pyerrors.obs
1import warnings 2import hashlib 3import pickle 4from math import gcd 5from functools import reduce 6import numpy as np 7import autograd.numpy as anp # Thinly-wrapped numpy 8from autograd import jacobian 9import matplotlib.pyplot as plt 10from scipy.stats import skew, skewtest, kurtosis, kurtosistest 11import numdifftools as nd 12from itertools import groupby 13from .covobs import Covobs 14 15# Improve print output of numpy.ndarrays containing Obs objects. 16np.set_printoptions(formatter={'object': lambda x: str(x)}) 17 18 19class Obs: 20 """Class for a general observable. 21 22 Instances of Obs are the basic objects of a pyerrors error analysis. 23 They are initialized with a list which contains arrays of samples for 24 different ensembles/replica and another list of same length which contains 25 the names of the ensembles/replica. Mathematical operations can be 26 performed on instances. The result is another instance of Obs. The error of 27 an instance can be computed with the gamma_method. Also contains additional 28 methods for output and visualization of the error calculation. 29 30 Attributes 31 ---------- 32 S_global : float 33 Standard value for S (default 2.0) 34 S_dict : dict 35 Dictionary for S values. If an entry for a given ensemble 36 exists this overwrites the standard value for that ensemble. 37 tau_exp_global : float 38 Standard value for tau_exp (default 0.0) 39 tau_exp_dict : dict 40 Dictionary for tau_exp values. If an entry for a given ensemble exists 41 this overwrites the standard value for that ensemble. 42 N_sigma_global : float 43 Standard value for N_sigma (default 1.0) 44 N_sigma_dict : dict 45 Dictionary for N_sigma values. If an entry for a given ensemble exists 46 this overwrites the standard value for that ensemble. 47 """ 48 __slots__ = ['names', 'shape', 'r_values', 'deltas', 'N', '_value', '_dvalue', 49 'ddvalue', 'reweighted', 'S', 'tau_exp', 'N_sigma', 50 'e_dvalue', 'e_ddvalue', 'e_tauint', 'e_dtauint', 51 'e_windowsize', 'e_rho', 'e_drho', 'e_n_tauint', 'e_n_dtauint', 52 'idl', 'tag', '_covobs', '__dict__'] 53 54 S_global = 2.0 55 S_dict = {} 56 tau_exp_global = 0.0 57 tau_exp_dict = {} 58 N_sigma_global = 1.0 59 N_sigma_dict = {} 60 61 def __init__(self, samples, names, idl=None, **kwargs): 62 """ Initialize Obs object. 63 64 Parameters 65 ---------- 66 samples : list 67 list of numpy arrays containing the Monte Carlo samples 68 names : list 69 list of strings labeling the individual samples 70 idl : list, optional 71 list of ranges or lists on which the samples are defined 72 """ 73 74 if kwargs.get("means") is None and len(samples): 75 if len(samples) != len(names): 76 raise Exception('Length of samples and names incompatible.') 77 if idl is not None: 78 if len(idl) != len(names): 79 raise Exception('Length of idl incompatible with samples and names.') 80 name_length = len(names) 81 if name_length > 1: 82 if name_length != len(set(names)): 83 raise Exception('names are not unique.') 84 if not all(isinstance(x, str) for x in names): 85 raise TypeError('All names have to be strings.') 86 else: 87 if not isinstance(names[0], str): 88 raise TypeError('All names have to be strings.') 89 if min(len(x) for x in samples) <= 4: 90 raise Exception('Samples have to have at least 5 entries.') 91 92 self.names = sorted(names) 93 self.shape = {} 94 self.r_values = {} 95 self.deltas = {} 96 self._covobs = {} 97 98 self._value = 0 99 self.N = 0 100 self.idl = {} 101 if idl is not None: 102 for name, idx in sorted(zip(names, idl)): 103 if isinstance(idx, range): 104 self.idl[name] = idx 105 elif isinstance(idx, (list, np.ndarray)): 106 dc = np.unique(np.diff(idx)) 107 if np.any(dc < 0): 108 raise Exception("Unsorted idx for idl[%s]" % (name)) 109 if len(dc) == 1: 110 self.idl[name] = range(idx[0], idx[-1] + dc[0], dc[0]) 111 else: 112 self.idl[name] = list(idx) 113 else: 114 raise Exception('incompatible type for idl[%s].' % (name)) 115 else: 116 for name, sample in sorted(zip(names, samples)): 117 self.idl[name] = range(1, len(sample) + 1) 118 119 if kwargs.get("means") is not None: 120 for name, sample, mean in sorted(zip(names, samples, kwargs.get("means"))): 121 self.shape[name] = len(self.idl[name]) 122 self.N += self.shape[name] 123 self.r_values[name] = mean 124 self.deltas[name] = sample 125 else: 126 for name, sample in sorted(zip(names, samples)): 127 self.shape[name] = len(self.idl[name]) 128 self.N += self.shape[name] 129 if len(sample) != self.shape[name]: 130 raise Exception('Incompatible samples and idx for %s: %d vs. %d' % (name, len(sample), self.shape[name])) 131 self.r_values[name] = np.mean(sample) 132 self.deltas[name] = sample - self.r_values[name] 133 self._value += self.shape[name] * self.r_values[name] 134 self._value /= self.N 135 136 self._dvalue = 0.0 137 self.ddvalue = 0.0 138 self.reweighted = False 139 140 self.tag = None 141 142 @property 143 def value(self): 144 return self._value 145 146 @property 147 def dvalue(self): 148 return self._dvalue 149 150 @property 151 def e_names(self): 152 return sorted(set([o.split('|')[0] for o in self.names])) 153 154 @property 155 def cov_names(self): 156 return sorted(set([o for o in self.covobs.keys()])) 157 158 @property 159 def mc_names(self): 160 return sorted(set([o.split('|')[0] for o in self.names if o not in self.cov_names])) 161 162 @property 163 def e_content(self): 164 res = {} 165 for e, e_name in enumerate(self.e_names): 166 res[e_name] = sorted(filter(lambda x: x.startswith(e_name + '|'), self.names)) 167 if e_name in self.names: 168 res[e_name].append(e_name) 169 return res 170 171 @property 172 def covobs(self): 173 return self._covobs 174 175 def gamma_method(self, **kwargs): 176 """Estimate the error and related properties of the Obs. 177 178 Parameters 179 ---------- 180 S : float 181 specifies a custom value for the parameter S (default 2.0). 182 If set to 0 it is assumed that the data exhibits no 183 autocorrelation. In this case the error estimates coincides 184 with the sample standard error. 185 tau_exp : float 186 positive value triggers the critical slowing down analysis 187 (default 0.0). 188 N_sigma : float 189 number of standard deviations from zero until the tail is 190 attached to the autocorrelation function (default 1). 191 fft : bool 192 determines whether the fft algorithm is used for the computation 193 of the autocorrelation function (default True) 194 """ 195 196 e_content = self.e_content 197 self.e_dvalue = {} 198 self.e_ddvalue = {} 199 self.e_tauint = {} 200 self.e_dtauint = {} 201 self.e_windowsize = {} 202 self.e_n_tauint = {} 203 self.e_n_dtauint = {} 204 e_gamma = {} 205 self.e_rho = {} 206 self.e_drho = {} 207 self._dvalue = 0 208 self.ddvalue = 0 209 210 self.S = {} 211 self.tau_exp = {} 212 self.N_sigma = {} 213 214 if kwargs.get('fft') is False: 215 fft = False 216 else: 217 fft = True 218 219 def _parse_kwarg(kwarg_name): 220 if kwarg_name in kwargs: 221 tmp = kwargs.get(kwarg_name) 222 if isinstance(tmp, (int, float)): 223 if tmp < 0: 224 raise Exception(kwarg_name + ' has to be larger or equal to 0.') 225 for e, e_name in enumerate(self.e_names): 226 getattr(self, kwarg_name)[e_name] = tmp 227 else: 228 raise TypeError(kwarg_name + ' is not in proper format.') 229 else: 230 for e, e_name in enumerate(self.e_names): 231 if e_name in getattr(Obs, kwarg_name + '_dict'): 232 getattr(self, kwarg_name)[e_name] = getattr(Obs, kwarg_name + '_dict')[e_name] 233 else: 234 getattr(self, kwarg_name)[e_name] = getattr(Obs, kwarg_name + '_global') 235 236 _parse_kwarg('S') 237 _parse_kwarg('tau_exp') 238 _parse_kwarg('N_sigma') 239 240 for e, e_name in enumerate(self.mc_names): 241 r_length = [] 242 for r_name in e_content[e_name]: 243 if isinstance(self.idl[r_name], range): 244 r_length.append(len(self.idl[r_name])) 245 else: 246 r_length.append((self.idl[r_name][-1] - self.idl[r_name][0] + 1)) 247 248 e_N = np.sum([self.shape[r_name] for r_name in e_content[e_name]]) 249 w_max = max(r_length) // 2 250 e_gamma[e_name] = np.zeros(w_max) 251 self.e_rho[e_name] = np.zeros(w_max) 252 self.e_drho[e_name] = np.zeros(w_max) 253 254 for r_name in e_content[e_name]: 255 e_gamma[e_name] += self._calc_gamma(self.deltas[r_name], self.idl[r_name], self.shape[r_name], w_max, fft) 256 257 gamma_div = np.zeros(w_max) 258 for r_name in e_content[e_name]: 259 gamma_div += self._calc_gamma(np.ones((self.shape[r_name])), self.idl[r_name], self.shape[r_name], w_max, fft) 260 gamma_div[gamma_div < 1] = 1.0 261 e_gamma[e_name] /= gamma_div[:w_max] 262 263 if np.abs(e_gamma[e_name][0]) < 10 * np.finfo(float).tiny: # Prevent division by zero 264 self.e_tauint[e_name] = 0.5 265 self.e_dtauint[e_name] = 0.0 266 self.e_dvalue[e_name] = 0.0 267 self.e_ddvalue[e_name] = 0.0 268 self.e_windowsize[e_name] = 0 269 continue 270 271 gaps = [] 272 for r_name in e_content[e_name]: 273 if isinstance(self.idl[r_name], range): 274 gaps.append(1) 275 else: 276 gaps.append(np.min(np.diff(self.idl[r_name]))) 277 278 if not np.all([gi == gaps[0] for gi in gaps]): 279 raise Exception(f"Replica for ensemble {e_name} are not equally spaced.", gaps) 280 else: 281 gapsize = gaps[0] 282 283 self.e_rho[e_name] = e_gamma[e_name][:w_max] / e_gamma[e_name][0] 284 self.e_n_tauint[e_name] = np.cumsum(np.concatenate(([0.5], self.e_rho[e_name][1:]))) 285 # Make sure no entry of tauint is smaller than 0.5 286 self.e_n_tauint[e_name][self.e_n_tauint[e_name] <= 0.5] = 0.5 + np.finfo(np.float64).eps 287 # hep-lat/0306017 eq. (42) 288 self.e_n_dtauint[e_name] = self.e_n_tauint[e_name] * 2 * np.sqrt(np.abs(np.arange(w_max) / gapsize + 0.5 - self.e_n_tauint[e_name]) / e_N) 289 self.e_n_dtauint[e_name][0] = 0.0 290 291 def _compute_drho(i): 292 tmp = self.e_rho[e_name][i + 1:w_max] + np.concatenate([self.e_rho[e_name][i - 1::-1], self.e_rho[e_name][1:w_max - 2 * i]]) - 2 * self.e_rho[e_name][i] * self.e_rho[e_name][1:w_max - i] 293 self.e_drho[e_name][i] = np.sqrt(np.sum(tmp ** 2) / e_N) 294 295 _compute_drho(gapsize) 296 if self.tau_exp[e_name] > 0: 297 texp = self.tau_exp[e_name] 298 # Critical slowing down analysis 299 if w_max // 2 <= 1: 300 raise Exception("Need at least 8 samples for tau_exp error analysis") 301 for n in range(gapsize, w_max // 2, gapsize): 302 _compute_drho(n + gapsize) 303 if (self.e_rho[e_name][n] - self.N_sigma[e_name] * self.e_drho[e_name][n]) < 0 or n >= w_max // 2 - 2: 304 # Bias correction hep-lat/0306017 eq. (49) included 305 self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n / gapsize + 1) / e_N) / (1 + 1 / e_N) + texp * np.abs(self.e_rho[e_name][n + 1]) # The absolute makes sure, that the tail contribution is always positive 306 self.e_dtauint[e_name] = np.sqrt(self.e_n_dtauint[e_name][n] ** 2 + texp ** 2 * self.e_drho[e_name][n + 1] ** 2) 307 # Error of tau_exp neglected so far, missing term: self.e_rho[e_name][n + 1] ** 2 * d_tau_exp ** 2 308 self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N) 309 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n / gapsize + 0.5) / e_N) 310 self.e_windowsize[e_name] = n 311 break 312 else: 313 if self.S[e_name] == 0.0: 314 self.e_tauint[e_name] = 0.5 315 self.e_dtauint[e_name] = 0.0 316 self.e_dvalue[e_name] = np.sqrt(e_gamma[e_name][0] / (e_N - 1)) 317 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt(0.5 / e_N) 318 self.e_windowsize[e_name] = 0 319 else: 320 # Standard automatic windowing procedure 321 tau = self.S[e_name] / np.log((2 * self.e_n_tauint[e_name][gapsize::gapsize] + 1) / (2 * self.e_n_tauint[e_name][gapsize::gapsize] - 1)) 322 g_w = np.exp(- np.arange(1, len(tau) + 1) / tau) - tau / np.sqrt(np.arange(1, len(tau) + 1) * e_N) 323 for n in range(1, w_max): 324 if n < w_max // 2 - 2: 325 _compute_drho(gapsize * n + gapsize) 326 if g_w[n - 1] < 0 or n >= w_max - 1: 327 n *= gapsize 328 self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n / gapsize + 1) / e_N) / (1 + 1 / e_N) # Bias correction hep-lat/0306017 eq. (49) 329 self.e_dtauint[e_name] = self.e_n_dtauint[e_name][n] 330 self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N) 331 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n / gapsize + 0.5) / e_N) 332 self.e_windowsize[e_name] = n 333 break 334 335 self._dvalue += self.e_dvalue[e_name] ** 2 336 self.ddvalue += (self.e_dvalue[e_name] * self.e_ddvalue[e_name]) ** 2 337 338 for e_name in self.cov_names: 339 self.e_dvalue[e_name] = np.sqrt(self.covobs[e_name].errsq()) 340 self.e_ddvalue[e_name] = 0 341 self._dvalue += self.e_dvalue[e_name]**2 342 343 self._dvalue = np.sqrt(self._dvalue) 344 if self._dvalue == 0.0: 345 self.ddvalue = 0.0 346 else: 347 self.ddvalue = np.sqrt(self.ddvalue) / self._dvalue 348 return 349 350 gm = gamma_method 351 352 def _calc_gamma(self, deltas, idx, shape, w_max, fft): 353 """Calculate Gamma_{AA} from the deltas, which are defined on idx. 354 idx is assumed to be a contiguous range (possibly with a stepsize != 1) 355 356 Parameters 357 ---------- 358 deltas : list 359 List of fluctuations 360 idx : list 361 List or range of configurations on which the deltas are defined. 362 shape : int 363 Number of configurations in idx. 364 w_max : int 365 Upper bound for the summation window. 366 fft : bool 367 determines whether the fft algorithm is used for the computation 368 of the autocorrelation function. 369 """ 370 gamma = np.zeros(w_max) 371 deltas = _expand_deltas(deltas, idx, shape) 372 new_shape = len(deltas) 373 if fft: 374 max_gamma = min(new_shape, w_max) 375 # The padding for the fft has to be even 376 padding = new_shape + max_gamma + (new_shape + max_gamma) % 2 377 gamma[:max_gamma] += np.fft.irfft(np.abs(np.fft.rfft(deltas, padding)) ** 2)[:max_gamma] 378 else: 379 for n in range(w_max): 380 if new_shape - n >= 0: 381 gamma[n] += deltas[0:new_shape - n].dot(deltas[n:new_shape]) 382 383 return gamma 384 385 def details(self, ens_content=True): 386 """Output detailed properties of the Obs. 387 388 Parameters 389 ---------- 390 ens_content : bool 391 print details about the ensembles and replica if true. 392 """ 393 if self.tag is not None: 394 print("Description:", self.tag) 395 if not hasattr(self, 'e_dvalue'): 396 print('Result\t %3.8e' % (self.value)) 397 else: 398 if self.value == 0.0: 399 percentage = np.nan 400 else: 401 percentage = np.abs(self._dvalue / self.value) * 100 402 print('Result\t %3.8e +/- %3.8e +/- %3.8e (%3.3f%%)' % (self.value, self._dvalue, self.ddvalue, percentage)) 403 if len(self.e_names) > 1: 404 print(' Ensemble errors:') 405 e_content = self.e_content 406 for e_name in self.mc_names: 407 if isinstance(self.idl[e_content[e_name][0]], range): 408 gap = self.idl[e_content[e_name][0]].step 409 else: 410 gap = np.min(np.diff(self.idl[e_content[e_name][0]])) 411 412 if len(self.e_names) > 1: 413 print('', e_name, '\t %3.6e +/- %3.6e' % (self.e_dvalue[e_name], self.e_ddvalue[e_name])) 414 tau_string = " \N{GREEK SMALL LETTER TAU}_int\t " + _format_uncertainty(self.e_tauint[e_name], self.e_dtauint[e_name]) 415 tau_string += f" in units of {gap} config" 416 if gap > 1: 417 tau_string += "s" 418 if self.tau_exp[e_name] > 0: 419 tau_string = f"{tau_string: <45}" + '\t(\N{GREEK SMALL LETTER TAU}_exp=%3.2f, N_\N{GREEK SMALL LETTER SIGMA}=%1.0i)' % (self.tau_exp[e_name], self.N_sigma[e_name]) 420 else: 421 tau_string = f"{tau_string: <45}" + '\t(S=%3.2f)' % (self.S[e_name]) 422 print(tau_string) 423 for e_name in self.cov_names: 424 print('', e_name, '\t %3.8e' % (self.e_dvalue[e_name])) 425 if ens_content is True: 426 if len(self.e_names) == 1: 427 print(self.N, 'samples in', len(self.e_names), 'ensemble:') 428 else: 429 print(self.N, 'samples in', len(self.e_names), 'ensembles:') 430 my_string_list = [] 431 for key, value in sorted(self.e_content.items()): 432 if key not in self.covobs: 433 my_string = ' ' + "\u00B7 Ensemble '" + key + "' " 434 if len(value) == 1: 435 my_string += f': {self.shape[value[0]]} configurations' 436 if isinstance(self.idl[value[0]], range): 437 my_string += f' (from {self.idl[value[0]].start} to {self.idl[value[0]][-1]}' + int(self.idl[value[0]].step != 1) * f' in steps of {self.idl[value[0]].step}' + ')' 438 else: 439 my_string += f' (irregular range from {self.idl[value[0]][0]} to {self.idl[value[0]][-1]})' 440 else: 441 sublist = [] 442 for v in value: 443 my_substring = ' ' + "\u00B7 Replicum '" + v[len(key) + 1:] + "' " 444 my_substring += f': {self.shape[v]} configurations' 445 if isinstance(self.idl[v], range): 446 my_substring += f' (from {self.idl[v].start} to {self.idl[v][-1]}' + int(self.idl[v].step != 1) * f' in steps of {self.idl[v].step}' + ')' 447 else: 448 my_substring += f' (irregular range from {self.idl[v][0]} to {self.idl[v][-1]})' 449 sublist.append(my_substring) 450 451 my_string += '\n' + '\n'.join(sublist) 452 else: 453 my_string = ' ' + "\u00B7 Covobs '" + key + "' " 454 my_string_list.append(my_string) 455 print('\n'.join(my_string_list)) 456 457 def reweight(self, weight): 458 """Reweight the obs with given rewighting factors. 459 460 Parameters 461 ---------- 462 weight : Obs 463 Reweighting factor. An Observable that has to be defined on a superset of the 464 configurations in obs[i].idl for all i. 465 all_configs : bool 466 if True, the reweighted observables are normalized by the average of 467 the reweighting factor on all configurations in weight.idl and not 468 on the configurations in obs[i].idl. Default False. 469 """ 470 return reweight(weight, [self])[0] 471 472 def is_zero_within_error(self, sigma=1): 473 """Checks whether the observable is zero within 'sigma' standard errors. 474 475 Parameters 476 ---------- 477 sigma : int 478 Number of standard errors used for the check. 479 480 Works only properly when the gamma method was run. 481 """ 482 return self.is_zero() or np.abs(self.value) <= sigma * self._dvalue 483 484 def is_zero(self, atol=1e-10): 485 """Checks whether the observable is zero within a given tolerance. 486 487 Parameters 488 ---------- 489 atol : float 490 Absolute tolerance (for details see numpy documentation). 491 """ 492 return np.isclose(0.0, self.value, 1e-14, atol) and all(np.allclose(0.0, delta, 1e-14, atol) for delta in self.deltas.values()) and all(np.allclose(0.0, delta.errsq(), 1e-14, atol) for delta in self.covobs.values()) 493 494 def plot_tauint(self, save=None): 495 """Plot integrated autocorrelation time for each ensemble. 496 497 Parameters 498 ---------- 499 save : str 500 saves the figure to a file named 'save' if. 501 """ 502 if not hasattr(self, 'e_dvalue'): 503 raise Exception('Run the gamma method first.') 504 505 for e, e_name in enumerate(self.mc_names): 506 fig = plt.figure() 507 plt.xlabel(r'$W$') 508 plt.ylabel(r'$\tau_\mathrm{int}$') 509 length = int(len(self.e_n_tauint[e_name])) 510 if self.tau_exp[e_name] > 0: 511 base = self.e_n_tauint[e_name][self.e_windowsize[e_name]] 512 x_help = np.arange(2 * self.tau_exp[e_name]) 513 y_help = (x_help + 1) * np.abs(self.e_rho[e_name][self.e_windowsize[e_name] + 1]) * (1 - x_help / (2 * (2 * self.tau_exp[e_name] - 1))) + base 514 x_arr = np.arange(self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]) 515 plt.plot(x_arr, y_help, 'C' + str(e), linewidth=1, ls='--', marker=',') 516 plt.errorbar([self.e_windowsize[e_name] + 2 * self.tau_exp[e_name]], [self.e_tauint[e_name]], 517 yerr=[self.e_dtauint[e_name]], fmt='C' + str(e), linewidth=1, capsize=2, marker='o', mfc=plt.rcParams['axes.facecolor']) 518 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 519 label = e_name + r', $\tau_\mathrm{exp}$=' + str(np.around(self.tau_exp[e_name], decimals=2)) 520 else: 521 label = e_name + ', S=' + str(np.around(self.S[e_name], decimals=2)) 522 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) 523 524 plt.errorbar(np.arange(length)[:int(xmax) + 1], self.e_n_tauint[e_name][:int(xmax) + 1], yerr=self.e_n_dtauint[e_name][:int(xmax) + 1], linewidth=1, capsize=2, label=label) 525 plt.axvline(x=self.e_windowsize[e_name], color='C' + str(e), alpha=0.5, marker=',', ls='--') 526 plt.legend() 527 plt.xlim(-0.5, xmax) 528 ylim = plt.ylim() 529 plt.ylim(bottom=0.0, top=max(1.0, ylim[1])) 530 plt.draw() 531 if save: 532 fig.savefig(save + "_" + str(e)) 533 534 def plot_rho(self, save=None): 535 """Plot normalized autocorrelation function time for each ensemble. 536 537 Parameters 538 ---------- 539 save : str 540 saves the figure to a file named 'save' if. 541 """ 542 if not hasattr(self, 'e_dvalue'): 543 raise Exception('Run the gamma method first.') 544 for e, e_name in enumerate(self.mc_names): 545 fig = plt.figure() 546 plt.xlabel('W') 547 plt.ylabel('rho') 548 length = int(len(self.e_drho[e_name])) 549 plt.errorbar(np.arange(length), self.e_rho[e_name][:length], yerr=self.e_drho[e_name][:], linewidth=1, capsize=2) 550 plt.axvline(x=self.e_windowsize[e_name], color='r', alpha=0.25, ls='--', marker=',') 551 if self.tau_exp[e_name] > 0: 552 plt.plot([self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]], 553 [self.e_rho[e_name][self.e_windowsize[e_name] + 1], 0], 'k-', lw=1) 554 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 555 plt.title('Rho ' + e_name + r', tau\_exp=' + str(np.around(self.tau_exp[e_name], decimals=2))) 556 else: 557 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) 558 plt.title('Rho ' + e_name + ', S=' + str(np.around(self.S[e_name], decimals=2))) 559 plt.plot([-0.5, xmax], [0, 0], 'k--', lw=1) 560 plt.xlim(-0.5, xmax) 561 plt.draw() 562 if save: 563 fig.savefig(save + "_" + str(e)) 564 565 def plot_rep_dist(self): 566 """Plot replica distribution for each ensemble with more than one replicum.""" 567 if not hasattr(self, 'e_dvalue'): 568 raise Exception('Run the gamma method first.') 569 for e, e_name in enumerate(self.mc_names): 570 if len(self.e_content[e_name]) == 1: 571 print('No replica distribution for a single replicum (', e_name, ')') 572 continue 573 r_length = [] 574 sub_r_mean = 0 575 for r, r_name in enumerate(self.e_content[e_name]): 576 r_length.append(len(self.deltas[r_name])) 577 sub_r_mean += self.shape[r_name] * self.r_values[r_name] 578 e_N = np.sum(r_length) 579 sub_r_mean /= e_N 580 arr = np.zeros(len(self.e_content[e_name])) 581 for r, r_name in enumerate(self.e_content[e_name]): 582 arr[r] = (self.r_values[r_name] - sub_r_mean) / (self.e_dvalue[e_name] * np.sqrt(e_N / self.shape[r_name] - 1)) 583 plt.hist(arr, rwidth=0.8, bins=len(self.e_content[e_name])) 584 plt.title('Replica distribution' + e_name + ' (mean=0, var=1)') 585 plt.draw() 586 587 def plot_history(self, expand=True): 588 """Plot derived Monte Carlo history for each ensemble 589 590 Parameters 591 ---------- 592 expand : bool 593 show expanded history for irregular Monte Carlo chains (default: True). 594 """ 595 for e, e_name in enumerate(self.mc_names): 596 plt.figure() 597 r_length = [] 598 tmp = [] 599 tmp_expanded = [] 600 for r, r_name in enumerate(self.e_content[e_name]): 601 tmp.append(self.deltas[r_name] + self.r_values[r_name]) 602 if expand: 603 tmp_expanded.append(_expand_deltas(self.deltas[r_name], list(self.idl[r_name]), self.shape[r_name]) + self.r_values[r_name]) 604 r_length.append(len(tmp_expanded[-1])) 605 else: 606 r_length.append(len(tmp[-1])) 607 e_N = np.sum(r_length) 608 x = np.arange(e_N) 609 y_test = np.concatenate(tmp, axis=0) 610 if expand: 611 y = np.concatenate(tmp_expanded, axis=0) 612 else: 613 y = y_test 614 plt.errorbar(x, y, fmt='.', markersize=3) 615 plt.xlim(-0.5, e_N - 0.5) 616 plt.title(e_name + f'\nskew: {skew(y_test):.3f} (p={skewtest(y_test).pvalue:.3f}), kurtosis: {kurtosis(y_test):.3f} (p={kurtosistest(y_test).pvalue:.3f})') 617 plt.draw() 618 619 def plot_piechart(self, save=None): 620 """Plot piechart which shows the fractional contribution of each 621 ensemble to the error and returns a dictionary containing the fractions. 622 623 Parameters 624 ---------- 625 save : str 626 saves the figure to a file named 'save' if. 627 """ 628 if not hasattr(self, 'e_dvalue'): 629 raise Exception('Run the gamma method first.') 630 if np.isclose(0.0, self._dvalue, atol=1e-15): 631 raise Exception('Error is 0.0') 632 labels = self.e_names 633 sizes = [self.e_dvalue[name] ** 2 for name in labels] / self._dvalue ** 2 634 fig1, ax1 = plt.subplots() 635 ax1.pie(sizes, labels=labels, startangle=90, normalize=True) 636 ax1.axis('equal') 637 plt.draw() 638 if save: 639 fig1.savefig(save) 640 641 return dict(zip(self.e_names, sizes)) 642 643 def dump(self, filename, datatype="json.gz", description="", **kwargs): 644 """Dump the Obs to a file 'name' of chosen format. 645 646 Parameters 647 ---------- 648 filename : str 649 name of the file to be saved. 650 datatype : str 651 Format of the exported file. Supported formats include 652 "json.gz" and "pickle" 653 description : str 654 Description for output file, only relevant for json.gz format. 655 path : str 656 specifies a custom path for the file (default '.') 657 """ 658 if 'path' in kwargs: 659 file_name = kwargs.get('path') + '/' + filename 660 else: 661 file_name = filename 662 663 if datatype == "json.gz": 664 from .input.json import dump_to_json 665 dump_to_json([self], file_name, description=description) 666 elif datatype == "pickle": 667 with open(file_name + '.p', 'wb') as fb: 668 pickle.dump(self, fb) 669 else: 670 raise Exception("Unknown datatype " + str(datatype)) 671 672 def export_jackknife(self): 673 """Export jackknife samples from the Obs 674 675 Returns 676 ------- 677 numpy.ndarray 678 Returns a numpy array of length N + 1 where N is the number of samples 679 for the given ensemble and replicum. The zeroth entry of the array contains 680 the mean value of the Obs, entries 1 to N contain the N jackknife samples 681 derived from the Obs. The current implementation only works for observables 682 defined on exactly one ensemble and replicum. The derived jackknife samples 683 should agree with samples from a full jackknife analysis up to O(1/N). 684 """ 685 686 if len(self.names) != 1: 687 raise Exception("'export_jackknife' is only implemented for Obs defined on one ensemble and replicum.") 688 689 name = self.names[0] 690 full_data = self.deltas[name] + self.r_values[name] 691 n = full_data.size 692 mean = self.value 693 tmp_jacks = np.zeros(n + 1) 694 tmp_jacks[0] = mean 695 tmp_jacks[1:] = (n * mean - full_data) / (n - 1) 696 return tmp_jacks 697 698 def __float__(self): 699 return float(self.value) 700 701 def __repr__(self): 702 return 'Obs[' + str(self) + ']' 703 704 def __str__(self): 705 return _format_uncertainty(self.value, self._dvalue) 706 707 def __hash__(self): 708 hash_tuple = (np.array([self.value]).astype(np.float32).data.tobytes(),) 709 hash_tuple += tuple([o.astype(np.float32).data.tobytes() for o in self.deltas.values()]) 710 hash_tuple += tuple([np.array([o.errsq()]).astype(np.float32).data.tobytes() for o in self.covobs.values()]) 711 hash_tuple += tuple([o.encode() for o in self.names]) 712 m = hashlib.md5() 713 [m.update(o) for o in hash_tuple] 714 return int(m.hexdigest(), 16) & 0xFFFFFFFF 715 716 # Overload comparisons 717 def __lt__(self, other): 718 return self.value < other 719 720 def __le__(self, other): 721 return self.value <= other 722 723 def __gt__(self, other): 724 return self.value > other 725 726 def __ge__(self, other): 727 return self.value >= other 728 729 def __eq__(self, other): 730 return (self - other).is_zero() 731 732 def __ne__(self, other): 733 return not (self - other).is_zero() 734 735 # Overload math operations 736 def __add__(self, y): 737 if isinstance(y, Obs): 738 return derived_observable(lambda x, **kwargs: x[0] + x[1], [self, y], man_grad=[1, 1]) 739 else: 740 if isinstance(y, np.ndarray): 741 return np.array([self + o for o in y]) 742 elif y.__class__.__name__ in ['Corr', 'CObs']: 743 return NotImplemented 744 else: 745 return derived_observable(lambda x, **kwargs: x[0] + y, [self], man_grad=[1]) 746 747 def __radd__(self, y): 748 return self + y 749 750 def __mul__(self, y): 751 if isinstance(y, Obs): 752 return derived_observable(lambda x, **kwargs: x[0] * x[1], [self, y], man_grad=[y.value, self.value]) 753 else: 754 if isinstance(y, np.ndarray): 755 return np.array([self * o for o in y]) 756 elif isinstance(y, complex): 757 return CObs(self * y.real, self * y.imag) 758 elif y.__class__.__name__ in ['Corr', 'CObs']: 759 return NotImplemented 760 else: 761 return derived_observable(lambda x, **kwargs: x[0] * y, [self], man_grad=[y]) 762 763 def __rmul__(self, y): 764 return self * y 765 766 def __sub__(self, y): 767 if isinstance(y, Obs): 768 return derived_observable(lambda x, **kwargs: x[0] - x[1], [self, y], man_grad=[1, -1]) 769 else: 770 if isinstance(y, np.ndarray): 771 return np.array([self - o for o in y]) 772 elif y.__class__.__name__ in ['Corr', 'CObs']: 773 return NotImplemented 774 else: 775 return derived_observable(lambda x, **kwargs: x[0] - y, [self], man_grad=[1]) 776 777 def __rsub__(self, y): 778 return -1 * (self - y) 779 780 def __pos__(self): 781 return self 782 783 def __neg__(self): 784 return -1 * self 785 786 def __truediv__(self, y): 787 if isinstance(y, Obs): 788 return derived_observable(lambda x, **kwargs: x[0] / x[1], [self, y], man_grad=[1 / y.value, - self.value / y.value ** 2]) 789 else: 790 if isinstance(y, np.ndarray): 791 return np.array([self / o for o in y]) 792 elif y.__class__.__name__ in ['Corr', 'CObs']: 793 return NotImplemented 794 else: 795 return derived_observable(lambda x, **kwargs: x[0] / y, [self], man_grad=[1 / y]) 796 797 def __rtruediv__(self, y): 798 if isinstance(y, Obs): 799 return derived_observable(lambda x, **kwargs: x[0] / x[1], [y, self], man_grad=[1 / self.value, - y.value / self.value ** 2]) 800 else: 801 if isinstance(y, np.ndarray): 802 return np.array([o / self for o in y]) 803 elif y.__class__.__name__ in ['Corr', 'CObs']: 804 return NotImplemented 805 else: 806 return derived_observable(lambda x, **kwargs: y / x[0], [self], man_grad=[-y / self.value ** 2]) 807 808 def __pow__(self, y): 809 if isinstance(y, Obs): 810 return derived_observable(lambda x: x[0] ** x[1], [self, y]) 811 else: 812 return derived_observable(lambda x: x[0] ** y, [self]) 813 814 def __rpow__(self, y): 815 if isinstance(y, Obs): 816 return derived_observable(lambda x: x[0] ** x[1], [y, self]) 817 else: 818 return derived_observable(lambda x: y ** x[0], [self]) 819 820 def __abs__(self): 821 return derived_observable(lambda x: anp.abs(x[0]), [self]) 822 823 # Overload numpy functions 824 def sqrt(self): 825 return derived_observable(lambda x, **kwargs: np.sqrt(x[0]), [self], man_grad=[1 / 2 / np.sqrt(self.value)]) 826 827 def log(self): 828 return derived_observable(lambda x, **kwargs: np.log(x[0]), [self], man_grad=[1 / self.value]) 829 830 def exp(self): 831 return derived_observable(lambda x, **kwargs: np.exp(x[0]), [self], man_grad=[np.exp(self.value)]) 832 833 def sin(self): 834 return derived_observable(lambda x, **kwargs: np.sin(x[0]), [self], man_grad=[np.cos(self.value)]) 835 836 def cos(self): 837 return derived_observable(lambda x, **kwargs: np.cos(x[0]), [self], man_grad=[-np.sin(self.value)]) 838 839 def tan(self): 840 return derived_observable(lambda x, **kwargs: np.tan(x[0]), [self], man_grad=[1 / np.cos(self.value) ** 2]) 841 842 def arcsin(self): 843 return derived_observable(lambda x: anp.arcsin(x[0]), [self]) 844 845 def arccos(self): 846 return derived_observable(lambda x: anp.arccos(x[0]), [self]) 847 848 def arctan(self): 849 return derived_observable(lambda x: anp.arctan(x[0]), [self]) 850 851 def sinh(self): 852 return derived_observable(lambda x, **kwargs: np.sinh(x[0]), [self], man_grad=[np.cosh(self.value)]) 853 854 def cosh(self): 855 return derived_observable(lambda x, **kwargs: np.cosh(x[0]), [self], man_grad=[np.sinh(self.value)]) 856 857 def tanh(self): 858 return derived_observable(lambda x, **kwargs: np.tanh(x[0]), [self], man_grad=[1 / np.cosh(self.value) ** 2]) 859 860 def arcsinh(self): 861 return derived_observable(lambda x: anp.arcsinh(x[0]), [self]) 862 863 def arccosh(self): 864 return derived_observable(lambda x: anp.arccosh(x[0]), [self]) 865 866 def arctanh(self): 867 return derived_observable(lambda x: anp.arctanh(x[0]), [self]) 868 869 870class CObs: 871 """Class for a complex valued observable.""" 872 __slots__ = ['_real', '_imag', 'tag'] 873 874 def __init__(self, real, imag=0.0): 875 self._real = real 876 self._imag = imag 877 self.tag = None 878 879 @property 880 def real(self): 881 return self._real 882 883 @property 884 def imag(self): 885 return self._imag 886 887 def gamma_method(self, **kwargs): 888 """Executes the gamma_method for the real and the imaginary part.""" 889 if isinstance(self.real, Obs): 890 self.real.gamma_method(**kwargs) 891 if isinstance(self.imag, Obs): 892 self.imag.gamma_method(**kwargs) 893 894 def is_zero(self): 895 """Checks whether both real and imaginary part are zero within machine precision.""" 896 return self.real == 0.0 and self.imag == 0.0 897 898 def conjugate(self): 899 return CObs(self.real, -self.imag) 900 901 def __add__(self, other): 902 if isinstance(other, np.ndarray): 903 return other + self 904 elif hasattr(other, 'real') and hasattr(other, 'imag'): 905 return CObs(self.real + other.real, 906 self.imag + other.imag) 907 else: 908 return CObs(self.real + other, self.imag) 909 910 def __radd__(self, y): 911 return self + y 912 913 def __sub__(self, other): 914 if isinstance(other, np.ndarray): 915 return -1 * (other - self) 916 elif hasattr(other, 'real') and hasattr(other, 'imag'): 917 return CObs(self.real - other.real, self.imag - other.imag) 918 else: 919 return CObs(self.real - other, self.imag) 920 921 def __rsub__(self, other): 922 return -1 * (self - other) 923 924 def __mul__(self, other): 925 if isinstance(other, np.ndarray): 926 return other * self 927 elif hasattr(other, 'real') and hasattr(other, 'imag'): 928 if all(isinstance(i, Obs) for i in [self.real, self.imag, other.real, other.imag]): 929 return CObs(derived_observable(lambda x, **kwargs: x[0] * x[1] - x[2] * x[3], 930 [self.real, other.real, self.imag, other.imag], 931 man_grad=[other.real.value, self.real.value, -other.imag.value, -self.imag.value]), 932 derived_observable(lambda x, **kwargs: x[2] * x[1] + x[0] * x[3], 933 [self.real, other.real, self.imag, other.imag], 934 man_grad=[other.imag.value, self.imag.value, other.real.value, self.real.value])) 935 elif getattr(other, 'imag', 0) != 0: 936 return CObs(self.real * other.real - self.imag * other.imag, 937 self.imag * other.real + self.real * other.imag) 938 else: 939 return CObs(self.real * other.real, self.imag * other.real) 940 else: 941 return CObs(self.real * other, self.imag * other) 942 943 def __rmul__(self, other): 944 return self * other 945 946 def __truediv__(self, other): 947 if isinstance(other, np.ndarray): 948 return 1 / (other / self) 949 elif hasattr(other, 'real') and hasattr(other, 'imag'): 950 r = other.real ** 2 + other.imag ** 2 951 return CObs((self.real * other.real + self.imag * other.imag) / r, (self.imag * other.real - self.real * other.imag) / r) 952 else: 953 return CObs(self.real / other, self.imag / other) 954 955 def __rtruediv__(self, other): 956 r = self.real ** 2 + self.imag ** 2 957 if hasattr(other, 'real') and hasattr(other, 'imag'): 958 return CObs((self.real * other.real + self.imag * other.imag) / r, (self.real * other.imag - self.imag * other.real) / r) 959 else: 960 return CObs(self.real * other / r, -self.imag * other / r) 961 962 def __abs__(self): 963 return np.sqrt(self.real**2 + self.imag**2) 964 965 def __pos__(self): 966 return self 967 968 def __neg__(self): 969 return -1 * self 970 971 def __eq__(self, other): 972 return self.real == other.real and self.imag == other.imag 973 974 def __str__(self): 975 return '(' + str(self.real) + int(self.imag >= 0.0) * '+' + str(self.imag) + 'j)' 976 977 def __repr__(self): 978 return 'CObs[' + str(self) + ']' 979 980 981def _format_uncertainty(value, dvalue): 982 """Creates a string of a value and its error in paranthesis notation, e.g., 13.02(45)""" 983 if dvalue == 0.0: 984 return str(value) 985 fexp = np.floor(np.log10(dvalue)) 986 if fexp < 0.0: 987 return '{:{form}}({:2.0f})'.format(value, dvalue * 10 ** (-fexp + 1), form='.' + str(-int(fexp) + 1) + 'f') 988 elif fexp == 0.0: 989 return '{:.1f}({:1.1f})'.format(value, dvalue) 990 else: 991 return '{:.0f}({:2.0f})'.format(value, dvalue) 992 993 994def _expand_deltas(deltas, idx, shape): 995 """Expand deltas defined on idx to a regular, contiguous range, where holes are filled by 0. 996 If idx is of type range, the deltas are not changed 997 998 Parameters 999 ---------- 1000 deltas : list 1001 List of fluctuations 1002 idx : list 1003 List or range of configs on which the deltas are defined, has to be sorted in ascending order. 1004 shape : int 1005 Number of configs in idx. 1006 """ 1007 if isinstance(idx, range): 1008 return deltas 1009 else: 1010 ret = np.zeros(idx[-1] - idx[0] + 1) 1011 for i in range(shape): 1012 ret[idx[i] - idx[0]] = deltas[i] 1013 return ret 1014 1015 1016def _merge_idx(idl): 1017 """Returns the union of all lists in idl as sorted list 1018 1019 Parameters 1020 ---------- 1021 idl : list 1022 List of lists or ranges. 1023 """ 1024 1025 # Use groupby to efficiently check whether all elements of idl are identical 1026 try: 1027 g = groupby(idl) 1028 if next(g, True) and not next(g, False): 1029 return idl[0] 1030 except Exception: 1031 pass 1032 1033 if np.all([type(idx) is range for idx in idl]): 1034 if len(set([idx[0] for idx in idl])) == 1: 1035 idstart = min([idx.start for idx in idl]) 1036 idstop = max([idx.stop for idx in idl]) 1037 idstep = min([idx.step for idx in idl]) 1038 return range(idstart, idstop, idstep) 1039 1040 return sorted(set().union(*idl)) 1041 1042 1043def _intersection_idx(idl): 1044 """Returns the intersection of all lists in idl as sorted list 1045 1046 Parameters 1047 ---------- 1048 idl : list 1049 List of lists or ranges. 1050 """ 1051 1052 def _lcm(*args): 1053 """Returns the lowest common multiple of args. 1054 1055 From python 3.9 onwards the math library contains an lcm function.""" 1056 return reduce(lambda a, b: a * b // gcd(a, b), args) 1057 1058 # Use groupby to efficiently check whether all elements of idl are identical 1059 try: 1060 g = groupby(idl) 1061 if next(g, True) and not next(g, False): 1062 return idl[0] 1063 except Exception: 1064 pass 1065 1066 if np.all([type(idx) is range for idx in idl]): 1067 if len(set([idx[0] for idx in idl])) == 1: 1068 idstart = max([idx.start for idx in idl]) 1069 idstop = min([idx.stop for idx in idl]) 1070 idstep = _lcm(*[idx.step for idx in idl]) 1071 return range(idstart, idstop, idstep) 1072 1073 return sorted(set.intersection(*[set(o) for o in idl])) 1074 1075 1076def _expand_deltas_for_merge(deltas, idx, shape, new_idx): 1077 """Expand deltas defined on idx to the list of configs that is defined by new_idx. 1078 New, empty entries are filled by 0. If idx and new_idx are of type range, the smallest 1079 common divisor of the step sizes is used as new step size. 1080 1081 Parameters 1082 ---------- 1083 deltas : list 1084 List of fluctuations 1085 idx : list 1086 List or range of configs on which the deltas are defined. 1087 Has to be a subset of new_idx and has to be sorted in ascending order. 1088 shape : list 1089 Number of configs in idx. 1090 new_idx : list 1091 List of configs that defines the new range, has to be sorted in ascending order. 1092 """ 1093 1094 if type(idx) is range and type(new_idx) is range: 1095 if idx == new_idx: 1096 return deltas 1097 ret = np.zeros(new_idx[-1] - new_idx[0] + 1) 1098 for i in range(shape): 1099 ret[idx[i] - new_idx[0]] = deltas[i] 1100 return np.array([ret[new_idx[i] - new_idx[0]] for i in range(len(new_idx))]) * len(new_idx) / len(idx) 1101 1102 1103def derived_observable(func, data, array_mode=False, **kwargs): 1104 """Construct a derived Obs according to func(data, **kwargs) using automatic differentiation. 1105 1106 Parameters 1107 ---------- 1108 func : object 1109 arbitrary function of the form func(data, **kwargs). For the 1110 automatic differentiation to work, all numpy functions have to have 1111 the autograd wrapper (use 'import autograd.numpy as anp'). 1112 data : list 1113 list of Obs, e.g. [obs1, obs2, obs3]. 1114 num_grad : bool 1115 if True, numerical derivatives are used instead of autograd 1116 (default False). To control the numerical differentiation the 1117 kwargs of numdifftools.step_generators.MaxStepGenerator 1118 can be used. 1119 man_grad : list 1120 manually supply a list or an array which contains the jacobian 1121 of func. Use cautiously, supplying the wrong derivative will 1122 not be intercepted. 1123 1124 Notes 1125 ----- 1126 For simple mathematical operations it can be practical to use anonymous 1127 functions. For the ratio of two observables one can e.g. use 1128 1129 new_obs = derived_observable(lambda x: x[0] / x[1], [obs1, obs2]) 1130 """ 1131 1132 data = np.asarray(data) 1133 raveled_data = data.ravel() 1134 1135 # Workaround for matrix operations containing non Obs data 1136 if not all(isinstance(x, Obs) for x in raveled_data): 1137 for i in range(len(raveled_data)): 1138 if isinstance(raveled_data[i], (int, float)): 1139 raveled_data[i] = cov_Obs(raveled_data[i], 0.0, "###dummy_covobs###") 1140 1141 allcov = {} 1142 for o in raveled_data: 1143 for name in o.cov_names: 1144 if name in allcov: 1145 if not np.allclose(allcov[name], o.covobs[name].cov): 1146 raise Exception('Inconsistent covariance matrices for %s!' % (name)) 1147 else: 1148 allcov[name] = o.covobs[name].cov 1149 1150 n_obs = len(raveled_data) 1151 new_names = sorted(set([y for x in [o.names for o in raveled_data] for y in x])) 1152 new_cov_names = sorted(set([y for x in [o.cov_names for o in raveled_data] for y in x])) 1153 new_sample_names = sorted(set(new_names) - set(new_cov_names)) 1154 1155 reweighted = len(list(filter(lambda o: o.reweighted is True, raveled_data))) > 0 1156 1157 if data.ndim == 1: 1158 values = np.array([o.value for o in data]) 1159 else: 1160 values = np.vectorize(lambda x: x.value)(data) 1161 1162 new_values = func(values, **kwargs) 1163 1164 multi = int(isinstance(new_values, np.ndarray)) 1165 1166 new_r_values = {} 1167 new_idl_d = {} 1168 for name in new_sample_names: 1169 idl = [] 1170 tmp_values = np.zeros(n_obs) 1171 for i, item in enumerate(raveled_data): 1172 tmp_values[i] = item.r_values.get(name, item.value) 1173 tmp_idl = item.idl.get(name) 1174 if tmp_idl is not None: 1175 idl.append(tmp_idl) 1176 if multi > 0: 1177 tmp_values = np.array(tmp_values).reshape(data.shape) 1178 new_r_values[name] = func(tmp_values, **kwargs) 1179 new_idl_d[name] = _merge_idx(idl) 1180 1181 if 'man_grad' in kwargs: 1182 deriv = np.asarray(kwargs.get('man_grad')) 1183 if new_values.shape + data.shape != deriv.shape: 1184 raise Exception('Manual derivative does not have correct shape.') 1185 elif kwargs.get('num_grad') is True: 1186 if multi > 0: 1187 raise Exception('Multi mode currently not supported for numerical derivative') 1188 options = { 1189 'base_step': 0.1, 1190 'step_ratio': 2.5} 1191 for key in options.keys(): 1192 kwarg = kwargs.get(key) 1193 if kwarg is not None: 1194 options[key] = kwarg 1195 tmp_df = nd.Gradient(func, order=4, **{k: v for k, v in options.items() if v is not None})(values, **kwargs) 1196 if tmp_df.size == 1: 1197 deriv = np.array([tmp_df.real]) 1198 else: 1199 deriv = tmp_df.real 1200 else: 1201 deriv = jacobian(func)(values, **kwargs) 1202 1203 final_result = np.zeros(new_values.shape, dtype=object) 1204 1205 if array_mode is True: 1206 1207 class _Zero_grad(): 1208 def __init__(self, N): 1209 self.grad = np.zeros((N, 1)) 1210 1211 new_covobs_lengths = dict(set([y for x in [[(n, o.covobs[n].N) for n in o.cov_names] for o in raveled_data] for y in x])) 1212 d_extracted = {} 1213 g_extracted = {} 1214 for name in new_sample_names: 1215 d_extracted[name] = [] 1216 ens_length = len(new_idl_d[name]) 1217 for i_dat, dat in enumerate(data): 1218 d_extracted[name].append(np.array([_expand_deltas_for_merge(o.deltas.get(name, np.zeros(ens_length)), o.idl.get(name, new_idl_d[name]), o.shape.get(name, ens_length), new_idl_d[name]) for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (ens_length, ))) 1219 for name in new_cov_names: 1220 g_extracted[name] = [] 1221 zero_grad = _Zero_grad(new_covobs_lengths[name]) 1222 for i_dat, dat in enumerate(data): 1223 g_extracted[name].append(np.array([o.covobs.get(name, zero_grad).grad for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (new_covobs_lengths[name], 1))) 1224 1225 for i_val, new_val in np.ndenumerate(new_values): 1226 new_deltas = {} 1227 new_grad = {} 1228 if array_mode is True: 1229 for name in new_sample_names: 1230 ens_length = d_extracted[name][0].shape[-1] 1231 new_deltas[name] = np.zeros(ens_length) 1232 for i_dat, dat in enumerate(d_extracted[name]): 1233 new_deltas[name] += np.tensordot(deriv[i_val + (i_dat, )], dat) 1234 for name in new_cov_names: 1235 new_grad[name] = 0 1236 for i_dat, dat in enumerate(g_extracted[name]): 1237 new_grad[name] += np.tensordot(deriv[i_val + (i_dat, )], dat) 1238 else: 1239 for j_obs, obs in np.ndenumerate(data): 1240 for name in obs.names: 1241 if name in obs.cov_names: 1242 new_grad[name] = new_grad.get(name, 0) + deriv[i_val + j_obs] * obs.covobs[name].grad 1243 else: 1244 new_deltas[name] = new_deltas.get(name, 0) + deriv[i_val + j_obs] * _expand_deltas_for_merge(obs.deltas[name], obs.idl[name], obs.shape[name], new_idl_d[name]) 1245 1246 new_covobs = {name: Covobs(0, allcov[name], name, grad=new_grad[name]) for name in new_grad} 1247 1248 if not set(new_covobs.keys()).isdisjoint(new_deltas.keys()): 1249 raise Exception('The same name has been used for deltas and covobs!') 1250 new_samples = [] 1251 new_means = [] 1252 new_idl = [] 1253 new_names_obs = [] 1254 for name in new_names: 1255 if name not in new_covobs: 1256 new_samples.append(new_deltas[name]) 1257 new_idl.append(new_idl_d[name]) 1258 new_means.append(new_r_values[name][i_val]) 1259 new_names_obs.append(name) 1260 final_result[i_val] = Obs(new_samples, new_names_obs, means=new_means, idl=new_idl) 1261 for name in new_covobs: 1262 final_result[i_val].names.append(name) 1263 final_result[i_val]._covobs = new_covobs 1264 final_result[i_val]._value = new_val 1265 final_result[i_val].reweighted = reweighted 1266 1267 if multi == 0: 1268 final_result = final_result.item() 1269 1270 return final_result 1271 1272 1273def _reduce_deltas(deltas, idx_old, idx_new): 1274 """Extract deltas defined on idx_old on all configs of idx_new. 1275 1276 Assumes, that idx_old and idx_new are correctly defined idl, i.e., they 1277 are ordered in an ascending order. 1278 1279 Parameters 1280 ---------- 1281 deltas : list 1282 List of fluctuations 1283 idx_old : list 1284 List or range of configs on which the deltas are defined 1285 idx_new : list 1286 List of configs for which we want to extract the deltas. 1287 Has to be a subset of idx_old. 1288 """ 1289 if not len(deltas) == len(idx_old): 1290 raise Exception('Length of deltas and idx_old have to be the same: %d != %d' % (len(deltas), len(idx_old))) 1291 if type(idx_old) is range and type(idx_new) is range: 1292 if idx_old == idx_new: 1293 return deltas 1294 # Use groupby to efficiently check whether all elements of idx_old and idx_new are identical 1295 try: 1296 g = groupby([idx_old, idx_new]) 1297 if next(g, True) and not next(g, False): 1298 return deltas 1299 except Exception: 1300 pass 1301 indices = np.intersect1d(idx_old, idx_new, assume_unique=True, return_indices=True)[1] 1302 if len(indices) < len(idx_new): 1303 raise Exception('Error in _reduce_deltas: Config of idx_new not in idx_old') 1304 return np.array(deltas)[indices] 1305 1306 1307def reweight(weight, obs, **kwargs): 1308 """Reweight a list of observables. 1309 1310 Parameters 1311 ---------- 1312 weight : Obs 1313 Reweighting factor. An Observable that has to be defined on a superset of the 1314 configurations in obs[i].idl for all i. 1315 obs : list 1316 list of Obs, e.g. [obs1, obs2, obs3]. 1317 all_configs : bool 1318 if True, the reweighted observables are normalized by the average of 1319 the reweighting factor on all configurations in weight.idl and not 1320 on the configurations in obs[i].idl. Default False. 1321 """ 1322 result = [] 1323 for i in range(len(obs)): 1324 if len(obs[i].cov_names): 1325 raise Exception('Error: Not possible to reweight an Obs that contains covobs!') 1326 if not set(obs[i].names).issubset(weight.names): 1327 raise Exception('Error: Ensembles do not fit') 1328 for name in obs[i].names: 1329 if not set(obs[i].idl[name]).issubset(weight.idl[name]): 1330 raise Exception('obs[%d] has to be defined on a subset of the configs in weight.idl[%s]!' % (i, name)) 1331 new_samples = [] 1332 w_deltas = {} 1333 for name in sorted(obs[i].names): 1334 w_deltas[name] = _reduce_deltas(weight.deltas[name], weight.idl[name], obs[i].idl[name]) 1335 new_samples.append((w_deltas[name] + weight.r_values[name]) * (obs[i].deltas[name] + obs[i].r_values[name])) 1336 tmp_obs = Obs(new_samples, sorted(obs[i].names), idl=[obs[i].idl[name] for name in sorted(obs[i].names)]) 1337 1338 if kwargs.get('all_configs'): 1339 new_weight = weight 1340 else: 1341 new_weight = Obs([w_deltas[name] + weight.r_values[name] for name in sorted(obs[i].names)], sorted(obs[i].names), idl=[obs[i].idl[name] for name in sorted(obs[i].names)]) 1342 1343 result.append(tmp_obs / new_weight) 1344 result[-1].reweighted = True 1345 1346 return result 1347 1348 1349def correlate(obs_a, obs_b): 1350 """Correlate two observables. 1351 1352 Parameters 1353 ---------- 1354 obs_a : Obs 1355 First observable 1356 obs_b : Obs 1357 Second observable 1358 1359 Notes 1360 ----- 1361 Keep in mind to only correlate primary observables which have not been reweighted 1362 yet. The reweighting has to be applied after correlating the observables. 1363 Currently only works if ensembles are identical (this is not strictly necessary). 1364 """ 1365 1366 if sorted(obs_a.names) != sorted(obs_b.names): 1367 raise Exception(f"Ensembles do not fit {set(sorted(obs_a.names)) ^ set(sorted(obs_b.names))}") 1368 if len(obs_a.cov_names) or len(obs_b.cov_names): 1369 raise Exception('Error: Not possible to correlate Obs that contain covobs!') 1370 for name in obs_a.names: 1371 if obs_a.shape[name] != obs_b.shape[name]: 1372 raise Exception('Shapes of ensemble', name, 'do not fit') 1373 if obs_a.idl[name] != obs_b.idl[name]: 1374 raise Exception('idl of ensemble', name, 'do not fit') 1375 1376 if obs_a.reweighted is True: 1377 warnings.warn("The first observable is already reweighted.", RuntimeWarning) 1378 if obs_b.reweighted is True: 1379 warnings.warn("The second observable is already reweighted.", RuntimeWarning) 1380 1381 new_samples = [] 1382 new_idl = [] 1383 for name in sorted(obs_a.names): 1384 new_samples.append((obs_a.deltas[name] + obs_a.r_values[name]) * (obs_b.deltas[name] + obs_b.r_values[name])) 1385 new_idl.append(obs_a.idl[name]) 1386 1387 o = Obs(new_samples, sorted(obs_a.names), idl=new_idl) 1388 o.reweighted = obs_a.reweighted or obs_b.reweighted 1389 return o 1390 1391 1392def covariance(obs, visualize=False, correlation=False, smooth=None, **kwargs): 1393 r'''Calculates the error covariance matrix of a set of observables. 1394 1395 WARNING: This function should be used with care, especially for observables with support on multiple 1396 ensembles with differing autocorrelations. See the notes below for details. 1397 1398 The gamma method has to be applied first to all observables. 1399 1400 Parameters 1401 ---------- 1402 obs : list or numpy.ndarray 1403 List or one dimensional array of Obs 1404 visualize : bool 1405 If True plots the corresponding normalized correlation matrix (default False). 1406 correlation : bool 1407 If True the correlation matrix instead of the error covariance matrix is returned (default False). 1408 smooth : None or int 1409 If smooth is an integer 'E' between 2 and the dimension of the matrix minus 1 the eigenvalue 1410 smoothing procedure of hep-lat/9412087 is applied to the correlation matrix which leaves the 1411 largest E eigenvalues essentially unchanged and smoothes the smaller eigenvalues to avoid extremely 1412 small ones. 1413 1414 Notes 1415 ----- 1416 The error covariance is defined such that it agrees with the squared standard error for two identical observables 1417 $$\operatorname{cov}(a,a)=\sum_{s=1}^N\delta_a^s\delta_a^s/N^2=\Gamma_{aa}(0)/N=\operatorname{var}(a)/N=\sigma_a^2$$ 1418 in the absence of autocorrelation. 1419 The error covariance is estimated by calculating the correlation matrix assuming no autocorrelation and then rescaling the correlation matrix by the full errors including the previous gamma method estimate for the autocorrelation of the observables. The covariance at windowsize 0 is guaranteed to be positive semi-definite 1420 $$\sum_{i,j}v_i\Gamma_{ij}(0)v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i,j}v_i\delta_i^s\delta_j^s v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i}|v_i\delta_i^s|^2\geq 0\,,$$ for every $v\in\mathbb{R}^M$, while such an identity does not hold for larger windows/lags. 1421 For observables defined on a single ensemble our approximation is equivalent to assuming that the integrated autocorrelation time of an off-diagonal element is equal to the geometric mean of the integrated autocorrelation times of the corresponding diagonal elements. 1422 $$\tau_{\mathrm{int}, ij}=\sqrt{\tau_{\mathrm{int}, i}\times \tau_{\mathrm{int}, j}}$$ 1423 This construction ensures that the estimated covariance matrix is positive semi-definite (up to numerical rounding errors). 1424 ''' 1425 1426 length = len(obs) 1427 1428 max_samples = np.max([o.N for o in obs]) 1429 if max_samples <= length and not [item for sublist in [o.cov_names for o in obs] for item in sublist]: 1430 warnings.warn(f"The dimension of the covariance matrix ({length}) is larger or equal to the number of samples ({max_samples}). This will result in a rank deficient matrix.", RuntimeWarning) 1431 1432 cov = np.zeros((length, length)) 1433 for i in range(length): 1434 for j in range(i, length): 1435 cov[i, j] = _covariance_element(obs[i], obs[j]) 1436 cov = cov + cov.T - np.diag(np.diag(cov)) 1437 1438 corr = np.diag(1 / np.sqrt(np.diag(cov))) @ cov @ np.diag(1 / np.sqrt(np.diag(cov))) 1439 1440 if isinstance(smooth, int): 1441 corr = _smooth_eigenvalues(corr, smooth) 1442 1443 if visualize: 1444 plt.matshow(corr, vmin=-1, vmax=1) 1445 plt.set_cmap('RdBu') 1446 plt.colorbar() 1447 plt.draw() 1448 1449 if correlation is True: 1450 return corr 1451 1452 errors = [o.dvalue for o in obs] 1453 cov = np.diag(errors) @ corr @ np.diag(errors) 1454 1455 eigenvalues = np.linalg.eigh(cov)[0] 1456 if not np.all(eigenvalues >= 0): 1457 warnings.warn("Covariance matrix is not positive semi-definite (Eigenvalues: " + str(eigenvalues) + ")", RuntimeWarning) 1458 1459 return cov 1460 1461 1462def _smooth_eigenvalues(corr, E): 1463 """Eigenvalue smoothing as described in hep-lat/9412087 1464 1465 corr : np.ndarray 1466 correlation matrix 1467 E : integer 1468 Number of eigenvalues to be left substantially unchanged 1469 """ 1470 if not (2 < E < corr.shape[0] - 1): 1471 raise Exception(f"'E' has to be between 2 and the dimension of the correlation matrix minus 1 ({corr.shape[0] - 1}).") 1472 vals, vec = np.linalg.eigh(corr) 1473 lambda_min = np.mean(vals[:-E]) 1474 vals[vals < lambda_min] = lambda_min 1475 vals /= np.mean(vals) 1476 return vec @ np.diag(vals) @ vec.T 1477 1478 1479def _covariance_element(obs1, obs2): 1480 """Estimates the covariance of two Obs objects, neglecting autocorrelations.""" 1481 1482 def calc_gamma(deltas1, deltas2, idx1, idx2, new_idx): 1483 deltas1 = _reduce_deltas(deltas1, idx1, new_idx) 1484 deltas2 = _reduce_deltas(deltas2, idx2, new_idx) 1485 return np.sum(deltas1 * deltas2) 1486 1487 if set(obs1.names).isdisjoint(set(obs2.names)): 1488 return 0.0 1489 1490 if not hasattr(obs1, 'e_dvalue') or not hasattr(obs2, 'e_dvalue'): 1491 raise Exception('The gamma method has to be applied to both Obs first.') 1492 1493 dvalue = 0.0 1494 1495 for e_name in obs1.mc_names: 1496 1497 if e_name not in obs2.mc_names: 1498 continue 1499 1500 idl_d = {} 1501 for r_name in obs1.e_content[e_name]: 1502 if r_name not in obs2.e_content[e_name]: 1503 continue 1504 idl_d[r_name] = _intersection_idx([obs1.idl[r_name], obs2.idl[r_name]]) 1505 1506 gamma = 0.0 1507 1508 for r_name in obs1.e_content[e_name]: 1509 if r_name not in obs2.e_content[e_name]: 1510 continue 1511 if len(idl_d[r_name]) == 0: 1512 continue 1513 gamma += calc_gamma(obs1.deltas[r_name], obs2.deltas[r_name], obs1.idl[r_name], obs2.idl[r_name], idl_d[r_name]) 1514 1515 if gamma == 0.0: 1516 continue 1517 1518 gamma_div = 0.0 1519 for r_name in obs1.e_content[e_name]: 1520 if r_name not in obs2.e_content[e_name]: 1521 continue 1522 if len(idl_d[r_name]) == 0: 1523 continue 1524 gamma_div += np.sqrt(calc_gamma(obs1.deltas[r_name], obs1.deltas[r_name], obs1.idl[r_name], obs1.idl[r_name], idl_d[r_name]) * calc_gamma(obs2.deltas[r_name], obs2.deltas[r_name], obs2.idl[r_name], obs2.idl[r_name], idl_d[r_name])) 1525 gamma /= gamma_div 1526 1527 dvalue += gamma 1528 1529 for e_name in obs1.cov_names: 1530 1531 if e_name not in obs2.cov_names: 1532 continue 1533 1534 dvalue += float(np.dot(np.transpose(obs1.covobs[e_name].grad), np.dot(obs1.covobs[e_name].cov, obs2.covobs[e_name].grad))) 1535 1536 return dvalue 1537 1538 1539def import_jackknife(jacks, name, idl=None): 1540 """Imports jackknife samples and returns an Obs 1541 1542 Parameters 1543 ---------- 1544 jacks : numpy.ndarray 1545 numpy array containing the mean value as zeroth entry and 1546 the N jackknife samples as first to Nth entry. 1547 name : str 1548 name of the ensemble the samples are defined on. 1549 """ 1550 length = len(jacks) - 1 1551 prj = (np.ones((length, length)) - (length - 1) * np.identity(length)) 1552 samples = jacks[1:] @ prj 1553 mean = np.mean(samples) 1554 new_obs = Obs([samples - mean], [name], idl=idl, means=[mean]) 1555 new_obs._value = jacks[0] 1556 return new_obs 1557 1558 1559def merge_obs(list_of_obs): 1560 """Combine all observables in list_of_obs into one new observable 1561 1562 Parameters 1563 ---------- 1564 list_of_obs : list 1565 list of the Obs object to be combined 1566 1567 Notes 1568 ----- 1569 It is not possible to combine obs which are based on the same replicum 1570 """ 1571 replist = [item for obs in list_of_obs for item in obs.names] 1572 if (len(replist) == len(set(replist))) is False: 1573 raise Exception('list_of_obs contains duplicate replica: %s' % (str(replist))) 1574 if any([len(o.cov_names) for o in list_of_obs]): 1575 raise Exception('Not possible to merge data that contains covobs!') 1576 new_dict = {} 1577 idl_dict = {} 1578 for o in list_of_obs: 1579 new_dict.update({key: o.deltas.get(key, 0) + o.r_values.get(key, 0) 1580 for key in set(o.deltas) | set(o.r_values)}) 1581 idl_dict.update({key: o.idl.get(key, 0) for key in set(o.deltas)}) 1582 1583 names = sorted(new_dict.keys()) 1584 o = Obs([new_dict[name] for name in names], names, idl=[idl_dict[name] for name in names]) 1585 o.reweighted = np.max([oi.reweighted for oi in list_of_obs]) 1586 return o 1587 1588 1589def cov_Obs(means, cov, name, grad=None): 1590 """Create an Obs based on mean(s) and a covariance matrix 1591 1592 Parameters 1593 ---------- 1594 mean : list of floats or float 1595 N mean value(s) of the new Obs 1596 cov : list or array 1597 2d (NxN) Covariance matrix, 1d diagonal entries or 0d covariance 1598 name : str 1599 identifier for the covariance matrix 1600 grad : list or array 1601 Gradient of the Covobs wrt. the means belonging to cov. 1602 """ 1603 1604 def covobs_to_obs(co): 1605 """Make an Obs out of a Covobs 1606 1607 Parameters 1608 ---------- 1609 co : Covobs 1610 Covobs to be embedded into the Obs 1611 """ 1612 o = Obs([], [], means=[]) 1613 o._value = co.value 1614 o.names.append(co.name) 1615 o._covobs[co.name] = co 1616 o._dvalue = np.sqrt(co.errsq()) 1617 return o 1618 1619 ol = [] 1620 if isinstance(means, (float, int)): 1621 means = [means] 1622 1623 for i in range(len(means)): 1624 ol.append(covobs_to_obs(Covobs(means[i], cov, name, pos=i, grad=grad))) 1625 if ol[0].covobs[name].N != len(means): 1626 raise Exception('You have to provide %d mean values!' % (ol[0].N)) 1627 if len(ol) == 1: 1628 return ol[0] 1629 return ol
20class Obs: 21 """Class for a general observable. 22 23 Instances of Obs are the basic objects of a pyerrors error analysis. 24 They are initialized with a list which contains arrays of samples for 25 different ensembles/replica and another list of same length which contains 26 the names of the ensembles/replica. Mathematical operations can be 27 performed on instances. The result is another instance of Obs. The error of 28 an instance can be computed with the gamma_method. Also contains additional 29 methods for output and visualization of the error calculation. 30 31 Attributes 32 ---------- 33 S_global : float 34 Standard value for S (default 2.0) 35 S_dict : dict 36 Dictionary for S values. If an entry for a given ensemble 37 exists this overwrites the standard value for that ensemble. 38 tau_exp_global : float 39 Standard value for tau_exp (default 0.0) 40 tau_exp_dict : dict 41 Dictionary for tau_exp values. If an entry for a given ensemble exists 42 this overwrites the standard value for that ensemble. 43 N_sigma_global : float 44 Standard value for N_sigma (default 1.0) 45 N_sigma_dict : dict 46 Dictionary for N_sigma values. If an entry for a given ensemble exists 47 this overwrites the standard value for that ensemble. 48 """ 49 __slots__ = ['names', 'shape', 'r_values', 'deltas', 'N', '_value', '_dvalue', 50 'ddvalue', 'reweighted', 'S', 'tau_exp', 'N_sigma', 51 'e_dvalue', 'e_ddvalue', 'e_tauint', 'e_dtauint', 52 'e_windowsize', 'e_rho', 'e_drho', 'e_n_tauint', 'e_n_dtauint', 53 'idl', 'tag', '_covobs', '__dict__'] 54 55 S_global = 2.0 56 S_dict = {} 57 tau_exp_global = 0.0 58 tau_exp_dict = {} 59 N_sigma_global = 1.0 60 N_sigma_dict = {} 61 62 def __init__(self, samples, names, idl=None, **kwargs): 63 """ Initialize Obs object. 64 65 Parameters 66 ---------- 67 samples : list 68 list of numpy arrays containing the Monte Carlo samples 69 names : list 70 list of strings labeling the individual samples 71 idl : list, optional 72 list of ranges or lists on which the samples are defined 73 """ 74 75 if kwargs.get("means") is None and len(samples): 76 if len(samples) != len(names): 77 raise Exception('Length of samples and names incompatible.') 78 if idl is not None: 79 if len(idl) != len(names): 80 raise Exception('Length of idl incompatible with samples and names.') 81 name_length = len(names) 82 if name_length > 1: 83 if name_length != len(set(names)): 84 raise Exception('names are not unique.') 85 if not all(isinstance(x, str) for x in names): 86 raise TypeError('All names have to be strings.') 87 else: 88 if not isinstance(names[0], str): 89 raise TypeError('All names have to be strings.') 90 if min(len(x) for x in samples) <= 4: 91 raise Exception('Samples have to have at least 5 entries.') 92 93 self.names = sorted(names) 94 self.shape = {} 95 self.r_values = {} 96 self.deltas = {} 97 self._covobs = {} 98 99 self._value = 0 100 self.N = 0 101 self.idl = {} 102 if idl is not None: 103 for name, idx in sorted(zip(names, idl)): 104 if isinstance(idx, range): 105 self.idl[name] = idx 106 elif isinstance(idx, (list, np.ndarray)): 107 dc = np.unique(np.diff(idx)) 108 if np.any(dc < 0): 109 raise Exception("Unsorted idx for idl[%s]" % (name)) 110 if len(dc) == 1: 111 self.idl[name] = range(idx[0], idx[-1] + dc[0], dc[0]) 112 else: 113 self.idl[name] = list(idx) 114 else: 115 raise Exception('incompatible type for idl[%s].' % (name)) 116 else: 117 for name, sample in sorted(zip(names, samples)): 118 self.idl[name] = range(1, len(sample) + 1) 119 120 if kwargs.get("means") is not None: 121 for name, sample, mean in sorted(zip(names, samples, kwargs.get("means"))): 122 self.shape[name] = len(self.idl[name]) 123 self.N += self.shape[name] 124 self.r_values[name] = mean 125 self.deltas[name] = sample 126 else: 127 for name, sample in sorted(zip(names, samples)): 128 self.shape[name] = len(self.idl[name]) 129 self.N += self.shape[name] 130 if len(sample) != self.shape[name]: 131 raise Exception('Incompatible samples and idx for %s: %d vs. %d' % (name, len(sample), self.shape[name])) 132 self.r_values[name] = np.mean(sample) 133 self.deltas[name] = sample - self.r_values[name] 134 self._value += self.shape[name] * self.r_values[name] 135 self._value /= self.N 136 137 self._dvalue = 0.0 138 self.ddvalue = 0.0 139 self.reweighted = False 140 141 self.tag = None 142 143 @property 144 def value(self): 145 return self._value 146 147 @property 148 def dvalue(self): 149 return self._dvalue 150 151 @property 152 def e_names(self): 153 return sorted(set([o.split('|')[0] for o in self.names])) 154 155 @property 156 def cov_names(self): 157 return sorted(set([o for o in self.covobs.keys()])) 158 159 @property 160 def mc_names(self): 161 return sorted(set([o.split('|')[0] for o in self.names if o not in self.cov_names])) 162 163 @property 164 def e_content(self): 165 res = {} 166 for e, e_name in enumerate(self.e_names): 167 res[e_name] = sorted(filter(lambda x: x.startswith(e_name + '|'), self.names)) 168 if e_name in self.names: 169 res[e_name].append(e_name) 170 return res 171 172 @property 173 def covobs(self): 174 return self._covobs 175 176 def gamma_method(self, **kwargs): 177 """Estimate the error and related properties of the Obs. 178 179 Parameters 180 ---------- 181 S : float 182 specifies a custom value for the parameter S (default 2.0). 183 If set to 0 it is assumed that the data exhibits no 184 autocorrelation. In this case the error estimates coincides 185 with the sample standard error. 186 tau_exp : float 187 positive value triggers the critical slowing down analysis 188 (default 0.0). 189 N_sigma : float 190 number of standard deviations from zero until the tail is 191 attached to the autocorrelation function (default 1). 192 fft : bool 193 determines whether the fft algorithm is used for the computation 194 of the autocorrelation function (default True) 195 """ 196 197 e_content = self.e_content 198 self.e_dvalue = {} 199 self.e_ddvalue = {} 200 self.e_tauint = {} 201 self.e_dtauint = {} 202 self.e_windowsize = {} 203 self.e_n_tauint = {} 204 self.e_n_dtauint = {} 205 e_gamma = {} 206 self.e_rho = {} 207 self.e_drho = {} 208 self._dvalue = 0 209 self.ddvalue = 0 210 211 self.S = {} 212 self.tau_exp = {} 213 self.N_sigma = {} 214 215 if kwargs.get('fft') is False: 216 fft = False 217 else: 218 fft = True 219 220 def _parse_kwarg(kwarg_name): 221 if kwarg_name in kwargs: 222 tmp = kwargs.get(kwarg_name) 223 if isinstance(tmp, (int, float)): 224 if tmp < 0: 225 raise Exception(kwarg_name + ' has to be larger or equal to 0.') 226 for e, e_name in enumerate(self.e_names): 227 getattr(self, kwarg_name)[e_name] = tmp 228 else: 229 raise TypeError(kwarg_name + ' is not in proper format.') 230 else: 231 for e, e_name in enumerate(self.e_names): 232 if e_name in getattr(Obs, kwarg_name + '_dict'): 233 getattr(self, kwarg_name)[e_name] = getattr(Obs, kwarg_name + '_dict')[e_name] 234 else: 235 getattr(self, kwarg_name)[e_name] = getattr(Obs, kwarg_name + '_global') 236 237 _parse_kwarg('S') 238 _parse_kwarg('tau_exp') 239 _parse_kwarg('N_sigma') 240 241 for e, e_name in enumerate(self.mc_names): 242 r_length = [] 243 for r_name in e_content[e_name]: 244 if isinstance(self.idl[r_name], range): 245 r_length.append(len(self.idl[r_name])) 246 else: 247 r_length.append((self.idl[r_name][-1] - self.idl[r_name][0] + 1)) 248 249 e_N = np.sum([self.shape[r_name] for r_name in e_content[e_name]]) 250 w_max = max(r_length) // 2 251 e_gamma[e_name] = np.zeros(w_max) 252 self.e_rho[e_name] = np.zeros(w_max) 253 self.e_drho[e_name] = np.zeros(w_max) 254 255 for r_name in e_content[e_name]: 256 e_gamma[e_name] += self._calc_gamma(self.deltas[r_name], self.idl[r_name], self.shape[r_name], w_max, fft) 257 258 gamma_div = np.zeros(w_max) 259 for r_name in e_content[e_name]: 260 gamma_div += self._calc_gamma(np.ones((self.shape[r_name])), self.idl[r_name], self.shape[r_name], w_max, fft) 261 gamma_div[gamma_div < 1] = 1.0 262 e_gamma[e_name] /= gamma_div[:w_max] 263 264 if np.abs(e_gamma[e_name][0]) < 10 * np.finfo(float).tiny: # Prevent division by zero 265 self.e_tauint[e_name] = 0.5 266 self.e_dtauint[e_name] = 0.0 267 self.e_dvalue[e_name] = 0.0 268 self.e_ddvalue[e_name] = 0.0 269 self.e_windowsize[e_name] = 0 270 continue 271 272 gaps = [] 273 for r_name in e_content[e_name]: 274 if isinstance(self.idl[r_name], range): 275 gaps.append(1) 276 else: 277 gaps.append(np.min(np.diff(self.idl[r_name]))) 278 279 if not np.all([gi == gaps[0] for gi in gaps]): 280 raise Exception(f"Replica for ensemble {e_name} are not equally spaced.", gaps) 281 else: 282 gapsize = gaps[0] 283 284 self.e_rho[e_name] = e_gamma[e_name][:w_max] / e_gamma[e_name][0] 285 self.e_n_tauint[e_name] = np.cumsum(np.concatenate(([0.5], self.e_rho[e_name][1:]))) 286 # Make sure no entry of tauint is smaller than 0.5 287 self.e_n_tauint[e_name][self.e_n_tauint[e_name] <= 0.5] = 0.5 + np.finfo(np.float64).eps 288 # hep-lat/0306017 eq. (42) 289 self.e_n_dtauint[e_name] = self.e_n_tauint[e_name] * 2 * np.sqrt(np.abs(np.arange(w_max) / gapsize + 0.5 - self.e_n_tauint[e_name]) / e_N) 290 self.e_n_dtauint[e_name][0] = 0.0 291 292 def _compute_drho(i): 293 tmp = self.e_rho[e_name][i + 1:w_max] + np.concatenate([self.e_rho[e_name][i - 1::-1], self.e_rho[e_name][1:w_max - 2 * i]]) - 2 * self.e_rho[e_name][i] * self.e_rho[e_name][1:w_max - i] 294 self.e_drho[e_name][i] = np.sqrt(np.sum(tmp ** 2) / e_N) 295 296 _compute_drho(gapsize) 297 if self.tau_exp[e_name] > 0: 298 texp = self.tau_exp[e_name] 299 # Critical slowing down analysis 300 if w_max // 2 <= 1: 301 raise Exception("Need at least 8 samples for tau_exp error analysis") 302 for n in range(gapsize, w_max // 2, gapsize): 303 _compute_drho(n + gapsize) 304 if (self.e_rho[e_name][n] - self.N_sigma[e_name] * self.e_drho[e_name][n]) < 0 or n >= w_max // 2 - 2: 305 # Bias correction hep-lat/0306017 eq. (49) included 306 self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n / gapsize + 1) / e_N) / (1 + 1 / e_N) + texp * np.abs(self.e_rho[e_name][n + 1]) # The absolute makes sure, that the tail contribution is always positive 307 self.e_dtauint[e_name] = np.sqrt(self.e_n_dtauint[e_name][n] ** 2 + texp ** 2 * self.e_drho[e_name][n + 1] ** 2) 308 # Error of tau_exp neglected so far, missing term: self.e_rho[e_name][n + 1] ** 2 * d_tau_exp ** 2 309 self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N) 310 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n / gapsize + 0.5) / e_N) 311 self.e_windowsize[e_name] = n 312 break 313 else: 314 if self.S[e_name] == 0.0: 315 self.e_tauint[e_name] = 0.5 316 self.e_dtauint[e_name] = 0.0 317 self.e_dvalue[e_name] = np.sqrt(e_gamma[e_name][0] / (e_N - 1)) 318 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt(0.5 / e_N) 319 self.e_windowsize[e_name] = 0 320 else: 321 # Standard automatic windowing procedure 322 tau = self.S[e_name] / np.log((2 * self.e_n_tauint[e_name][gapsize::gapsize] + 1) / (2 * self.e_n_tauint[e_name][gapsize::gapsize] - 1)) 323 g_w = np.exp(- np.arange(1, len(tau) + 1) / tau) - tau / np.sqrt(np.arange(1, len(tau) + 1) * e_N) 324 for n in range(1, w_max): 325 if n < w_max // 2 - 2: 326 _compute_drho(gapsize * n + gapsize) 327 if g_w[n - 1] < 0 or n >= w_max - 1: 328 n *= gapsize 329 self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n / gapsize + 1) / e_N) / (1 + 1 / e_N) # Bias correction hep-lat/0306017 eq. (49) 330 self.e_dtauint[e_name] = self.e_n_dtauint[e_name][n] 331 self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N) 332 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n / gapsize + 0.5) / e_N) 333 self.e_windowsize[e_name] = n 334 break 335 336 self._dvalue += self.e_dvalue[e_name] ** 2 337 self.ddvalue += (self.e_dvalue[e_name] * self.e_ddvalue[e_name]) ** 2 338 339 for e_name in self.cov_names: 340 self.e_dvalue[e_name] = np.sqrt(self.covobs[e_name].errsq()) 341 self.e_ddvalue[e_name] = 0 342 self._dvalue += self.e_dvalue[e_name]**2 343 344 self._dvalue = np.sqrt(self._dvalue) 345 if self._dvalue == 0.0: 346 self.ddvalue = 0.0 347 else: 348 self.ddvalue = np.sqrt(self.ddvalue) / self._dvalue 349 return 350 351 gm = gamma_method 352 353 def _calc_gamma(self, deltas, idx, shape, w_max, fft): 354 """Calculate Gamma_{AA} from the deltas, which are defined on idx. 355 idx is assumed to be a contiguous range (possibly with a stepsize != 1) 356 357 Parameters 358 ---------- 359 deltas : list 360 List of fluctuations 361 idx : list 362 List or range of configurations on which the deltas are defined. 363 shape : int 364 Number of configurations in idx. 365 w_max : int 366 Upper bound for the summation window. 367 fft : bool 368 determines whether the fft algorithm is used for the computation 369 of the autocorrelation function. 370 """ 371 gamma = np.zeros(w_max) 372 deltas = _expand_deltas(deltas, idx, shape) 373 new_shape = len(deltas) 374 if fft: 375 max_gamma = min(new_shape, w_max) 376 # The padding for the fft has to be even 377 padding = new_shape + max_gamma + (new_shape + max_gamma) % 2 378 gamma[:max_gamma] += np.fft.irfft(np.abs(np.fft.rfft(deltas, padding)) ** 2)[:max_gamma] 379 else: 380 for n in range(w_max): 381 if new_shape - n >= 0: 382 gamma[n] += deltas[0:new_shape - n].dot(deltas[n:new_shape]) 383 384 return gamma 385 386 def details(self, ens_content=True): 387 """Output detailed properties of the Obs. 388 389 Parameters 390 ---------- 391 ens_content : bool 392 print details about the ensembles and replica if true. 393 """ 394 if self.tag is not None: 395 print("Description:", self.tag) 396 if not hasattr(self, 'e_dvalue'): 397 print('Result\t %3.8e' % (self.value)) 398 else: 399 if self.value == 0.0: 400 percentage = np.nan 401 else: 402 percentage = np.abs(self._dvalue / self.value) * 100 403 print('Result\t %3.8e +/- %3.8e +/- %3.8e (%3.3f%%)' % (self.value, self._dvalue, self.ddvalue, percentage)) 404 if len(self.e_names) > 1: 405 print(' Ensemble errors:') 406 e_content = self.e_content 407 for e_name in self.mc_names: 408 if isinstance(self.idl[e_content[e_name][0]], range): 409 gap = self.idl[e_content[e_name][0]].step 410 else: 411 gap = np.min(np.diff(self.idl[e_content[e_name][0]])) 412 413 if len(self.e_names) > 1: 414 print('', e_name, '\t %3.6e +/- %3.6e' % (self.e_dvalue[e_name], self.e_ddvalue[e_name])) 415 tau_string = " \N{GREEK SMALL LETTER TAU}_int\t " + _format_uncertainty(self.e_tauint[e_name], self.e_dtauint[e_name]) 416 tau_string += f" in units of {gap} config" 417 if gap > 1: 418 tau_string += "s" 419 if self.tau_exp[e_name] > 0: 420 tau_string = f"{tau_string: <45}" + '\t(\N{GREEK SMALL LETTER TAU}_exp=%3.2f, N_\N{GREEK SMALL LETTER SIGMA}=%1.0i)' % (self.tau_exp[e_name], self.N_sigma[e_name]) 421 else: 422 tau_string = f"{tau_string: <45}" + '\t(S=%3.2f)' % (self.S[e_name]) 423 print(tau_string) 424 for e_name in self.cov_names: 425 print('', e_name, '\t %3.8e' % (self.e_dvalue[e_name])) 426 if ens_content is True: 427 if len(self.e_names) == 1: 428 print(self.N, 'samples in', len(self.e_names), 'ensemble:') 429 else: 430 print(self.N, 'samples in', len(self.e_names), 'ensembles:') 431 my_string_list = [] 432 for key, value in sorted(self.e_content.items()): 433 if key not in self.covobs: 434 my_string = ' ' + "\u00B7 Ensemble '" + key + "' " 435 if len(value) == 1: 436 my_string += f': {self.shape[value[0]]} configurations' 437 if isinstance(self.idl[value[0]], range): 438 my_string += f' (from {self.idl[value[0]].start} to {self.idl[value[0]][-1]}' + int(self.idl[value[0]].step != 1) * f' in steps of {self.idl[value[0]].step}' + ')' 439 else: 440 my_string += f' (irregular range from {self.idl[value[0]][0]} to {self.idl[value[0]][-1]})' 441 else: 442 sublist = [] 443 for v in value: 444 my_substring = ' ' + "\u00B7 Replicum '" + v[len(key) + 1:] + "' " 445 my_substring += f': {self.shape[v]} configurations' 446 if isinstance(self.idl[v], range): 447 my_substring += f' (from {self.idl[v].start} to {self.idl[v][-1]}' + int(self.idl[v].step != 1) * f' in steps of {self.idl[v].step}' + ')' 448 else: 449 my_substring += f' (irregular range from {self.idl[v][0]} to {self.idl[v][-1]})' 450 sublist.append(my_substring) 451 452 my_string += '\n' + '\n'.join(sublist) 453 else: 454 my_string = ' ' + "\u00B7 Covobs '" + key + "' " 455 my_string_list.append(my_string) 456 print('\n'.join(my_string_list)) 457 458 def reweight(self, weight): 459 """Reweight the obs with given rewighting factors. 460 461 Parameters 462 ---------- 463 weight : Obs 464 Reweighting factor. An Observable that has to be defined on a superset of the 465 configurations in obs[i].idl for all i. 466 all_configs : bool 467 if True, the reweighted observables are normalized by the average of 468 the reweighting factor on all configurations in weight.idl and not 469 on the configurations in obs[i].idl. Default False. 470 """ 471 return reweight(weight, [self])[0] 472 473 def is_zero_within_error(self, sigma=1): 474 """Checks whether the observable is zero within 'sigma' standard errors. 475 476 Parameters 477 ---------- 478 sigma : int 479 Number of standard errors used for the check. 480 481 Works only properly when the gamma method was run. 482 """ 483 return self.is_zero() or np.abs(self.value) <= sigma * self._dvalue 484 485 def is_zero(self, atol=1e-10): 486 """Checks whether the observable is zero within a given tolerance. 487 488 Parameters 489 ---------- 490 atol : float 491 Absolute tolerance (for details see numpy documentation). 492 """ 493 return np.isclose(0.0, self.value, 1e-14, atol) and all(np.allclose(0.0, delta, 1e-14, atol) for delta in self.deltas.values()) and all(np.allclose(0.0, delta.errsq(), 1e-14, atol) for delta in self.covobs.values()) 494 495 def plot_tauint(self, save=None): 496 """Plot integrated autocorrelation time for each ensemble. 497 498 Parameters 499 ---------- 500 save : str 501 saves the figure to a file named 'save' if. 502 """ 503 if not hasattr(self, 'e_dvalue'): 504 raise Exception('Run the gamma method first.') 505 506 for e, e_name in enumerate(self.mc_names): 507 fig = plt.figure() 508 plt.xlabel(r'$W$') 509 plt.ylabel(r'$\tau_\mathrm{int}$') 510 length = int(len(self.e_n_tauint[e_name])) 511 if self.tau_exp[e_name] > 0: 512 base = self.e_n_tauint[e_name][self.e_windowsize[e_name]] 513 x_help = np.arange(2 * self.tau_exp[e_name]) 514 y_help = (x_help + 1) * np.abs(self.e_rho[e_name][self.e_windowsize[e_name] + 1]) * (1 - x_help / (2 * (2 * self.tau_exp[e_name] - 1))) + base 515 x_arr = np.arange(self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]) 516 plt.plot(x_arr, y_help, 'C' + str(e), linewidth=1, ls='--', marker=',') 517 plt.errorbar([self.e_windowsize[e_name] + 2 * self.tau_exp[e_name]], [self.e_tauint[e_name]], 518 yerr=[self.e_dtauint[e_name]], fmt='C' + str(e), linewidth=1, capsize=2, marker='o', mfc=plt.rcParams['axes.facecolor']) 519 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 520 label = e_name + r', $\tau_\mathrm{exp}$=' + str(np.around(self.tau_exp[e_name], decimals=2)) 521 else: 522 label = e_name + ', S=' + str(np.around(self.S[e_name], decimals=2)) 523 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) 524 525 plt.errorbar(np.arange(length)[:int(xmax) + 1], self.e_n_tauint[e_name][:int(xmax) + 1], yerr=self.e_n_dtauint[e_name][:int(xmax) + 1], linewidth=1, capsize=2, label=label) 526 plt.axvline(x=self.e_windowsize[e_name], color='C' + str(e), alpha=0.5, marker=',', ls='--') 527 plt.legend() 528 plt.xlim(-0.5, xmax) 529 ylim = plt.ylim() 530 plt.ylim(bottom=0.0, top=max(1.0, ylim[1])) 531 plt.draw() 532 if save: 533 fig.savefig(save + "_" + str(e)) 534 535 def plot_rho(self, save=None): 536 """Plot normalized autocorrelation function time for each ensemble. 537 538 Parameters 539 ---------- 540 save : str 541 saves the figure to a file named 'save' if. 542 """ 543 if not hasattr(self, 'e_dvalue'): 544 raise Exception('Run the gamma method first.') 545 for e, e_name in enumerate(self.mc_names): 546 fig = plt.figure() 547 plt.xlabel('W') 548 plt.ylabel('rho') 549 length = int(len(self.e_drho[e_name])) 550 plt.errorbar(np.arange(length), self.e_rho[e_name][:length], yerr=self.e_drho[e_name][:], linewidth=1, capsize=2) 551 plt.axvline(x=self.e_windowsize[e_name], color='r', alpha=0.25, ls='--', marker=',') 552 if self.tau_exp[e_name] > 0: 553 plt.plot([self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]], 554 [self.e_rho[e_name][self.e_windowsize[e_name] + 1], 0], 'k-', lw=1) 555 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 556 plt.title('Rho ' + e_name + r', tau\_exp=' + str(np.around(self.tau_exp[e_name], decimals=2))) 557 else: 558 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) 559 plt.title('Rho ' + e_name + ', S=' + str(np.around(self.S[e_name], decimals=2))) 560 plt.plot([-0.5, xmax], [0, 0], 'k--', lw=1) 561 plt.xlim(-0.5, xmax) 562 plt.draw() 563 if save: 564 fig.savefig(save + "_" + str(e)) 565 566 def plot_rep_dist(self): 567 """Plot replica distribution for each ensemble with more than one replicum.""" 568 if not hasattr(self, 'e_dvalue'): 569 raise Exception('Run the gamma method first.') 570 for e, e_name in enumerate(self.mc_names): 571 if len(self.e_content[e_name]) == 1: 572 print('No replica distribution for a single replicum (', e_name, ')') 573 continue 574 r_length = [] 575 sub_r_mean = 0 576 for r, r_name in enumerate(self.e_content[e_name]): 577 r_length.append(len(self.deltas[r_name])) 578 sub_r_mean += self.shape[r_name] * self.r_values[r_name] 579 e_N = np.sum(r_length) 580 sub_r_mean /= e_N 581 arr = np.zeros(len(self.e_content[e_name])) 582 for r, r_name in enumerate(self.e_content[e_name]): 583 arr[r] = (self.r_values[r_name] - sub_r_mean) / (self.e_dvalue[e_name] * np.sqrt(e_N / self.shape[r_name] - 1)) 584 plt.hist(arr, rwidth=0.8, bins=len(self.e_content[e_name])) 585 plt.title('Replica distribution' + e_name + ' (mean=0, var=1)') 586 plt.draw() 587 588 def plot_history(self, expand=True): 589 """Plot derived Monte Carlo history for each ensemble 590 591 Parameters 592 ---------- 593 expand : bool 594 show expanded history for irregular Monte Carlo chains (default: True). 595 """ 596 for e, e_name in enumerate(self.mc_names): 597 plt.figure() 598 r_length = [] 599 tmp = [] 600 tmp_expanded = [] 601 for r, r_name in enumerate(self.e_content[e_name]): 602 tmp.append(self.deltas[r_name] + self.r_values[r_name]) 603 if expand: 604 tmp_expanded.append(_expand_deltas(self.deltas[r_name], list(self.idl[r_name]), self.shape[r_name]) + self.r_values[r_name]) 605 r_length.append(len(tmp_expanded[-1])) 606 else: 607 r_length.append(len(tmp[-1])) 608 e_N = np.sum(r_length) 609 x = np.arange(e_N) 610 y_test = np.concatenate(tmp, axis=0) 611 if expand: 612 y = np.concatenate(tmp_expanded, axis=0) 613 else: 614 y = y_test 615 plt.errorbar(x, y, fmt='.', markersize=3) 616 plt.xlim(-0.5, e_N - 0.5) 617 plt.title(e_name + f'\nskew: {skew(y_test):.3f} (p={skewtest(y_test).pvalue:.3f}), kurtosis: {kurtosis(y_test):.3f} (p={kurtosistest(y_test).pvalue:.3f})') 618 plt.draw() 619 620 def plot_piechart(self, save=None): 621 """Plot piechart which shows the fractional contribution of each 622 ensemble to the error and returns a dictionary containing the fractions. 623 624 Parameters 625 ---------- 626 save : str 627 saves the figure to a file named 'save' if. 628 """ 629 if not hasattr(self, 'e_dvalue'): 630 raise Exception('Run the gamma method first.') 631 if np.isclose(0.0, self._dvalue, atol=1e-15): 632 raise Exception('Error is 0.0') 633 labels = self.e_names 634 sizes = [self.e_dvalue[name] ** 2 for name in labels] / self._dvalue ** 2 635 fig1, ax1 = plt.subplots() 636 ax1.pie(sizes, labels=labels, startangle=90, normalize=True) 637 ax1.axis('equal') 638 plt.draw() 639 if save: 640 fig1.savefig(save) 641 642 return dict(zip(self.e_names, sizes)) 643 644 def dump(self, filename, datatype="json.gz", description="", **kwargs): 645 """Dump the Obs to a file 'name' of chosen format. 646 647 Parameters 648 ---------- 649 filename : str 650 name of the file to be saved. 651 datatype : str 652 Format of the exported file. Supported formats include 653 "json.gz" and "pickle" 654 description : str 655 Description for output file, only relevant for json.gz format. 656 path : str 657 specifies a custom path for the file (default '.') 658 """ 659 if 'path' in kwargs: 660 file_name = kwargs.get('path') + '/' + filename 661 else: 662 file_name = filename 663 664 if datatype == "json.gz": 665 from .input.json import dump_to_json 666 dump_to_json([self], file_name, description=description) 667 elif datatype == "pickle": 668 with open(file_name + '.p', 'wb') as fb: 669 pickle.dump(self, fb) 670 else: 671 raise Exception("Unknown datatype " + str(datatype)) 672 673 def export_jackknife(self): 674 """Export jackknife samples from the Obs 675 676 Returns 677 ------- 678 numpy.ndarray 679 Returns a numpy array of length N + 1 where N is the number of samples 680 for the given ensemble and replicum. The zeroth entry of the array contains 681 the mean value of the Obs, entries 1 to N contain the N jackknife samples 682 derived from the Obs. The current implementation only works for observables 683 defined on exactly one ensemble and replicum. The derived jackknife samples 684 should agree with samples from a full jackknife analysis up to O(1/N). 685 """ 686 687 if len(self.names) != 1: 688 raise Exception("'export_jackknife' is only implemented for Obs defined on one ensemble and replicum.") 689 690 name = self.names[0] 691 full_data = self.deltas[name] + self.r_values[name] 692 n = full_data.size 693 mean = self.value 694 tmp_jacks = np.zeros(n + 1) 695 tmp_jacks[0] = mean 696 tmp_jacks[1:] = (n * mean - full_data) / (n - 1) 697 return tmp_jacks 698 699 def __float__(self): 700 return float(self.value) 701 702 def __repr__(self): 703 return 'Obs[' + str(self) + ']' 704 705 def __str__(self): 706 return _format_uncertainty(self.value, self._dvalue) 707 708 def __hash__(self): 709 hash_tuple = (np.array([self.value]).astype(np.float32).data.tobytes(),) 710 hash_tuple += tuple([o.astype(np.float32).data.tobytes() for o in self.deltas.values()]) 711 hash_tuple += tuple([np.array([o.errsq()]).astype(np.float32).data.tobytes() for o in self.covobs.values()]) 712 hash_tuple += tuple([o.encode() for o in self.names]) 713 m = hashlib.md5() 714 [m.update(o) for o in hash_tuple] 715 return int(m.hexdigest(), 16) & 0xFFFFFFFF 716 717 # Overload comparisons 718 def __lt__(self, other): 719 return self.value < other 720 721 def __le__(self, other): 722 return self.value <= other 723 724 def __gt__(self, other): 725 return self.value > other 726 727 def __ge__(self, other): 728 return self.value >= other 729 730 def __eq__(self, other): 731 return (self - other).is_zero() 732 733 def __ne__(self, other): 734 return not (self - other).is_zero() 735 736 # Overload math operations 737 def __add__(self, y): 738 if isinstance(y, Obs): 739 return derived_observable(lambda x, **kwargs: x[0] + x[1], [self, y], man_grad=[1, 1]) 740 else: 741 if isinstance(y, np.ndarray): 742 return np.array([self + o for o in y]) 743 elif y.__class__.__name__ in ['Corr', 'CObs']: 744 return NotImplemented 745 else: 746 return derived_observable(lambda x, **kwargs: x[0] + y, [self], man_grad=[1]) 747 748 def __radd__(self, y): 749 return self + y 750 751 def __mul__(self, y): 752 if isinstance(y, Obs): 753 return derived_observable(lambda x, **kwargs: x[0] * x[1], [self, y], man_grad=[y.value, self.value]) 754 else: 755 if isinstance(y, np.ndarray): 756 return np.array([self * o for o in y]) 757 elif isinstance(y, complex): 758 return CObs(self * y.real, self * y.imag) 759 elif y.__class__.__name__ in ['Corr', 'CObs']: 760 return NotImplemented 761 else: 762 return derived_observable(lambda x, **kwargs: x[0] * y, [self], man_grad=[y]) 763 764 def __rmul__(self, y): 765 return self * y 766 767 def __sub__(self, y): 768 if isinstance(y, Obs): 769 return derived_observable(lambda x, **kwargs: x[0] - x[1], [self, y], man_grad=[1, -1]) 770 else: 771 if isinstance(y, np.ndarray): 772 return np.array([self - o for o in y]) 773 elif y.__class__.__name__ in ['Corr', 'CObs']: 774 return NotImplemented 775 else: 776 return derived_observable(lambda x, **kwargs: x[0] - y, [self], man_grad=[1]) 777 778 def __rsub__(self, y): 779 return -1 * (self - y) 780 781 def __pos__(self): 782 return self 783 784 def __neg__(self): 785 return -1 * self 786 787 def __truediv__(self, y): 788 if isinstance(y, Obs): 789 return derived_observable(lambda x, **kwargs: x[0] / x[1], [self, y], man_grad=[1 / y.value, - self.value / y.value ** 2]) 790 else: 791 if isinstance(y, np.ndarray): 792 return np.array([self / o for o in y]) 793 elif y.__class__.__name__ in ['Corr', 'CObs']: 794 return NotImplemented 795 else: 796 return derived_observable(lambda x, **kwargs: x[0] / y, [self], man_grad=[1 / y]) 797 798 def __rtruediv__(self, y): 799 if isinstance(y, Obs): 800 return derived_observable(lambda x, **kwargs: x[0] / x[1], [y, self], man_grad=[1 / self.value, - y.value / self.value ** 2]) 801 else: 802 if isinstance(y, np.ndarray): 803 return np.array([o / self for o in y]) 804 elif y.__class__.__name__ in ['Corr', 'CObs']: 805 return NotImplemented 806 else: 807 return derived_observable(lambda x, **kwargs: y / x[0], [self], man_grad=[-y / self.value ** 2]) 808 809 def __pow__(self, y): 810 if isinstance(y, Obs): 811 return derived_observable(lambda x: x[0] ** x[1], [self, y]) 812 else: 813 return derived_observable(lambda x: x[0] ** y, [self]) 814 815 def __rpow__(self, y): 816 if isinstance(y, Obs): 817 return derived_observable(lambda x: x[0] ** x[1], [y, self]) 818 else: 819 return derived_observable(lambda x: y ** x[0], [self]) 820 821 def __abs__(self): 822 return derived_observable(lambda x: anp.abs(x[0]), [self]) 823 824 # Overload numpy functions 825 def sqrt(self): 826 return derived_observable(lambda x, **kwargs: np.sqrt(x[0]), [self], man_grad=[1 / 2 / np.sqrt(self.value)]) 827 828 def log(self): 829 return derived_observable(lambda x, **kwargs: np.log(x[0]), [self], man_grad=[1 / self.value]) 830 831 def exp(self): 832 return derived_observable(lambda x, **kwargs: np.exp(x[0]), [self], man_grad=[np.exp(self.value)]) 833 834 def sin(self): 835 return derived_observable(lambda x, **kwargs: np.sin(x[0]), [self], man_grad=[np.cos(self.value)]) 836 837 def cos(self): 838 return derived_observable(lambda x, **kwargs: np.cos(x[0]), [self], man_grad=[-np.sin(self.value)]) 839 840 def tan(self): 841 return derived_observable(lambda x, **kwargs: np.tan(x[0]), [self], man_grad=[1 / np.cos(self.value) ** 2]) 842 843 def arcsin(self): 844 return derived_observable(lambda x: anp.arcsin(x[0]), [self]) 845 846 def arccos(self): 847 return derived_observable(lambda x: anp.arccos(x[0]), [self]) 848 849 def arctan(self): 850 return derived_observable(lambda x: anp.arctan(x[0]), [self]) 851 852 def sinh(self): 853 return derived_observable(lambda x, **kwargs: np.sinh(x[0]), [self], man_grad=[np.cosh(self.value)]) 854 855 def cosh(self): 856 return derived_observable(lambda x, **kwargs: np.cosh(x[0]), [self], man_grad=[np.sinh(self.value)]) 857 858 def tanh(self): 859 return derived_observable(lambda x, **kwargs: np.tanh(x[0]), [self], man_grad=[1 / np.cosh(self.value) ** 2]) 860 861 def arcsinh(self): 862 return derived_observable(lambda x: anp.arcsinh(x[0]), [self]) 863 864 def arccosh(self): 865 return derived_observable(lambda x: anp.arccosh(x[0]), [self]) 866 867 def arctanh(self): 868 return derived_observable(lambda x: anp.arctanh(x[0]), [self])
Class for a general observable.
Instances of Obs are the basic objects of a pyerrors error analysis. They are initialized with a list which contains arrays of samples for different ensembles/replica and another list of same length which contains the names of the ensembles/replica. Mathematical operations can be performed on instances. The result is another instance of Obs. The error of an instance can be computed with the gamma_method. Also contains additional methods for output and visualization of the error calculation.
Attributes
- S_global (float): Standard value for S (default 2.0)
- S_dict (dict): Dictionary for S values. If an entry for a given ensemble exists this overwrites the standard value for that ensemble.
- tau_exp_global (float): Standard value for tau_exp (default 0.0)
- tau_exp_dict (dict): Dictionary for tau_exp values. If an entry for a given ensemble exists this overwrites the standard value for that ensemble.
- N_sigma_global (float): Standard value for N_sigma (default 1.0)
- N_sigma_dict (dict): Dictionary for N_sigma values. If an entry for a given ensemble exists this overwrites the standard value for that ensemble.
62 def __init__(self, samples, names, idl=None, **kwargs): 63 """ Initialize Obs object. 64 65 Parameters 66 ---------- 67 samples : list 68 list of numpy arrays containing the Monte Carlo samples 69 names : list 70 list of strings labeling the individual samples 71 idl : list, optional 72 list of ranges or lists on which the samples are defined 73 """ 74 75 if kwargs.get("means") is None and len(samples): 76 if len(samples) != len(names): 77 raise Exception('Length of samples and names incompatible.') 78 if idl is not None: 79 if len(idl) != len(names): 80 raise Exception('Length of idl incompatible with samples and names.') 81 name_length = len(names) 82 if name_length > 1: 83 if name_length != len(set(names)): 84 raise Exception('names are not unique.') 85 if not all(isinstance(x, str) for x in names): 86 raise TypeError('All names have to be strings.') 87 else: 88 if not isinstance(names[0], str): 89 raise TypeError('All names have to be strings.') 90 if min(len(x) for x in samples) <= 4: 91 raise Exception('Samples have to have at least 5 entries.') 92 93 self.names = sorted(names) 94 self.shape = {} 95 self.r_values = {} 96 self.deltas = {} 97 self._covobs = {} 98 99 self._value = 0 100 self.N = 0 101 self.idl = {} 102 if idl is not None: 103 for name, idx in sorted(zip(names, idl)): 104 if isinstance(idx, range): 105 self.idl[name] = idx 106 elif isinstance(idx, (list, np.ndarray)): 107 dc = np.unique(np.diff(idx)) 108 if np.any(dc < 0): 109 raise Exception("Unsorted idx for idl[%s]" % (name)) 110 if len(dc) == 1: 111 self.idl[name] = range(idx[0], idx[-1] + dc[0], dc[0]) 112 else: 113 self.idl[name] = list(idx) 114 else: 115 raise Exception('incompatible type for idl[%s].' % (name)) 116 else: 117 for name, sample in sorted(zip(names, samples)): 118 self.idl[name] = range(1, len(sample) + 1) 119 120 if kwargs.get("means") is not None: 121 for name, sample, mean in sorted(zip(names, samples, kwargs.get("means"))): 122 self.shape[name] = len(self.idl[name]) 123 self.N += self.shape[name] 124 self.r_values[name] = mean 125 self.deltas[name] = sample 126 else: 127 for name, sample in sorted(zip(names, samples)): 128 self.shape[name] = len(self.idl[name]) 129 self.N += self.shape[name] 130 if len(sample) != self.shape[name]: 131 raise Exception('Incompatible samples and idx for %s: %d vs. %d' % (name, len(sample), self.shape[name])) 132 self.r_values[name] = np.mean(sample) 133 self.deltas[name] = sample - self.r_values[name] 134 self._value += self.shape[name] * self.r_values[name] 135 self._value /= self.N 136 137 self._dvalue = 0.0 138 self.ddvalue = 0.0 139 self.reweighted = False 140 141 self.tag = None
Initialize Obs object.
Parameters
- samples (list): list of numpy arrays containing the Monte Carlo samples
- names (list): list of strings labeling the individual samples
- idl (list, optional): list of ranges or lists on which the samples are defined
176 def gamma_method(self, **kwargs): 177 """Estimate the error and related properties of the Obs. 178 179 Parameters 180 ---------- 181 S : float 182 specifies a custom value for the parameter S (default 2.0). 183 If set to 0 it is assumed that the data exhibits no 184 autocorrelation. In this case the error estimates coincides 185 with the sample standard error. 186 tau_exp : float 187 positive value triggers the critical slowing down analysis 188 (default 0.0). 189 N_sigma : float 190 number of standard deviations from zero until the tail is 191 attached to the autocorrelation function (default 1). 192 fft : bool 193 determines whether the fft algorithm is used for the computation 194 of the autocorrelation function (default True) 195 """ 196 197 e_content = self.e_content 198 self.e_dvalue = {} 199 self.e_ddvalue = {} 200 self.e_tauint = {} 201 self.e_dtauint = {} 202 self.e_windowsize = {} 203 self.e_n_tauint = {} 204 self.e_n_dtauint = {} 205 e_gamma = {} 206 self.e_rho = {} 207 self.e_drho = {} 208 self._dvalue = 0 209 self.ddvalue = 0 210 211 self.S = {} 212 self.tau_exp = {} 213 self.N_sigma = {} 214 215 if kwargs.get('fft') is False: 216 fft = False 217 else: 218 fft = True 219 220 def _parse_kwarg(kwarg_name): 221 if kwarg_name in kwargs: 222 tmp = kwargs.get(kwarg_name) 223 if isinstance(tmp, (int, float)): 224 if tmp < 0: 225 raise Exception(kwarg_name + ' has to be larger or equal to 0.') 226 for e, e_name in enumerate(self.e_names): 227 getattr(self, kwarg_name)[e_name] = tmp 228 else: 229 raise TypeError(kwarg_name + ' is not in proper format.') 230 else: 231 for e, e_name in enumerate(self.e_names): 232 if e_name in getattr(Obs, kwarg_name + '_dict'): 233 getattr(self, kwarg_name)[e_name] = getattr(Obs, kwarg_name + '_dict')[e_name] 234 else: 235 getattr(self, kwarg_name)[e_name] = getattr(Obs, kwarg_name + '_global') 236 237 _parse_kwarg('S') 238 _parse_kwarg('tau_exp') 239 _parse_kwarg('N_sigma') 240 241 for e, e_name in enumerate(self.mc_names): 242 r_length = [] 243 for r_name in e_content[e_name]: 244 if isinstance(self.idl[r_name], range): 245 r_length.append(len(self.idl[r_name])) 246 else: 247 r_length.append((self.idl[r_name][-1] - self.idl[r_name][0] + 1)) 248 249 e_N = np.sum([self.shape[r_name] for r_name in e_content[e_name]]) 250 w_max = max(r_length) // 2 251 e_gamma[e_name] = np.zeros(w_max) 252 self.e_rho[e_name] = np.zeros(w_max) 253 self.e_drho[e_name] = np.zeros(w_max) 254 255 for r_name in e_content[e_name]: 256 e_gamma[e_name] += self._calc_gamma(self.deltas[r_name], self.idl[r_name], self.shape[r_name], w_max, fft) 257 258 gamma_div = np.zeros(w_max) 259 for r_name in e_content[e_name]: 260 gamma_div += self._calc_gamma(np.ones((self.shape[r_name])), self.idl[r_name], self.shape[r_name], w_max, fft) 261 gamma_div[gamma_div < 1] = 1.0 262 e_gamma[e_name] /= gamma_div[:w_max] 263 264 if np.abs(e_gamma[e_name][0]) < 10 * np.finfo(float).tiny: # Prevent division by zero 265 self.e_tauint[e_name] = 0.5 266 self.e_dtauint[e_name] = 0.0 267 self.e_dvalue[e_name] = 0.0 268 self.e_ddvalue[e_name] = 0.0 269 self.e_windowsize[e_name] = 0 270 continue 271 272 gaps = [] 273 for r_name in e_content[e_name]: 274 if isinstance(self.idl[r_name], range): 275 gaps.append(1) 276 else: 277 gaps.append(np.min(np.diff(self.idl[r_name]))) 278 279 if not np.all([gi == gaps[0] for gi in gaps]): 280 raise Exception(f"Replica for ensemble {e_name} are not equally spaced.", gaps) 281 else: 282 gapsize = gaps[0] 283 284 self.e_rho[e_name] = e_gamma[e_name][:w_max] / e_gamma[e_name][0] 285 self.e_n_tauint[e_name] = np.cumsum(np.concatenate(([0.5], self.e_rho[e_name][1:]))) 286 # Make sure no entry of tauint is smaller than 0.5 287 self.e_n_tauint[e_name][self.e_n_tauint[e_name] <= 0.5] = 0.5 + np.finfo(np.float64).eps 288 # hep-lat/0306017 eq. (42) 289 self.e_n_dtauint[e_name] = self.e_n_tauint[e_name] * 2 * np.sqrt(np.abs(np.arange(w_max) / gapsize + 0.5 - self.e_n_tauint[e_name]) / e_N) 290 self.e_n_dtauint[e_name][0] = 0.0 291 292 def _compute_drho(i): 293 tmp = self.e_rho[e_name][i + 1:w_max] + np.concatenate([self.e_rho[e_name][i - 1::-1], self.e_rho[e_name][1:w_max - 2 * i]]) - 2 * self.e_rho[e_name][i] * self.e_rho[e_name][1:w_max - i] 294 self.e_drho[e_name][i] = np.sqrt(np.sum(tmp ** 2) / e_N) 295 296 _compute_drho(gapsize) 297 if self.tau_exp[e_name] > 0: 298 texp = self.tau_exp[e_name] 299 # Critical slowing down analysis 300 if w_max // 2 <= 1: 301 raise Exception("Need at least 8 samples for tau_exp error analysis") 302 for n in range(gapsize, w_max // 2, gapsize): 303 _compute_drho(n + gapsize) 304 if (self.e_rho[e_name][n] - self.N_sigma[e_name] * self.e_drho[e_name][n]) < 0 or n >= w_max // 2 - 2: 305 # Bias correction hep-lat/0306017 eq. (49) included 306 self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n / gapsize + 1) / e_N) / (1 + 1 / e_N) + texp * np.abs(self.e_rho[e_name][n + 1]) # The absolute makes sure, that the tail contribution is always positive 307 self.e_dtauint[e_name] = np.sqrt(self.e_n_dtauint[e_name][n] ** 2 + texp ** 2 * self.e_drho[e_name][n + 1] ** 2) 308 # Error of tau_exp neglected so far, missing term: self.e_rho[e_name][n + 1] ** 2 * d_tau_exp ** 2 309 self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N) 310 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n / gapsize + 0.5) / e_N) 311 self.e_windowsize[e_name] = n 312 break 313 else: 314 if self.S[e_name] == 0.0: 315 self.e_tauint[e_name] = 0.5 316 self.e_dtauint[e_name] = 0.0 317 self.e_dvalue[e_name] = np.sqrt(e_gamma[e_name][0] / (e_N - 1)) 318 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt(0.5 / e_N) 319 self.e_windowsize[e_name] = 0 320 else: 321 # Standard automatic windowing procedure 322 tau = self.S[e_name] / np.log((2 * self.e_n_tauint[e_name][gapsize::gapsize] + 1) / (2 * self.e_n_tauint[e_name][gapsize::gapsize] - 1)) 323 g_w = np.exp(- np.arange(1, len(tau) + 1) / tau) - tau / np.sqrt(np.arange(1, len(tau) + 1) * e_N) 324 for n in range(1, w_max): 325 if n < w_max // 2 - 2: 326 _compute_drho(gapsize * n + gapsize) 327 if g_w[n - 1] < 0 or n >= w_max - 1: 328 n *= gapsize 329 self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n / gapsize + 1) / e_N) / (1 + 1 / e_N) # Bias correction hep-lat/0306017 eq. (49) 330 self.e_dtauint[e_name] = self.e_n_dtauint[e_name][n] 331 self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N) 332 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n / gapsize + 0.5) / e_N) 333 self.e_windowsize[e_name] = n 334 break 335 336 self._dvalue += self.e_dvalue[e_name] ** 2 337 self.ddvalue += (self.e_dvalue[e_name] * self.e_ddvalue[e_name]) ** 2 338 339 for e_name in self.cov_names: 340 self.e_dvalue[e_name] = np.sqrt(self.covobs[e_name].errsq()) 341 self.e_ddvalue[e_name] = 0 342 self._dvalue += self.e_dvalue[e_name]**2 343 344 self._dvalue = np.sqrt(self._dvalue) 345 if self._dvalue == 0.0: 346 self.ddvalue = 0.0 347 else: 348 self.ddvalue = np.sqrt(self.ddvalue) / self._dvalue 349 return
Estimate the error and related properties of the Obs.
Parameters
- S (float): specifies a custom value for the parameter S (default 2.0). If set to 0 it is assumed that the data exhibits no autocorrelation. In this case the error estimates coincides with the sample standard error.
- tau_exp (float): positive value triggers the critical slowing down analysis (default 0.0).
- N_sigma (float): number of standard deviations from zero until the tail is attached to the autocorrelation function (default 1).
- fft (bool): determines whether the fft algorithm is used for the computation of the autocorrelation function (default True)
176 def gamma_method(self, **kwargs): 177 """Estimate the error and related properties of the Obs. 178 179 Parameters 180 ---------- 181 S : float 182 specifies a custom value for the parameter S (default 2.0). 183 If set to 0 it is assumed that the data exhibits no 184 autocorrelation. In this case the error estimates coincides 185 with the sample standard error. 186 tau_exp : float 187 positive value triggers the critical slowing down analysis 188 (default 0.0). 189 N_sigma : float 190 number of standard deviations from zero until the tail is 191 attached to the autocorrelation function (default 1). 192 fft : bool 193 determines whether the fft algorithm is used for the computation 194 of the autocorrelation function (default True) 195 """ 196 197 e_content = self.e_content 198 self.e_dvalue = {} 199 self.e_ddvalue = {} 200 self.e_tauint = {} 201 self.e_dtauint = {} 202 self.e_windowsize = {} 203 self.e_n_tauint = {} 204 self.e_n_dtauint = {} 205 e_gamma = {} 206 self.e_rho = {} 207 self.e_drho = {} 208 self._dvalue = 0 209 self.ddvalue = 0 210 211 self.S = {} 212 self.tau_exp = {} 213 self.N_sigma = {} 214 215 if kwargs.get('fft') is False: 216 fft = False 217 else: 218 fft = True 219 220 def _parse_kwarg(kwarg_name): 221 if kwarg_name in kwargs: 222 tmp = kwargs.get(kwarg_name) 223 if isinstance(tmp, (int, float)): 224 if tmp < 0: 225 raise Exception(kwarg_name + ' has to be larger or equal to 0.') 226 for e, e_name in enumerate(self.e_names): 227 getattr(self, kwarg_name)[e_name] = tmp 228 else: 229 raise TypeError(kwarg_name + ' is not in proper format.') 230 else: 231 for e, e_name in enumerate(self.e_names): 232 if e_name in getattr(Obs, kwarg_name + '_dict'): 233 getattr(self, kwarg_name)[e_name] = getattr(Obs, kwarg_name + '_dict')[e_name] 234 else: 235 getattr(self, kwarg_name)[e_name] = getattr(Obs, kwarg_name + '_global') 236 237 _parse_kwarg('S') 238 _parse_kwarg('tau_exp') 239 _parse_kwarg('N_sigma') 240 241 for e, e_name in enumerate(self.mc_names): 242 r_length = [] 243 for r_name in e_content[e_name]: 244 if isinstance(self.idl[r_name], range): 245 r_length.append(len(self.idl[r_name])) 246 else: 247 r_length.append((self.idl[r_name][-1] - self.idl[r_name][0] + 1)) 248 249 e_N = np.sum([self.shape[r_name] for r_name in e_content[e_name]]) 250 w_max = max(r_length) // 2 251 e_gamma[e_name] = np.zeros(w_max) 252 self.e_rho[e_name] = np.zeros(w_max) 253 self.e_drho[e_name] = np.zeros(w_max) 254 255 for r_name in e_content[e_name]: 256 e_gamma[e_name] += self._calc_gamma(self.deltas[r_name], self.idl[r_name], self.shape[r_name], w_max, fft) 257 258 gamma_div = np.zeros(w_max) 259 for r_name in e_content[e_name]: 260 gamma_div += self._calc_gamma(np.ones((self.shape[r_name])), self.idl[r_name], self.shape[r_name], w_max, fft) 261 gamma_div[gamma_div < 1] = 1.0 262 e_gamma[e_name] /= gamma_div[:w_max] 263 264 if np.abs(e_gamma[e_name][0]) < 10 * np.finfo(float).tiny: # Prevent division by zero 265 self.e_tauint[e_name] = 0.5 266 self.e_dtauint[e_name] = 0.0 267 self.e_dvalue[e_name] = 0.0 268 self.e_ddvalue[e_name] = 0.0 269 self.e_windowsize[e_name] = 0 270 continue 271 272 gaps = [] 273 for r_name in e_content[e_name]: 274 if isinstance(self.idl[r_name], range): 275 gaps.append(1) 276 else: 277 gaps.append(np.min(np.diff(self.idl[r_name]))) 278 279 if not np.all([gi == gaps[0] for gi in gaps]): 280 raise Exception(f"Replica for ensemble {e_name} are not equally spaced.", gaps) 281 else: 282 gapsize = gaps[0] 283 284 self.e_rho[e_name] = e_gamma[e_name][:w_max] / e_gamma[e_name][0] 285 self.e_n_tauint[e_name] = np.cumsum(np.concatenate(([0.5], self.e_rho[e_name][1:]))) 286 # Make sure no entry of tauint is smaller than 0.5 287 self.e_n_tauint[e_name][self.e_n_tauint[e_name] <= 0.5] = 0.5 + np.finfo(np.float64).eps 288 # hep-lat/0306017 eq. (42) 289 self.e_n_dtauint[e_name] = self.e_n_tauint[e_name] * 2 * np.sqrt(np.abs(np.arange(w_max) / gapsize + 0.5 - self.e_n_tauint[e_name]) / e_N) 290 self.e_n_dtauint[e_name][0] = 0.0 291 292 def _compute_drho(i): 293 tmp = self.e_rho[e_name][i + 1:w_max] + np.concatenate([self.e_rho[e_name][i - 1::-1], self.e_rho[e_name][1:w_max - 2 * i]]) - 2 * self.e_rho[e_name][i] * self.e_rho[e_name][1:w_max - i] 294 self.e_drho[e_name][i] = np.sqrt(np.sum(tmp ** 2) / e_N) 295 296 _compute_drho(gapsize) 297 if self.tau_exp[e_name] > 0: 298 texp = self.tau_exp[e_name] 299 # Critical slowing down analysis 300 if w_max // 2 <= 1: 301 raise Exception("Need at least 8 samples for tau_exp error analysis") 302 for n in range(gapsize, w_max // 2, gapsize): 303 _compute_drho(n + gapsize) 304 if (self.e_rho[e_name][n] - self.N_sigma[e_name] * self.e_drho[e_name][n]) < 0 or n >= w_max // 2 - 2: 305 # Bias correction hep-lat/0306017 eq. (49) included 306 self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n / gapsize + 1) / e_N) / (1 + 1 / e_N) + texp * np.abs(self.e_rho[e_name][n + 1]) # The absolute makes sure, that the tail contribution is always positive 307 self.e_dtauint[e_name] = np.sqrt(self.e_n_dtauint[e_name][n] ** 2 + texp ** 2 * self.e_drho[e_name][n + 1] ** 2) 308 # Error of tau_exp neglected so far, missing term: self.e_rho[e_name][n + 1] ** 2 * d_tau_exp ** 2 309 self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N) 310 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n / gapsize + 0.5) / e_N) 311 self.e_windowsize[e_name] = n 312 break 313 else: 314 if self.S[e_name] == 0.0: 315 self.e_tauint[e_name] = 0.5 316 self.e_dtauint[e_name] = 0.0 317 self.e_dvalue[e_name] = np.sqrt(e_gamma[e_name][0] / (e_N - 1)) 318 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt(0.5 / e_N) 319 self.e_windowsize[e_name] = 0 320 else: 321 # Standard automatic windowing procedure 322 tau = self.S[e_name] / np.log((2 * self.e_n_tauint[e_name][gapsize::gapsize] + 1) / (2 * self.e_n_tauint[e_name][gapsize::gapsize] - 1)) 323 g_w = np.exp(- np.arange(1, len(tau) + 1) / tau) - tau / np.sqrt(np.arange(1, len(tau) + 1) * e_N) 324 for n in range(1, w_max): 325 if n < w_max // 2 - 2: 326 _compute_drho(gapsize * n + gapsize) 327 if g_w[n - 1] < 0 or n >= w_max - 1: 328 n *= gapsize 329 self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n / gapsize + 1) / e_N) / (1 + 1 / e_N) # Bias correction hep-lat/0306017 eq. (49) 330 self.e_dtauint[e_name] = self.e_n_dtauint[e_name][n] 331 self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N) 332 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n / gapsize + 0.5) / e_N) 333 self.e_windowsize[e_name] = n 334 break 335 336 self._dvalue += self.e_dvalue[e_name] ** 2 337 self.ddvalue += (self.e_dvalue[e_name] * self.e_ddvalue[e_name]) ** 2 338 339 for e_name in self.cov_names: 340 self.e_dvalue[e_name] = np.sqrt(self.covobs[e_name].errsq()) 341 self.e_ddvalue[e_name] = 0 342 self._dvalue += self.e_dvalue[e_name]**2 343 344 self._dvalue = np.sqrt(self._dvalue) 345 if self._dvalue == 0.0: 346 self.ddvalue = 0.0 347 else: 348 self.ddvalue = np.sqrt(self.ddvalue) / self._dvalue 349 return
Estimate the error and related properties of the Obs.
Parameters
- S (float): specifies a custom value for the parameter S (default 2.0). If set to 0 it is assumed that the data exhibits no autocorrelation. In this case the error estimates coincides with the sample standard error.
- tau_exp (float): positive value triggers the critical slowing down analysis (default 0.0).
- N_sigma (float): number of standard deviations from zero until the tail is attached to the autocorrelation function (default 1).
- fft (bool): determines whether the fft algorithm is used for the computation of the autocorrelation function (default True)
386 def details(self, ens_content=True): 387 """Output detailed properties of the Obs. 388 389 Parameters 390 ---------- 391 ens_content : bool 392 print details about the ensembles and replica if true. 393 """ 394 if self.tag is not None: 395 print("Description:", self.tag) 396 if not hasattr(self, 'e_dvalue'): 397 print('Result\t %3.8e' % (self.value)) 398 else: 399 if self.value == 0.0: 400 percentage = np.nan 401 else: 402 percentage = np.abs(self._dvalue / self.value) * 100 403 print('Result\t %3.8e +/- %3.8e +/- %3.8e (%3.3f%%)' % (self.value, self._dvalue, self.ddvalue, percentage)) 404 if len(self.e_names) > 1: 405 print(' Ensemble errors:') 406 e_content = self.e_content 407 for e_name in self.mc_names: 408 if isinstance(self.idl[e_content[e_name][0]], range): 409 gap = self.idl[e_content[e_name][0]].step 410 else: 411 gap = np.min(np.diff(self.idl[e_content[e_name][0]])) 412 413 if len(self.e_names) > 1: 414 print('', e_name, '\t %3.6e +/- %3.6e' % (self.e_dvalue[e_name], self.e_ddvalue[e_name])) 415 tau_string = " \N{GREEK SMALL LETTER TAU}_int\t " + _format_uncertainty(self.e_tauint[e_name], self.e_dtauint[e_name]) 416 tau_string += f" in units of {gap} config" 417 if gap > 1: 418 tau_string += "s" 419 if self.tau_exp[e_name] > 0: 420 tau_string = f"{tau_string: <45}" + '\t(\N{GREEK SMALL LETTER TAU}_exp=%3.2f, N_\N{GREEK SMALL LETTER SIGMA}=%1.0i)' % (self.tau_exp[e_name], self.N_sigma[e_name]) 421 else: 422 tau_string = f"{tau_string: <45}" + '\t(S=%3.2f)' % (self.S[e_name]) 423 print(tau_string) 424 for e_name in self.cov_names: 425 print('', e_name, '\t %3.8e' % (self.e_dvalue[e_name])) 426 if ens_content is True: 427 if len(self.e_names) == 1: 428 print(self.N, 'samples in', len(self.e_names), 'ensemble:') 429 else: 430 print(self.N, 'samples in', len(self.e_names), 'ensembles:') 431 my_string_list = [] 432 for key, value in sorted(self.e_content.items()): 433 if key not in self.covobs: 434 my_string = ' ' + "\u00B7 Ensemble '" + key + "' " 435 if len(value) == 1: 436 my_string += f': {self.shape[value[0]]} configurations' 437 if isinstance(self.idl[value[0]], range): 438 my_string += f' (from {self.idl[value[0]].start} to {self.idl[value[0]][-1]}' + int(self.idl[value[0]].step != 1) * f' in steps of {self.idl[value[0]].step}' + ')' 439 else: 440 my_string += f' (irregular range from {self.idl[value[0]][0]} to {self.idl[value[0]][-1]})' 441 else: 442 sublist = [] 443 for v in value: 444 my_substring = ' ' + "\u00B7 Replicum '" + v[len(key) + 1:] + "' " 445 my_substring += f': {self.shape[v]} configurations' 446 if isinstance(self.idl[v], range): 447 my_substring += f' (from {self.idl[v].start} to {self.idl[v][-1]}' + int(self.idl[v].step != 1) * f' in steps of {self.idl[v].step}' + ')' 448 else: 449 my_substring += f' (irregular range from {self.idl[v][0]} to {self.idl[v][-1]})' 450 sublist.append(my_substring) 451 452 my_string += '\n' + '\n'.join(sublist) 453 else: 454 my_string = ' ' + "\u00B7 Covobs '" + key + "' " 455 my_string_list.append(my_string) 456 print('\n'.join(my_string_list))
Output detailed properties of the Obs.
Parameters
- ens_content (bool): print details about the ensembles and replica if true.
458 def reweight(self, weight): 459 """Reweight the obs with given rewighting factors. 460 461 Parameters 462 ---------- 463 weight : Obs 464 Reweighting factor. An Observable that has to be defined on a superset of the 465 configurations in obs[i].idl for all i. 466 all_configs : bool 467 if True, the reweighted observables are normalized by the average of 468 the reweighting factor on all configurations in weight.idl and not 469 on the configurations in obs[i].idl. Default False. 470 """ 471 return reweight(weight, [self])[0]
Reweight the obs with given rewighting factors.
Parameters
- weight (Obs): Reweighting factor. An Observable that has to be defined on a superset of the configurations in obs[i].idl for all i.
- all_configs (bool): if True, the reweighted observables are normalized by the average of the reweighting factor on all configurations in weight.idl and not on the configurations in obs[i].idl. Default False.
473 def is_zero_within_error(self, sigma=1): 474 """Checks whether the observable is zero within 'sigma' standard errors. 475 476 Parameters 477 ---------- 478 sigma : int 479 Number of standard errors used for the check. 480 481 Works only properly when the gamma method was run. 482 """ 483 return self.is_zero() or np.abs(self.value) <= sigma * self._dvalue
Checks whether the observable is zero within 'sigma' standard errors.
Parameters
- sigma (int): Number of standard errors used for the check.
- Works only properly when the gamma method was run.
485 def is_zero(self, atol=1e-10): 486 """Checks whether the observable is zero within a given tolerance. 487 488 Parameters 489 ---------- 490 atol : float 491 Absolute tolerance (for details see numpy documentation). 492 """ 493 return np.isclose(0.0, self.value, 1e-14, atol) and all(np.allclose(0.0, delta, 1e-14, atol) for delta in self.deltas.values()) and all(np.allclose(0.0, delta.errsq(), 1e-14, atol) for delta in self.covobs.values())
Checks whether the observable is zero within a given tolerance.
Parameters
- atol (float): Absolute tolerance (for details see numpy documentation).
495 def plot_tauint(self, save=None): 496 """Plot integrated autocorrelation time for each ensemble. 497 498 Parameters 499 ---------- 500 save : str 501 saves the figure to a file named 'save' if. 502 """ 503 if not hasattr(self, 'e_dvalue'): 504 raise Exception('Run the gamma method first.') 505 506 for e, e_name in enumerate(self.mc_names): 507 fig = plt.figure() 508 plt.xlabel(r'$W$') 509 plt.ylabel(r'$\tau_\mathrm{int}$') 510 length = int(len(self.e_n_tauint[e_name])) 511 if self.tau_exp[e_name] > 0: 512 base = self.e_n_tauint[e_name][self.e_windowsize[e_name]] 513 x_help = np.arange(2 * self.tau_exp[e_name]) 514 y_help = (x_help + 1) * np.abs(self.e_rho[e_name][self.e_windowsize[e_name] + 1]) * (1 - x_help / (2 * (2 * self.tau_exp[e_name] - 1))) + base 515 x_arr = np.arange(self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]) 516 plt.plot(x_arr, y_help, 'C' + str(e), linewidth=1, ls='--', marker=',') 517 plt.errorbar([self.e_windowsize[e_name] + 2 * self.tau_exp[e_name]], [self.e_tauint[e_name]], 518 yerr=[self.e_dtauint[e_name]], fmt='C' + str(e), linewidth=1, capsize=2, marker='o', mfc=plt.rcParams['axes.facecolor']) 519 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 520 label = e_name + r', $\tau_\mathrm{exp}$=' + str(np.around(self.tau_exp[e_name], decimals=2)) 521 else: 522 label = e_name + ', S=' + str(np.around(self.S[e_name], decimals=2)) 523 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) 524 525 plt.errorbar(np.arange(length)[:int(xmax) + 1], self.e_n_tauint[e_name][:int(xmax) + 1], yerr=self.e_n_dtauint[e_name][:int(xmax) + 1], linewidth=1, capsize=2, label=label) 526 plt.axvline(x=self.e_windowsize[e_name], color='C' + str(e), alpha=0.5, marker=',', ls='--') 527 plt.legend() 528 plt.xlim(-0.5, xmax) 529 ylim = plt.ylim() 530 plt.ylim(bottom=0.0, top=max(1.0, ylim[1])) 531 plt.draw() 532 if save: 533 fig.savefig(save + "_" + str(e))
Plot integrated autocorrelation time for each ensemble.
Parameters
- save (str): saves the figure to a file named 'save' if.
535 def plot_rho(self, save=None): 536 """Plot normalized autocorrelation function time for each ensemble. 537 538 Parameters 539 ---------- 540 save : str 541 saves the figure to a file named 'save' if. 542 """ 543 if not hasattr(self, 'e_dvalue'): 544 raise Exception('Run the gamma method first.') 545 for e, e_name in enumerate(self.mc_names): 546 fig = plt.figure() 547 plt.xlabel('W') 548 plt.ylabel('rho') 549 length = int(len(self.e_drho[e_name])) 550 plt.errorbar(np.arange(length), self.e_rho[e_name][:length], yerr=self.e_drho[e_name][:], linewidth=1, capsize=2) 551 plt.axvline(x=self.e_windowsize[e_name], color='r', alpha=0.25, ls='--', marker=',') 552 if self.tau_exp[e_name] > 0: 553 plt.plot([self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]], 554 [self.e_rho[e_name][self.e_windowsize[e_name] + 1], 0], 'k-', lw=1) 555 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 556 plt.title('Rho ' + e_name + r', tau\_exp=' + str(np.around(self.tau_exp[e_name], decimals=2))) 557 else: 558 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) 559 plt.title('Rho ' + e_name + ', S=' + str(np.around(self.S[e_name], decimals=2))) 560 plt.plot([-0.5, xmax], [0, 0], 'k--', lw=1) 561 plt.xlim(-0.5, xmax) 562 plt.draw() 563 if save: 564 fig.savefig(save + "_" + str(e))
Plot normalized autocorrelation function time for each ensemble.
Parameters
- save (str): saves the figure to a file named 'save' if.
566 def plot_rep_dist(self): 567 """Plot replica distribution for each ensemble with more than one replicum.""" 568 if not hasattr(self, 'e_dvalue'): 569 raise Exception('Run the gamma method first.') 570 for e, e_name in enumerate(self.mc_names): 571 if len(self.e_content[e_name]) == 1: 572 print('No replica distribution for a single replicum (', e_name, ')') 573 continue 574 r_length = [] 575 sub_r_mean = 0 576 for r, r_name in enumerate(self.e_content[e_name]): 577 r_length.append(len(self.deltas[r_name])) 578 sub_r_mean += self.shape[r_name] * self.r_values[r_name] 579 e_N = np.sum(r_length) 580 sub_r_mean /= e_N 581 arr = np.zeros(len(self.e_content[e_name])) 582 for r, r_name in enumerate(self.e_content[e_name]): 583 arr[r] = (self.r_values[r_name] - sub_r_mean) / (self.e_dvalue[e_name] * np.sqrt(e_N / self.shape[r_name] - 1)) 584 plt.hist(arr, rwidth=0.8, bins=len(self.e_content[e_name])) 585 plt.title('Replica distribution' + e_name + ' (mean=0, var=1)') 586 plt.draw()
Plot replica distribution for each ensemble with more than one replicum.
588 def plot_history(self, expand=True): 589 """Plot derived Monte Carlo history for each ensemble 590 591 Parameters 592 ---------- 593 expand : bool 594 show expanded history for irregular Monte Carlo chains (default: True). 595 """ 596 for e, e_name in enumerate(self.mc_names): 597 plt.figure() 598 r_length = [] 599 tmp = [] 600 tmp_expanded = [] 601 for r, r_name in enumerate(self.e_content[e_name]): 602 tmp.append(self.deltas[r_name] + self.r_values[r_name]) 603 if expand: 604 tmp_expanded.append(_expand_deltas(self.deltas[r_name], list(self.idl[r_name]), self.shape[r_name]) + self.r_values[r_name]) 605 r_length.append(len(tmp_expanded[-1])) 606 else: 607 r_length.append(len(tmp[-1])) 608 e_N = np.sum(r_length) 609 x = np.arange(e_N) 610 y_test = np.concatenate(tmp, axis=0) 611 if expand: 612 y = np.concatenate(tmp_expanded, axis=0) 613 else: 614 y = y_test 615 plt.errorbar(x, y, fmt='.', markersize=3) 616 plt.xlim(-0.5, e_N - 0.5) 617 plt.title(e_name + f'\nskew: {skew(y_test):.3f} (p={skewtest(y_test).pvalue:.3f}), kurtosis: {kurtosis(y_test):.3f} (p={kurtosistest(y_test).pvalue:.3f})') 618 plt.draw()
Plot derived Monte Carlo history for each ensemble
Parameters
- expand (bool): show expanded history for irregular Monte Carlo chains (default: True).
620 def plot_piechart(self, save=None): 621 """Plot piechart which shows the fractional contribution of each 622 ensemble to the error and returns a dictionary containing the fractions. 623 624 Parameters 625 ---------- 626 save : str 627 saves the figure to a file named 'save' if. 628 """ 629 if not hasattr(self, 'e_dvalue'): 630 raise Exception('Run the gamma method first.') 631 if np.isclose(0.0, self._dvalue, atol=1e-15): 632 raise Exception('Error is 0.0') 633 labels = self.e_names 634 sizes = [self.e_dvalue[name] ** 2 for name in labels] / self._dvalue ** 2 635 fig1, ax1 = plt.subplots() 636 ax1.pie(sizes, labels=labels, startangle=90, normalize=True) 637 ax1.axis('equal') 638 plt.draw() 639 if save: 640 fig1.savefig(save) 641 642 return dict(zip(self.e_names, sizes))
Plot piechart which shows the fractional contribution of each ensemble to the error and returns a dictionary containing the fractions.
Parameters
- save (str): saves the figure to a file named 'save' if.
644 def dump(self, filename, datatype="json.gz", description="", **kwargs): 645 """Dump the Obs to a file 'name' of chosen format. 646 647 Parameters 648 ---------- 649 filename : str 650 name of the file to be saved. 651 datatype : str 652 Format of the exported file. Supported formats include 653 "json.gz" and "pickle" 654 description : str 655 Description for output file, only relevant for json.gz format. 656 path : str 657 specifies a custom path for the file (default '.') 658 """ 659 if 'path' in kwargs: 660 file_name = kwargs.get('path') + '/' + filename 661 else: 662 file_name = filename 663 664 if datatype == "json.gz": 665 from .input.json import dump_to_json 666 dump_to_json([self], file_name, description=description) 667 elif datatype == "pickle": 668 with open(file_name + '.p', 'wb') as fb: 669 pickle.dump(self, fb) 670 else: 671 raise Exception("Unknown datatype " + str(datatype))
Dump the Obs to a file 'name' of chosen format.
Parameters
- filename (str): name of the file to be saved.
- datatype (str): Format of the exported file. Supported formats include "json.gz" and "pickle"
- description (str): Description for output file, only relevant for json.gz format.
- path (str): specifies a custom path for the file (default '.')
673 def export_jackknife(self): 674 """Export jackknife samples from the Obs 675 676 Returns 677 ------- 678 numpy.ndarray 679 Returns a numpy array of length N + 1 where N is the number of samples 680 for the given ensemble and replicum. The zeroth entry of the array contains 681 the mean value of the Obs, entries 1 to N contain the N jackknife samples 682 derived from the Obs. The current implementation only works for observables 683 defined on exactly one ensemble and replicum. The derived jackknife samples 684 should agree with samples from a full jackknife analysis up to O(1/N). 685 """ 686 687 if len(self.names) != 1: 688 raise Exception("'export_jackknife' is only implemented for Obs defined on one ensemble and replicum.") 689 690 name = self.names[0] 691 full_data = self.deltas[name] + self.r_values[name] 692 n = full_data.size 693 mean = self.value 694 tmp_jacks = np.zeros(n + 1) 695 tmp_jacks[0] = mean 696 tmp_jacks[1:] = (n * mean - full_data) / (n - 1) 697 return tmp_jacks
Export jackknife samples from the Obs
Returns
- numpy.ndarray: Returns a numpy array of length N + 1 where N is the number of samples for the given ensemble and replicum. The zeroth entry of the array contains the mean value of the Obs, entries 1 to N contain the N jackknife samples derived from the Obs. The current implementation only works for observables defined on exactly one ensemble and replicum. The derived jackknife samples should agree with samples from a full jackknife analysis up to O(1/N).
871class CObs: 872 """Class for a complex valued observable.""" 873 __slots__ = ['_real', '_imag', 'tag'] 874 875 def __init__(self, real, imag=0.0): 876 self._real = real 877 self._imag = imag 878 self.tag = None 879 880 @property 881 def real(self): 882 return self._real 883 884 @property 885 def imag(self): 886 return self._imag 887 888 def gamma_method(self, **kwargs): 889 """Executes the gamma_method for the real and the imaginary part.""" 890 if isinstance(self.real, Obs): 891 self.real.gamma_method(**kwargs) 892 if isinstance(self.imag, Obs): 893 self.imag.gamma_method(**kwargs) 894 895 def is_zero(self): 896 """Checks whether both real and imaginary part are zero within machine precision.""" 897 return self.real == 0.0 and self.imag == 0.0 898 899 def conjugate(self): 900 return CObs(self.real, -self.imag) 901 902 def __add__(self, other): 903 if isinstance(other, np.ndarray): 904 return other + self 905 elif hasattr(other, 'real') and hasattr(other, 'imag'): 906 return CObs(self.real + other.real, 907 self.imag + other.imag) 908 else: 909 return CObs(self.real + other, self.imag) 910 911 def __radd__(self, y): 912 return self + y 913 914 def __sub__(self, other): 915 if isinstance(other, np.ndarray): 916 return -1 * (other - self) 917 elif hasattr(other, 'real') and hasattr(other, 'imag'): 918 return CObs(self.real - other.real, self.imag - other.imag) 919 else: 920 return CObs(self.real - other, self.imag) 921 922 def __rsub__(self, other): 923 return -1 * (self - other) 924 925 def __mul__(self, other): 926 if isinstance(other, np.ndarray): 927 return other * self 928 elif hasattr(other, 'real') and hasattr(other, 'imag'): 929 if all(isinstance(i, Obs) for i in [self.real, self.imag, other.real, other.imag]): 930 return CObs(derived_observable(lambda x, **kwargs: x[0] * x[1] - x[2] * x[3], 931 [self.real, other.real, self.imag, other.imag], 932 man_grad=[other.real.value, self.real.value, -other.imag.value, -self.imag.value]), 933 derived_observable(lambda x, **kwargs: x[2] * x[1] + x[0] * x[3], 934 [self.real, other.real, self.imag, other.imag], 935 man_grad=[other.imag.value, self.imag.value, other.real.value, self.real.value])) 936 elif getattr(other, 'imag', 0) != 0: 937 return CObs(self.real * other.real - self.imag * other.imag, 938 self.imag * other.real + self.real * other.imag) 939 else: 940 return CObs(self.real * other.real, self.imag * other.real) 941 else: 942 return CObs(self.real * other, self.imag * other) 943 944 def __rmul__(self, other): 945 return self * other 946 947 def __truediv__(self, other): 948 if isinstance(other, np.ndarray): 949 return 1 / (other / self) 950 elif hasattr(other, 'real') and hasattr(other, 'imag'): 951 r = other.real ** 2 + other.imag ** 2 952 return CObs((self.real * other.real + self.imag * other.imag) / r, (self.imag * other.real - self.real * other.imag) / r) 953 else: 954 return CObs(self.real / other, self.imag / other) 955 956 def __rtruediv__(self, other): 957 r = self.real ** 2 + self.imag ** 2 958 if hasattr(other, 'real') and hasattr(other, 'imag'): 959 return CObs((self.real * other.real + self.imag * other.imag) / r, (self.real * other.imag - self.imag * other.real) / r) 960 else: 961 return CObs(self.real * other / r, -self.imag * other / r) 962 963 def __abs__(self): 964 return np.sqrt(self.real**2 + self.imag**2) 965 966 def __pos__(self): 967 return self 968 969 def __neg__(self): 970 return -1 * self 971 972 def __eq__(self, other): 973 return self.real == other.real and self.imag == other.imag 974 975 def __str__(self): 976 return '(' + str(self.real) + int(self.imag >= 0.0) * '+' + str(self.imag) + 'j)' 977 978 def __repr__(self): 979 return 'CObs[' + str(self) + ']'
Class for a complex valued observable.
888 def gamma_method(self, **kwargs): 889 """Executes the gamma_method for the real and the imaginary part.""" 890 if isinstance(self.real, Obs): 891 self.real.gamma_method(**kwargs) 892 if isinstance(self.imag, Obs): 893 self.imag.gamma_method(**kwargs)
Executes the gamma_method for the real and the imaginary part.
1104def derived_observable(func, data, array_mode=False, **kwargs): 1105 """Construct a derived Obs according to func(data, **kwargs) using automatic differentiation. 1106 1107 Parameters 1108 ---------- 1109 func : object 1110 arbitrary function of the form func(data, **kwargs). For the 1111 automatic differentiation to work, all numpy functions have to have 1112 the autograd wrapper (use 'import autograd.numpy as anp'). 1113 data : list 1114 list of Obs, e.g. [obs1, obs2, obs3]. 1115 num_grad : bool 1116 if True, numerical derivatives are used instead of autograd 1117 (default False). To control the numerical differentiation the 1118 kwargs of numdifftools.step_generators.MaxStepGenerator 1119 can be used. 1120 man_grad : list 1121 manually supply a list or an array which contains the jacobian 1122 of func. Use cautiously, supplying the wrong derivative will 1123 not be intercepted. 1124 1125 Notes 1126 ----- 1127 For simple mathematical operations it can be practical to use anonymous 1128 functions. For the ratio of two observables one can e.g. use 1129 1130 new_obs = derived_observable(lambda x: x[0] / x[1], [obs1, obs2]) 1131 """ 1132 1133 data = np.asarray(data) 1134 raveled_data = data.ravel() 1135 1136 # Workaround for matrix operations containing non Obs data 1137 if not all(isinstance(x, Obs) for x in raveled_data): 1138 for i in range(len(raveled_data)): 1139 if isinstance(raveled_data[i], (int, float)): 1140 raveled_data[i] = cov_Obs(raveled_data[i], 0.0, "###dummy_covobs###") 1141 1142 allcov = {} 1143 for o in raveled_data: 1144 for name in o.cov_names: 1145 if name in allcov: 1146 if not np.allclose(allcov[name], o.covobs[name].cov): 1147 raise Exception('Inconsistent covariance matrices for %s!' % (name)) 1148 else: 1149 allcov[name] = o.covobs[name].cov 1150 1151 n_obs = len(raveled_data) 1152 new_names = sorted(set([y for x in [o.names for o in raveled_data] for y in x])) 1153 new_cov_names = sorted(set([y for x in [o.cov_names for o in raveled_data] for y in x])) 1154 new_sample_names = sorted(set(new_names) - set(new_cov_names)) 1155 1156 reweighted = len(list(filter(lambda o: o.reweighted is True, raveled_data))) > 0 1157 1158 if data.ndim == 1: 1159 values = np.array([o.value for o in data]) 1160 else: 1161 values = np.vectorize(lambda x: x.value)(data) 1162 1163 new_values = func(values, **kwargs) 1164 1165 multi = int(isinstance(new_values, np.ndarray)) 1166 1167 new_r_values = {} 1168 new_idl_d = {} 1169 for name in new_sample_names: 1170 idl = [] 1171 tmp_values = np.zeros(n_obs) 1172 for i, item in enumerate(raveled_data): 1173 tmp_values[i] = item.r_values.get(name, item.value) 1174 tmp_idl = item.idl.get(name) 1175 if tmp_idl is not None: 1176 idl.append(tmp_idl) 1177 if multi > 0: 1178 tmp_values = np.array(tmp_values).reshape(data.shape) 1179 new_r_values[name] = func(tmp_values, **kwargs) 1180 new_idl_d[name] = _merge_idx(idl) 1181 1182 if 'man_grad' in kwargs: 1183 deriv = np.asarray(kwargs.get('man_grad')) 1184 if new_values.shape + data.shape != deriv.shape: 1185 raise Exception('Manual derivative does not have correct shape.') 1186 elif kwargs.get('num_grad') is True: 1187 if multi > 0: 1188 raise Exception('Multi mode currently not supported for numerical derivative') 1189 options = { 1190 'base_step': 0.1, 1191 'step_ratio': 2.5} 1192 for key in options.keys(): 1193 kwarg = kwargs.get(key) 1194 if kwarg is not None: 1195 options[key] = kwarg 1196 tmp_df = nd.Gradient(func, order=4, **{k: v for k, v in options.items() if v is not None})(values, **kwargs) 1197 if tmp_df.size == 1: 1198 deriv = np.array([tmp_df.real]) 1199 else: 1200 deriv = tmp_df.real 1201 else: 1202 deriv = jacobian(func)(values, **kwargs) 1203 1204 final_result = np.zeros(new_values.shape, dtype=object) 1205 1206 if array_mode is True: 1207 1208 class _Zero_grad(): 1209 def __init__(self, N): 1210 self.grad = np.zeros((N, 1)) 1211 1212 new_covobs_lengths = dict(set([y for x in [[(n, o.covobs[n].N) for n in o.cov_names] for o in raveled_data] for y in x])) 1213 d_extracted = {} 1214 g_extracted = {} 1215 for name in new_sample_names: 1216 d_extracted[name] = [] 1217 ens_length = len(new_idl_d[name]) 1218 for i_dat, dat in enumerate(data): 1219 d_extracted[name].append(np.array([_expand_deltas_for_merge(o.deltas.get(name, np.zeros(ens_length)), o.idl.get(name, new_idl_d[name]), o.shape.get(name, ens_length), new_idl_d[name]) for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (ens_length, ))) 1220 for name in new_cov_names: 1221 g_extracted[name] = [] 1222 zero_grad = _Zero_grad(new_covobs_lengths[name]) 1223 for i_dat, dat in enumerate(data): 1224 g_extracted[name].append(np.array([o.covobs.get(name, zero_grad).grad for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (new_covobs_lengths[name], 1))) 1225 1226 for i_val, new_val in np.ndenumerate(new_values): 1227 new_deltas = {} 1228 new_grad = {} 1229 if array_mode is True: 1230 for name in new_sample_names: 1231 ens_length = d_extracted[name][0].shape[-1] 1232 new_deltas[name] = np.zeros(ens_length) 1233 for i_dat, dat in enumerate(d_extracted[name]): 1234 new_deltas[name] += np.tensordot(deriv[i_val + (i_dat, )], dat) 1235 for name in new_cov_names: 1236 new_grad[name] = 0 1237 for i_dat, dat in enumerate(g_extracted[name]): 1238 new_grad[name] += np.tensordot(deriv[i_val + (i_dat, )], dat) 1239 else: 1240 for j_obs, obs in np.ndenumerate(data): 1241 for name in obs.names: 1242 if name in obs.cov_names: 1243 new_grad[name] = new_grad.get(name, 0) + deriv[i_val + j_obs] * obs.covobs[name].grad 1244 else: 1245 new_deltas[name] = new_deltas.get(name, 0) + deriv[i_val + j_obs] * _expand_deltas_for_merge(obs.deltas[name], obs.idl[name], obs.shape[name], new_idl_d[name]) 1246 1247 new_covobs = {name: Covobs(0, allcov[name], name, grad=new_grad[name]) for name in new_grad} 1248 1249 if not set(new_covobs.keys()).isdisjoint(new_deltas.keys()): 1250 raise Exception('The same name has been used for deltas and covobs!') 1251 new_samples = [] 1252 new_means = [] 1253 new_idl = [] 1254 new_names_obs = [] 1255 for name in new_names: 1256 if name not in new_covobs: 1257 new_samples.append(new_deltas[name]) 1258 new_idl.append(new_idl_d[name]) 1259 new_means.append(new_r_values[name][i_val]) 1260 new_names_obs.append(name) 1261 final_result[i_val] = Obs(new_samples, new_names_obs, means=new_means, idl=new_idl) 1262 for name in new_covobs: 1263 final_result[i_val].names.append(name) 1264 final_result[i_val]._covobs = new_covobs 1265 final_result[i_val]._value = new_val 1266 final_result[i_val].reweighted = reweighted 1267 1268 if multi == 0: 1269 final_result = final_result.item() 1270 1271 return final_result
Construct a derived Obs according to func(data, **kwargs) using automatic differentiation.
Parameters
- func (object): arbitrary function of the form func(data, **kwargs). For the automatic differentiation to work, all numpy functions have to have the autograd wrapper (use 'import autograd.numpy as anp').
- data (list): list of Obs, e.g. [obs1, obs2, obs3].
- num_grad (bool): if True, numerical derivatives are used instead of autograd (default False). To control the numerical differentiation the kwargs of numdifftools.step_generators.MaxStepGenerator can be used.
- man_grad (list): manually supply a list or an array which contains the jacobian of func. Use cautiously, supplying the wrong derivative will not be intercepted.
Notes
For simple mathematical operations it can be practical to use anonymous functions. For the ratio of two observables one can e.g. use
new_obs = derived_observable(lambda x: x[0] / x[1], [obs1, obs2])
1308def reweight(weight, obs, **kwargs): 1309 """Reweight a list of observables. 1310 1311 Parameters 1312 ---------- 1313 weight : Obs 1314 Reweighting factor. An Observable that has to be defined on a superset of the 1315 configurations in obs[i].idl for all i. 1316 obs : list 1317 list of Obs, e.g. [obs1, obs2, obs3]. 1318 all_configs : bool 1319 if True, the reweighted observables are normalized by the average of 1320 the reweighting factor on all configurations in weight.idl and not 1321 on the configurations in obs[i].idl. Default False. 1322 """ 1323 result = [] 1324 for i in range(len(obs)): 1325 if len(obs[i].cov_names): 1326 raise Exception('Error: Not possible to reweight an Obs that contains covobs!') 1327 if not set(obs[i].names).issubset(weight.names): 1328 raise Exception('Error: Ensembles do not fit') 1329 for name in obs[i].names: 1330 if not set(obs[i].idl[name]).issubset(weight.idl[name]): 1331 raise Exception('obs[%d] has to be defined on a subset of the configs in weight.idl[%s]!' % (i, name)) 1332 new_samples = [] 1333 w_deltas = {} 1334 for name in sorted(obs[i].names): 1335 w_deltas[name] = _reduce_deltas(weight.deltas[name], weight.idl[name], obs[i].idl[name]) 1336 new_samples.append((w_deltas[name] + weight.r_values[name]) * (obs[i].deltas[name] + obs[i].r_values[name])) 1337 tmp_obs = Obs(new_samples, sorted(obs[i].names), idl=[obs[i].idl[name] for name in sorted(obs[i].names)]) 1338 1339 if kwargs.get('all_configs'): 1340 new_weight = weight 1341 else: 1342 new_weight = Obs([w_deltas[name] + weight.r_values[name] for name in sorted(obs[i].names)], sorted(obs[i].names), idl=[obs[i].idl[name] for name in sorted(obs[i].names)]) 1343 1344 result.append(tmp_obs / new_weight) 1345 result[-1].reweighted = True 1346 1347 return result
Reweight a list of observables.
Parameters
- weight (Obs): Reweighting factor. An Observable that has to be defined on a superset of the configurations in obs[i].idl for all i.
- obs (list): list of Obs, e.g. [obs1, obs2, obs3].
- all_configs (bool): if True, the reweighted observables are normalized by the average of the reweighting factor on all configurations in weight.idl and not on the configurations in obs[i].idl. Default False.
1350def correlate(obs_a, obs_b): 1351 """Correlate two observables. 1352 1353 Parameters 1354 ---------- 1355 obs_a : Obs 1356 First observable 1357 obs_b : Obs 1358 Second observable 1359 1360 Notes 1361 ----- 1362 Keep in mind to only correlate primary observables which have not been reweighted 1363 yet. The reweighting has to be applied after correlating the observables. 1364 Currently only works if ensembles are identical (this is not strictly necessary). 1365 """ 1366 1367 if sorted(obs_a.names) != sorted(obs_b.names): 1368 raise Exception(f"Ensembles do not fit {set(sorted(obs_a.names)) ^ set(sorted(obs_b.names))}") 1369 if len(obs_a.cov_names) or len(obs_b.cov_names): 1370 raise Exception('Error: Not possible to correlate Obs that contain covobs!') 1371 for name in obs_a.names: 1372 if obs_a.shape[name] != obs_b.shape[name]: 1373 raise Exception('Shapes of ensemble', name, 'do not fit') 1374 if obs_a.idl[name] != obs_b.idl[name]: 1375 raise Exception('idl of ensemble', name, 'do not fit') 1376 1377 if obs_a.reweighted is True: 1378 warnings.warn("The first observable is already reweighted.", RuntimeWarning) 1379 if obs_b.reweighted is True: 1380 warnings.warn("The second observable is already reweighted.", RuntimeWarning) 1381 1382 new_samples = [] 1383 new_idl = [] 1384 for name in sorted(obs_a.names): 1385 new_samples.append((obs_a.deltas[name] + obs_a.r_values[name]) * (obs_b.deltas[name] + obs_b.r_values[name])) 1386 new_idl.append(obs_a.idl[name]) 1387 1388 o = Obs(new_samples, sorted(obs_a.names), idl=new_idl) 1389 o.reweighted = obs_a.reweighted or obs_b.reweighted 1390 return o
Correlate two observables.
Parameters
- obs_a (Obs): First observable
- obs_b (Obs): Second observable
Notes
Keep in mind to only correlate primary observables which have not been reweighted yet. The reweighting has to be applied after correlating the observables. Currently only works if ensembles are identical (this is not strictly necessary).
1393def covariance(obs, visualize=False, correlation=False, smooth=None, **kwargs): 1394 r'''Calculates the error covariance matrix of a set of observables. 1395 1396 WARNING: This function should be used with care, especially for observables with support on multiple 1397 ensembles with differing autocorrelations. See the notes below for details. 1398 1399 The gamma method has to be applied first to all observables. 1400 1401 Parameters 1402 ---------- 1403 obs : list or numpy.ndarray 1404 List or one dimensional array of Obs 1405 visualize : bool 1406 If True plots the corresponding normalized correlation matrix (default False). 1407 correlation : bool 1408 If True the correlation matrix instead of the error covariance matrix is returned (default False). 1409 smooth : None or int 1410 If smooth is an integer 'E' between 2 and the dimension of the matrix minus 1 the eigenvalue 1411 smoothing procedure of hep-lat/9412087 is applied to the correlation matrix which leaves the 1412 largest E eigenvalues essentially unchanged and smoothes the smaller eigenvalues to avoid extremely 1413 small ones. 1414 1415 Notes 1416 ----- 1417 The error covariance is defined such that it agrees with the squared standard error for two identical observables 1418 $$\operatorname{cov}(a,a)=\sum_{s=1}^N\delta_a^s\delta_a^s/N^2=\Gamma_{aa}(0)/N=\operatorname{var}(a)/N=\sigma_a^2$$ 1419 in the absence of autocorrelation. 1420 The error covariance is estimated by calculating the correlation matrix assuming no autocorrelation and then rescaling the correlation matrix by the full errors including the previous gamma method estimate for the autocorrelation of the observables. The covariance at windowsize 0 is guaranteed to be positive semi-definite 1421 $$\sum_{i,j}v_i\Gamma_{ij}(0)v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i,j}v_i\delta_i^s\delta_j^s v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i}|v_i\delta_i^s|^2\geq 0\,,$$ for every $v\in\mathbb{R}^M$, while such an identity does not hold for larger windows/lags. 1422 For observables defined on a single ensemble our approximation is equivalent to assuming that the integrated autocorrelation time of an off-diagonal element is equal to the geometric mean of the integrated autocorrelation times of the corresponding diagonal elements. 1423 $$\tau_{\mathrm{int}, ij}=\sqrt{\tau_{\mathrm{int}, i}\times \tau_{\mathrm{int}, j}}$$ 1424 This construction ensures that the estimated covariance matrix is positive semi-definite (up to numerical rounding errors). 1425 ''' 1426 1427 length = len(obs) 1428 1429 max_samples = np.max([o.N for o in obs]) 1430 if max_samples <= length and not [item for sublist in [o.cov_names for o in obs] for item in sublist]: 1431 warnings.warn(f"The dimension of the covariance matrix ({length}) is larger or equal to the number of samples ({max_samples}). This will result in a rank deficient matrix.", RuntimeWarning) 1432 1433 cov = np.zeros((length, length)) 1434 for i in range(length): 1435 for j in range(i, length): 1436 cov[i, j] = _covariance_element(obs[i], obs[j]) 1437 cov = cov + cov.T - np.diag(np.diag(cov)) 1438 1439 corr = np.diag(1 / np.sqrt(np.diag(cov))) @ cov @ np.diag(1 / np.sqrt(np.diag(cov))) 1440 1441 if isinstance(smooth, int): 1442 corr = _smooth_eigenvalues(corr, smooth) 1443 1444 if visualize: 1445 plt.matshow(corr, vmin=-1, vmax=1) 1446 plt.set_cmap('RdBu') 1447 plt.colorbar() 1448 plt.draw() 1449 1450 if correlation is True: 1451 return corr 1452 1453 errors = [o.dvalue for o in obs] 1454 cov = np.diag(errors) @ corr @ np.diag(errors) 1455 1456 eigenvalues = np.linalg.eigh(cov)[0] 1457 if not np.all(eigenvalues >= 0): 1458 warnings.warn("Covariance matrix is not positive semi-definite (Eigenvalues: " + str(eigenvalues) + ")", RuntimeWarning) 1459 1460 return cov
Calculates the error covariance matrix of a set of observables.
WARNING: This function should be used with care, especially for observables with support on multiple ensembles with differing autocorrelations. See the notes below for details.
The gamma method has to be applied first to all observables.
Parameters
- obs (list or numpy.ndarray): List or one dimensional array of Obs
- visualize (bool): If True plots the corresponding normalized correlation matrix (default False).
- correlation (bool): If True the correlation matrix instead of the error covariance matrix is returned (default False).
- smooth (None or int): If smooth is an integer 'E' between 2 and the dimension of the matrix minus 1 the eigenvalue smoothing procedure of hep-lat/9412087 is applied to the correlation matrix which leaves the largest E eigenvalues essentially unchanged and smoothes the smaller eigenvalues to avoid extremely small ones.
Notes
The error covariance is defined such that it agrees with the squared standard error for two identical observables $$\operatorname{cov}(a,a)=\sum_{s=1}^N\delta_a^s\delta_a^s/N^2=\Gamma_{aa}(0)/N=\operatorname{var}(a)/N=\sigma_a^2$$ in the absence of autocorrelation. The error covariance is estimated by calculating the correlation matrix assuming no autocorrelation and then rescaling the correlation matrix by the full errors including the previous gamma method estimate for the autocorrelation of the observables. The covariance at windowsize 0 is guaranteed to be positive semi-definite $$\sum_{i,j}v_i\Gamma_{ij}(0)v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i,j}v_i\delta_i^s\delta_j^s v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i}|v_i\delta_i^s|^2\geq 0\,,$$ for every $v\in\mathbb{R}^M$, while such an identity does not hold for larger windows/lags. For observables defined on a single ensemble our approximation is equivalent to assuming that the integrated autocorrelation time of an off-diagonal element is equal to the geometric mean of the integrated autocorrelation times of the corresponding diagonal elements. $$\tau_{\mathrm{int}, ij}=\sqrt{\tau_{\mathrm{int}, i}\times \tau_{\mathrm{int}, j}}$$ This construction ensures that the estimated covariance matrix is positive semi-definite (up to numerical rounding errors).
1540def import_jackknife(jacks, name, idl=None): 1541 """Imports jackknife samples and returns an Obs 1542 1543 Parameters 1544 ---------- 1545 jacks : numpy.ndarray 1546 numpy array containing the mean value as zeroth entry and 1547 the N jackknife samples as first to Nth entry. 1548 name : str 1549 name of the ensemble the samples are defined on. 1550 """ 1551 length = len(jacks) - 1 1552 prj = (np.ones((length, length)) - (length - 1) * np.identity(length)) 1553 samples = jacks[1:] @ prj 1554 mean = np.mean(samples) 1555 new_obs = Obs([samples - mean], [name], idl=idl, means=[mean]) 1556 new_obs._value = jacks[0] 1557 return new_obs
Imports jackknife samples and returns an Obs
Parameters
- jacks (numpy.ndarray): numpy array containing the mean value as zeroth entry and the N jackknife samples as first to Nth entry.
- name (str): name of the ensemble the samples are defined on.
1560def merge_obs(list_of_obs): 1561 """Combine all observables in list_of_obs into one new observable 1562 1563 Parameters 1564 ---------- 1565 list_of_obs : list 1566 list of the Obs object to be combined 1567 1568 Notes 1569 ----- 1570 It is not possible to combine obs which are based on the same replicum 1571 """ 1572 replist = [item for obs in list_of_obs for item in obs.names] 1573 if (len(replist) == len(set(replist))) is False: 1574 raise Exception('list_of_obs contains duplicate replica: %s' % (str(replist))) 1575 if any([len(o.cov_names) for o in list_of_obs]): 1576 raise Exception('Not possible to merge data that contains covobs!') 1577 new_dict = {} 1578 idl_dict = {} 1579 for o in list_of_obs: 1580 new_dict.update({key: o.deltas.get(key, 0) + o.r_values.get(key, 0) 1581 for key in set(o.deltas) | set(o.r_values)}) 1582 idl_dict.update({key: o.idl.get(key, 0) for key in set(o.deltas)}) 1583 1584 names = sorted(new_dict.keys()) 1585 o = Obs([new_dict[name] for name in names], names, idl=[idl_dict[name] for name in names]) 1586 o.reweighted = np.max([oi.reweighted for oi in list_of_obs]) 1587 return o
Combine all observables in list_of_obs into one new observable
Parameters
- list_of_obs (list): list of the Obs object to be combined
Notes
It is not possible to combine obs which are based on the same replicum
1590def cov_Obs(means, cov, name, grad=None): 1591 """Create an Obs based on mean(s) and a covariance matrix 1592 1593 Parameters 1594 ---------- 1595 mean : list of floats or float 1596 N mean value(s) of the new Obs 1597 cov : list or array 1598 2d (NxN) Covariance matrix, 1d diagonal entries or 0d covariance 1599 name : str 1600 identifier for the covariance matrix 1601 grad : list or array 1602 Gradient of the Covobs wrt. the means belonging to cov. 1603 """ 1604 1605 def covobs_to_obs(co): 1606 """Make an Obs out of a Covobs 1607 1608 Parameters 1609 ---------- 1610 co : Covobs 1611 Covobs to be embedded into the Obs 1612 """ 1613 o = Obs([], [], means=[]) 1614 o._value = co.value 1615 o.names.append(co.name) 1616 o._covobs[co.name] = co 1617 o._dvalue = np.sqrt(co.errsq()) 1618 return o 1619 1620 ol = [] 1621 if isinstance(means, (float, int)): 1622 means = [means] 1623 1624 for i in range(len(means)): 1625 ol.append(covobs_to_obs(Covobs(means[i], cov, name, pos=i, grad=grad))) 1626 if ol[0].covobs[name].N != len(means): 1627 raise Exception('You have to provide %d mean values!' % (ol[0].N)) 1628 if len(ol) == 1: 1629 return ol[0] 1630 return ol
Create an Obs based on mean(s) and a covariance matrix
Parameters
- mean (list of floats or float): N mean value(s) of the new Obs
- cov (list or array): 2d (NxN) Covariance matrix, 1d diagonal entries or 0d covariance
- name (str): identifier for the covariance matrix
- grad (list or array): Gradient of the Covobs wrt. the means belonging to cov.