import autograd.numpy as np import os import random import string import copy import math import scipy.optimize from scipy.odr import ODR, Model, Data, RealData import pyerrors as pe import pytest def test_standard_fit(): dim = 10 + int(30 * np.random.rand()) x = np.arange(dim) y = 2 * np.exp(-0.06 * x) + np.random.normal(0.0, 0.15, dim) yerr = 0.1 + 0.1 * np.random.rand(dim) oy = [] for i, item in enumerate(x): oy.append(pe.pseudo_Obs(y[i], yerr[i], str(i))) def f(x, a, b): return a * np.exp(-b * x) popt, pcov = scipy.optimize.curve_fit(f, x, y, sigma=[o.dvalue for o in oy], absolute_sigma=True) def func(a, x): y = a[0] * np.exp(-a[1] * x) return y beta = pe.fits.standard_fit(x, oy, func) pe.Obs.e_tag_global = 5 for i in range(2): beta[i].gamma_method(e_tag=5, S=1.0) assert math.isclose(beta[i].value, popt[i], abs_tol=1e-5) assert math.isclose(pcov[i, i], beta[i].dvalue ** 2, abs_tol=1e-3) assert math.isclose(pe.covariance(beta[0], beta[1]), pcov[0, 1], abs_tol=1e-3) pe.Obs.e_tag_global = 0 chi2_pyerrors = np.sum(((f(x, *[o.value for o in beta]) - y) / yerr) ** 2) / (len(x) - 2) chi2_scipy = np.sum(((f(x, *popt) - y) / yerr) ** 2) / (len(x) - 2) assert math.isclose(chi2_pyerrors, chi2_scipy, abs_tol=1e-10) def test_odr_fit(): dim = 10 + int(30 * np.random.rand()) x = np.arange(dim) + np.random.normal(0.0, 0.15, dim) xerr = 0.1 + 0.1 * np.random.rand(dim) y = 2 * np.exp(-0.06 * x) + np.random.normal(0.0, 0.15, dim) yerr = 0.1 + 0.1 * np.random.rand(dim) ox = [] for i, item in enumerate(x): ox.append(pe.pseudo_Obs(x[i], xerr[i], str(i))) oy = [] for i, item in enumerate(x): oy.append(pe.pseudo_Obs(y[i], yerr[i], str(i))) def f(x, a, b): return a * np.exp(-b * x) def func(a, x): y = a[0] * np.exp(-a[1] * x) return y data = RealData([o.value for o in ox], [o.value for o in oy], sx=[o.dvalue for o in ox], sy=[o.dvalue for o in oy]) model = Model(func) odr = ODR(data, model, [0,0], partol=np.finfo(np.float).eps) odr.set_job(fit_type=0, deriv=1) output = odr.run() beta = pe.fits.odr_fit(ox, oy, func) pe.Obs.e_tag_global = 5 for i in range(2): beta[i].gamma_method(e_tag=5, S=1.0) assert math.isclose(beta[i].value, output.beta[i], rel_tol=1e-5) assert math.isclose(output.cov_beta[i,i], beta[i].dvalue**2, rel_tol=2.5e-1), str(output.cov_beta[i,i]) + ' ' + str(beta[i].dvalue**2) assert math.isclose(pe.covariance(beta[0], beta[1]), output.cov_beta[0,1], rel_tol=2.5e-1) pe.Obs.e_tag_global = 0 def test_odr_derivatives(): x = [] y = [] x_err = 0.01 y_err = 0.01 for n in np.arange(1, 9, 2): loc_xvalue = n + np.random.normal(0.0, x_err) x.append(pe.pseudo_Obs(loc_xvalue, x_err, str(n))) y.append(pe.pseudo_Obs((lambda x: x ** 2 - 1)(loc_xvalue) + np.random.normal(0.0, y_err), y_err, str(n))) def func(a, x): return a[0] + a[1] * x ** 2 fit1 = pe.fits.odr_fit(x, y, func) tfit = pe.fits.fit_general(x, y, func, base_step=0.1, step_ratio=1.1, num_steps=20) assert np.abs(np.max(np.array(list(fit1[1].deltas.values())) - np.array(list(tfit[1].deltas.values())))) < 10e-8