {"pyerrors.obs.covariance3": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.fits.covariance_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "b": {"docs": {"pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 8}, "n": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 1}}}}}}}}}}, "_": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "_": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.jackknifing.Jack.__init__": {"tf": 1}, "pyerrors.npr.Npr_matrix.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 6}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}, "d": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.obs.CObs.real": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.reduce_deltas": {"tf": 1}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}, "_": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1}}}}}}, "g": {"5": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 4}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.jackknifing.generate_jack": {"tf": 1}}, "df": 1}}}}}}}}}}, "_": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.grad_eig": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {"pyerrors.obs.Obs.S": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.sum": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.smearing": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.smearing_symmetric": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.shape": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}}, "df": 2}, "c": {"docs": {"pyerrors.obs.Obs.sinc": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.standard_fit": {"tf": 1}}, "df": 1}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 4}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.linalg.scalar_mat_op": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.svd": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.linalg.slogdet": {"tf": 1}}, "df": 1}}}}}}, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.S_dict": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.expand_deltas": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "t": {"0": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}}}}}}}, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.Obs.e_names": {"tf": 1}}, "df": 1}}, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_n_tauint": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_content": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.e_ddvalue": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_drho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_dtauint": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.e_dvalue": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_rho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_tauint": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 1}}}}}}}}}, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.Obs.tau_exp_global": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {"pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.deltas": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.dump_object": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.dirac": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.ddvalue": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.dvalue": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.misc": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.mpm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 3}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.obs.merge_idx": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.prior_fit": {"tf": 1}, "pyerrors.fits.standard_fit": {"tf": 1}, "pyerrors.fits.odr_fit": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.covariance_matrix": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 17, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}}, "df": 3}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.filter_eps": {"tf": 1}}, "df": 1}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.load_object": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}}, "df": 12}}}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.odr_fit": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}}}}}, "b": {"docs": {"pyerrors.obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.filter_eps": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.shape": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.r_values": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.deltas": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.idl": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_merged": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.ddvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweighted": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tag": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.value": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_content": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.print": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.details": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sqrt": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.log": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.exp": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sinc": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_drho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}, "pyerrors.obs.merge_idx": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reduce_deltas": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1}, "pyerrors.obs.load_object": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 86}}, "q": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}}, "k": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input": {"tf": 1}, "pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 19}}}, "v": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.npr.inv_propagator": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.idl": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.Obs.is_merged": {"tf": 1}}, "df": 1}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2, "_": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.CObs.imag": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 5}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 4}}}}}}, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.jackknifing.Jack": {"tf": 1}, "pyerrors.jackknifing.Jack.__init__": {"tf": 1}, "pyerrors.jackknifing.Jack.print": {"tf": 1}, "pyerrors.jackknifing.Jack.plot_tauint": {"tf": 1}, "pyerrors.jackknifing.Jack.plot_history": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}}, "df": 6, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.jackknifing": {"tf": 1}, "pyerrors.jackknifing.Jack": {"tf": 1}, "pyerrors.jackknifing.Jack.__init__": {"tf": 1}, "pyerrors.jackknifing.Jack.print": {"tf": 1}, "pyerrors.jackknifing.Jack.plot_tauint": {"tf": 1}, "pyerrors.jackknifing.Jack.plot_history": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.jackknifing.generate_jack": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}}, "df": 9}}}}}}}}, "n": {"docs": {"pyerrors.obs.Obs.N": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.npr": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.npr.Npr_matrix.__init__": {"tf": 1}, "pyerrors.npr.Npr_matrix.g5H": {"tf": 1}, "pyerrors.npr.inv_propagator": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1}}, "df": 6, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.npr.Npr_matrix.__init__": {"tf": 1}, "pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 3}}}}}}}}}, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.N_sigma": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.names": {"tf": 1}}, "df": 1}}}}, "z": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.npr.Zq": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.value": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.version": {"tf": 1}}, "df": 1}}}}}}}}}, "doc": {"root": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "5": {"9": {"6": {"6": {"3": {"1": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"2": {"8": {"9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 11, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"0": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "1": {"0": {"0": {"0": {"docs": {"pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 1}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}, "2": {"docs": {}, "df": 0, "x": {"1": {"2": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1}, "pyerrors.npr.inv_propagator": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "5": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 2}, "7": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "9": {"9": {"0": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 12, "*": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "2": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "8": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 12, "*": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, ")": {"docs": {}, "df": 0, "/": {"3": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}, "3": {"2": {"3": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 5.291502622129181}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2}}, "df": 2, "x": {"3": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "4": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 3, "x": {"4": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "5": {"0": {"0": {"docs": {}, "df": 0, "(": {"4": {"0": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "1": {"9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"8": {"0": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"8": {"docs": {}, "df": 0, "(": {"2": {"3": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2, "(": {"0": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "8": {"1": {"4": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"4": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}, "9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0, "p": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.7320508075688772}}, "df": 2, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 4}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1.7320508075688772}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 2}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.npr.Zq": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.merge_idx": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reduce_deltas": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 51}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.jackknifing.Jack.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.dump_object": {"tf": 1.4142135623730951}}, "df": 12}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.npr.inv_propagator": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1.4142135623730951}}, "df": 3}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.jackknifing.Jack.print": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 4}}, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.jackknifing.Jack.print": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 6}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 2}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 7}}}}}, "n": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.7320508075688772}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}}, "df": 10, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 2, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}}, "df": 1}}, "l": {"docs": {"pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1.4142135623730951}, "pyerrors.obs.load_object": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 4}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 10, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 9}}}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.npr.Npr_matrix": {"tf": 2}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.4142135623730951}, "pyerrors.obs.reduce_deltas": {"tf": 1.4142135623730951}}, "df": 9}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}}, "df": 2}}}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}}, "df": 17, "e": {"1": {"docs": {"pyerrors": {"tf": 2.6457513110645907}}, "df": 1, "|": {"docs": {}, "df": 0, "r": {"0": {"1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "2": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}}}}, "_": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 3}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 6}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 4}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 12}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "_": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 3.1622776601683795}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {"pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1.4142135623730951}}, "df": 1}}, "c": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 5, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 12}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1.7320508075688772}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1.4142135623730951}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 2}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.reduce_deltas": {"tf": 1.7320508075688772}}, "df": 8, "u": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}}, "df": 6}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 12}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": null}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 2}}, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 2}}}, "j": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.covariance_matrix": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2}, "pyerrors.obs.covariance2": {"tf": 2}, "pyerrors.obs.covariance3": {"tf": 2}}, "df": 6, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"2": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.covariance3": {"tf": 1}}, "df": 1}}}}, "docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}}, "df": 2}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1}}, "df": 8, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance2": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}}, "df": 23}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 6}}}}}}}}, "b": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}}, "df": 5}, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "(": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.6457513110645907}}, "df": 1}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1}}, "df": 7}}, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 3}}}, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 8}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 3}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}}, "df": 5}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "(": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1, "+": {"1": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "p": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 2.23606797749979}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 2}}}}}}, "_": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.covariance_matrix": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.4142135623730951}}, "df": 18}, "c": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.npr.Npr_matrix.g5H": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 10}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 4}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 5}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}, "x": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3}}}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 3}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 2}, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 3}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 13}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 4}, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2.8284271247461903}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.6457513110645907}}, "df": 2, "_": {"0": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "y": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 2.6457513110645907}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 2.6457513110645907}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}}, "df": 4, "i": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 2}}, "d": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}}, "df": 1}}}, "s": {"1": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}}, "df": 1}}, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}}, "df": 1, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 3.1622776601683795}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 16, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}}, "df": 4, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 7}}}}}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.filter_zeroes": {"tf": 2}}, "df": 3, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 5}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 3}}, "t": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 6}}}}}}, "f": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1.4142135623730951}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 2}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.reduce_deltas": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 9}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 2}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1}}, "df": 26}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.expand_deltas": {"tf": 2}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1.7320508075688772}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1.7320508075688772}, "pyerrors.obs.filter_zeroes": {"tf": 2}, "pyerrors.obs.reduce_deltas": {"tf": 2}}, "df": 5, "_": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 3}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 6, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}}, "df": 1, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 2.6457513110645907}}, "df": 1, "=": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1}}, "df": 4}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance2": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance3": {"tf": 1.7320508075688772}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 7}}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}, "b": {"2": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 2}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 5}, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.jackknifing.Jack.print": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}}, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 11, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 3}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 2}}, "df": 3}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 4}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}}, "df": 4, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}}}}, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, ")": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 3}}, "df": 1, "=": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 2.449489742783178}}, "df": 1}}}}, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 10, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 9, "_": {"5": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 3}}}}}}, "{": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 9}, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.npr.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 5}, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 5}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 19}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.linalg.grad_eig": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}, "o": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, ":": {"1": {"0": {"0": {"9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"5": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 5.830951894845301}, "pyerrors.npr.Zq": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 11, "'": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}, "(": {"docs": {}, "df": 0, "[": {"2": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "[": {"0": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 6}}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 4}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 7}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 7}}}}}}}}}, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}, "c": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 5, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 2}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 5}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 7}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 6}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 4}}, "n": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 3}}, "z": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4}}}}, "g": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 4}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}}, "df": 1}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "[": {"0": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 1}}}}, "(": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"2": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"1": {"docs": {"pyerrors.obs.covariance3": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"1": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "/": {"0": {"3": {"0": {"6": {"0": {"1": {"7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 6}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}}, "df": 4}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 2}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.fit_lin": {"tf": 1.7320508075688772}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 2}, "pyerrors.input.misc.read_pbp": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 3}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_idx": {"tf": 2}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 2.8284271247461903}, "pyerrors.obs.filter_zeroes": {"tf": 2.23606797749979}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.obs.reduce_deltas": {"tf": 2.449489742783178}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}}, "df": 30, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 2, "(": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "w": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.load_object": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 6}}}, "(": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, ")": {"docs": {}, "df": 0, "/": {"2": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "3": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "/": {"2": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}}}, "v": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.npr.Zq": {"tf": 1}}, "df": 4}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "f": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 3, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Zq": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 2}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 1.7320508075688772}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 14, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}, "_": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 12}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 1}}, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.dump_object": {"tf": 2}, "pyerrors.obs.load_object": {"tf": 1}}, "df": 16, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}}, "df": 1}}}, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 3}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1.7320508075688772}}, "df": 3}}}, "l": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 3}}, "x": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.npr.Zq": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 8, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 2}, "pyerrors.jackknifing.derived_jack": {"tf": 1.7320508075688772}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 2}}, "df": 18}}}}, "(": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 4}, "a": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 3, "i": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 6, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 8}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 5}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 3}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 7}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}}, "df": 2}}, "r": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 2.6457513110645907}, "pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 8}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 5}, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1.7320508075688772}, "pyerrors.obs.reduce_deltas": {"tf": 1}}, "df": 5}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1.4142135623730951}}, "df": 2}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "s": {"docs": {"pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}}, "df": 2, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 4}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 2}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 2}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "t": {"docs": {"pyerrors.obs.expand_deltas_for_merge": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.reduce_deltas": {"tf": 1}}, "df": 3}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2}, "g": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.linalg.slogdet": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}, "p": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3, "i": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.7320508075688772}}, "df": 3}}}}, "l": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3, "(": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}, "x": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 4}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 2}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1.4142135623730951}}, "df": 2}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.23606797749979}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 8}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "r": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1.4142135623730951}}, "df": 12, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 2}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 2}}, "df": 1, "s": {"docs": {}, "df": 0, "=": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 6}}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1.4142135623730951}}, "df": 2, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 2}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 2.23606797749979}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 6, "e": {"docs": {}, "df": 0, "s": {"1": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 3}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.obs.dump_object": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 5}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2.23606797749979}}, "df": 3}, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}, "t": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3}}}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1.4142135623730951}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 1}}, "r": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1}}, "df": 7}}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 3, "i": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}}, "df": 4}}, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, ",": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}}}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.scalar_mat_op": {"tf": 1}}, "df": 1}}}}}, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}}, "df": 2}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.grad_eig": {"tf": 1}}, "df": 1}}}}, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1}}}}}}, "t": {"0": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 4, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}}, "df": 16}}, "a": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2}}, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 5}}}}, "u": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 12, "s": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.plottable": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 6}}}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 12}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.npr.Zq": {"tf": 1}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 7}}}, "h": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}, "/": {"2": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}, "^": {"2": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 1, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1.4142135623730951}}, "df": 4, "e": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 4}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.4142135623730951}}, "df": 2, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.jackknifing.derived_jack": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 2}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 9}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 14}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 2}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}}}, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2}}, "df": 7}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1.7320508075688772}, "pyerrors.obs.pseudo_Obs": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1.4142135623730951}}, "df": 16, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 3}}}}}}, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {"pyerrors.obs.expand_deltas_for_merge": {"tf": 1.7320508075688772}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 3, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.obs.expand_deltas_for_merge": {"tf": 2}, "pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 3.4641016151377544}}, "df": 1, "(": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "x": {"0": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2, "=": {"0": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "+": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}}}}}}}, "1": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 2}, "2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 2.8284271247461903}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1.7320508075688772}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 10, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}, "[": {"0": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}, "1": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.covariance_matrix": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 8, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"1": {"6": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.npr.Npr_matrix": {"tf": 3.1622776601683795}}, "df": 4, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 3}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "g": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1, "r": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 2}}}, "_": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}}, "df": 3}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}}, "df": 2}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 7, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 7}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 8}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "c": {"docs": {"pyerrors.obs.Obs": {"tf": 2}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.npr.inv_propagator": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1}}, "df": 2}}}, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.npr.Zq": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 6}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 5}}}}}}}}, "d": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.merge_idx": {"tf": 1.4142135623730951}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}}, "df": 6}, "x": {"docs": {"pyerrors.obs.Obs.expand_deltas": {"tf": 2}, "pyerrors.obs.Obs.calc_gamma": {"tf": 2}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 2}, "pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 4, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.reduce_deltas": {"tf": 1.7320508075688772}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.obs.reduce_deltas": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}, "m": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 8, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}, "d": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.misc.read_pbp": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_qtop": {"tf": 1.4142135623730951}}, "df": 11, "_": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 6}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 3}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 2}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 5}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 2}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 2}, "pyerrors.input.sfcf.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 2}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.covariance_matrix": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.npr.Npr_matrix.g5H": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.merge_idx": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 23}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}}, "df": 5}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.Obs.expand_deltas": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2}}, "df": 3}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 9}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.npr.Zq": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_idx": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1.7320508075688772}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.reduce_deltas": {"tf": 1}}, "df": 10}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 4}}, "w": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}}, "df": 4, "p": {"docs": {"pyerrors.linalg.scalar_mat_op": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 7, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 4}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.obs.Obs.__init__": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "b": {"docs": {"pyerrors": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.fit_lin": {"tf": 2.23606797749979}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance2": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}, "pyerrors.obs.pseudo_Obs": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 37, "s": {"1": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 7}, "2": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance2": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}}, "df": 7}, "3": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 2.23606797749979}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance2": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}}, "df": 14}}}, "[": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 2}}, "_": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}, "b": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}, "j": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1.7320508075688772}, "pyerrors.obs.load_object": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 15}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "n": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 8, "c": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 10}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 2.449489742783178}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 7, "=": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2}}, "df": 2, "=": {"0": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 2}, "pyerrors.obs.Obs": {"tf": 2.6457513110645907}, "pyerrors.obs.Obs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 28}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 3}}}}}, "d": {"docs": {}, "df": 0, "f": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.expand_deltas": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.merge_idx": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}, "pyerrors.jackknifing.derived_jack": {"tf": 1.7320508075688772}, "pyerrors.linalg.derived_array": {"tf": 1.7320508075688772}, "pyerrors.npr.Npr_matrix": {"tf": 2.449489742783178}, "pyerrors.npr.Zq": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 2.6457513110645907}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 21}, "p": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 1}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "y": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.reduce_deltas": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 8}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.npr.Npr_matrix.g5H": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 10}}}, "l": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Zq": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 3}}}}}, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {"pyerrors.fits.ks_test": {"tf": 1.4142135623730951}}, "df": 1, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}, "pyerrors.npr.inv_propagator": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1.4142135623730951}}, "df": 3}}}}, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 1, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "\u2013": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 4}}}}, "e": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 6}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"1": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 7}}}, "q": {"docs": {"pyerrors.npr.Zq": {"tf": 1.4142135623730951}}, "df": 1}}, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"1": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.jackknifing.Jack.print": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1.7320508075688772}}, "df": 3}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "_": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "_": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "_": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}, "pipeline": ["trimmer", "stopWordFilter", "stemmer"], "_isPrebuiltIndex": true}; // mirrored in build-search-index.js (part 1) // Also split on html tags. this is a cheap heuristic, but good enough. elasticlunr.tokenizer.setSeperator(/[\s\-.;&]+|<[^>]*>/); let searchIndex; if (docs._isPrebuiltIndex) { console.info("using precompiled search index"); searchIndex = elasticlunr.Index.load(docs); } else { console.time("building search index"); // mirrored in build-search-index.js (part 2) searchIndex = elasticlunr(function () { this.addField("qualname"); this.addField("fullname"); this.addField("doc"); this.setRef("fullname"); }); for (let doc of docs) { searchIndex.addDoc(doc); } console.timeEnd("building search index"); } return (term) => searchIndex.search(term, { fields: { qualname: {boost: 4}, fullname: {boost: 2}, doc: {boost: 1}, }, expand: true }); })();