{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import pyerrors as pe" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "plt.style.use('./base_style.mplstyle')\n", "plt.rc('text', usetex=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Primary observables" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can load data from preprocessed files which contains lists of `pyerror` `Obs` and convert them to `Corr` objects. We use the parameters `padding_front` and `padding_back` to keep track of the fixed boundary conditions at both temporal ends of the lattice." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Data has been written using pyerrors 2.0.0.\n", "Format version 0.1\n", "Written by fjosw on 2022-01-06 11:27:27 +0100 on host XPS139305, Linux-5.11.0-44-generic-x86_64-with-glibc2.29\n", "\n", "Description: SF correlation function f_A on a test ensemble\n", "Data has been written using pyerrors 2.0.0.\n", "Format version 0.1\n", "Written by fjosw on 2022-01-06 11:27:34 +0100 on host XPS139305, Linux-5.11.0-44-generic-x86_64-with-glibc2.29\n", "\n", "Description: SF correlation function f_P on a test ensemble\n" ] } ], "source": [ "p_obs_names = [r'f_A', r'f_P']\n", "\n", "p_obs = {}\n", "for i, item in enumerate(p_obs_names):\n", " tmp_data = pe.input.json.load_json(\"./data/\" + item)\n", " p_obs[item] = pe.Corr(tmp_data, padding_front=1, padding_back=1)\n", " p_obs[item].tag = item" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can now use the method `Corr.show` to have a quick look at the data we just read in " ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGRCAYAAACdcEL9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvKUlEQVR4nO3df3Cc9WHn8c9XpjXJWNJiUiEbsM8ygWIIcYWdJhyGAbQOtEnaXuVfNJMZD8Qa0jvaAmPHTQkhJnWkYq7lbsjJlGMuScHYvrYXMleDBD1wQqkRIkOpuTrxcgaMhQhmJZkEp9V+74/vPtZK3tU+z+p59tl99H7N7Dza5/nq2a9Z1vvx96ex1goAAKDeNcRdAQAAgDAQagAAQCIQagAAQCIQagAAQCIQagAAQCIQagAAQCIQagAAQCIQagAAQCIQagAAQCIQagAAQCKcEfQXjDGbJKUkZSUtlbTdWpsNtVYAAAABBQo1xpjNknZ6IcYYk5L0oKQ1odcMAAAggKDdT+nCVpn8z6kQ6wMAAFCRoN1PWWNMn6Q11tqsMaZNUqZUYWPMXElzp5yeL+l4wNcFAACzW6Okt6y1tlQBM8210wu77qYXJbVJ6pF02Fq7c5ryX5N0l+8XAAAAKO08a+3RUhcDhRrp1EDhtKROSf3Kt9qUKDu1paZR0ptvvPGGmpqaAr0uAACYnUZHR3X++edLUrO1drRUuaADhbsl9Vlr1+S7nvbItdwsLVbeWntS0smC35ckNTU1EWoAAECofA8UzoeYlLW2X5KstRlr7eVy42w6o6ogAACAH0FmP7XJrU0zVW84VQEAAKic71CTb6Fpzw8WLnS5tXZvqLUCAAAIKOiU7jWSthpj3pVrtUlJ2hJynQAAAAILFGrys5wIMQAAoOawoSUAAEgEQg0AAEgEQg0AAEgEQg0AAEiEoLOfAABAyIZHP9Dw2Mmy5Voa56ql6cwq1Kg+EWoAAIjZX/3j6/qLp35cttwfXPdR/VH6wirUqD4RagAAiNnv/foipZedc+r5T4ZP6A8f+5H+fN1yXdAy79T5lsa5xX4deYSamciNS0eek068Lc07R1p8hdQwJ+5aAQDqTEvTmUW7lS5omadLz22OoUZSf3+/9uzZI0lKp9Pq7PS3zWN/f78GBwe1efPmKKtXFKGmUge/Jz35FSn7+sS51CJp9TekZZ+Lr14AgLo2nrN6+c2sJOnlN7O6eEGT5jSYqtcjnU7rvffe08DAQKDf6+3tjS3UMPspqLEh6Yf3S7u/ILUsk27ql7YedceWZe78D+935QAACGDfK8d0ZffT+uO/eUWS9Md/84qu7H5a+145VtV6DA4Oqq2tTalUSh0dHero6PD9u/Pnz1cmk1Emk4mwhsURaoJ64SHpqa9JF35aWv+odP5Kae48d1z/qPTR1dJTd7tyAAD4tO+VY7rlu4M6NvLBpPNDIx/olu8OVj3YpFKpwL+zd+9edXd3q62tTb29veFXqgxCTVCtl7qxNKvukBqm/OdraJCuukPK/ZsrBwCAD+M5q7sfPyhb5Jp37u7HD2o8V6xEuAYHB9Xb26tMJqOenh7t3bvX9+9mMhmlUil1dnYG+r2wEGqCGv9Xd2y5uPh177xXDgCAMg68dvy0FppCVtKxkQ904LXjkdelvb1dXV1dmj9/vjZv3ux7gHA2mz3VutPV1aVMJqPBwcEIa3o6Qk1Q8/JT7oZfLX7dOz/vnOLXAQCYYnisdKCppFwcdu/erbVr10qS2tra1N7erscee6yqdWD2U1Dz26TGBdL+e90YmsIuqFxO2r9DalzoygEA4ENLo79Vgv2Wi0NfX5+y2eykczt37lR3d3fV6kCoCWrw29LYMfd4dL0bQ9NysWuhefZe6cdPTJS7Zmu8dQUA1IVPLJmvBc1namjkg6Ljaoyk1uYz9Ykl86tdNV+y2azWrVs3qatq06ZNOuusszQ4OKj29vaq1IPup6BWbJQ2PSOlt0lDL0sPpaXt57nj0D+585ueceUAAPBhToPRXZ9dJskFmELe87s+uyyW9Wr82L1792ljb1KplNrb26s6C4qWmqAaW91j4XLpU7/PisIAgFBcf+kCfevz7br78YOTBg23Np+puz67TNdfuiDG2k3vxRdfLHp+3bp12r59e9WCDS01M9EwR1qySvpYpzsSaAAAM3D9pQv0gy3X6k9/xy0L8qe/c6l+sOXaqgaawcFBbd++XZlMRlu2bDk1g8kYc9qjv79fl19+uXbu3Kmenp5J9+nv7z81zmbNmjVVmeJtrI1+zvupFzOmSdLIyMiImpqaqva6ktinCQBQN145OqLP/Jcf6Pv/6crY9n6qJaOjo2pubpakZmvtaKlys6P7qZ72aSJ8AcCsMzz6gYbHTp56/pPhE5OOnpbGuUU3voST7JaasSHp5d1S31fdtgarCmYq7b9XOvSElP66dNlaN04mbvUUvgAAofnPfYf0F0/9uGy5P7juo/qj9IVVqFFt8dtSk+xQ8/Q3pB/skC5IF19T5tH10uGnpCtvk679SvT1KaXewhcAIFRTW2pKma0tNXQ/Sf72afrxE/Hv0/TCQy58eZtkenX1Nsl8dL3bJPPkWLzhCwAQiZamM2dlWAlbsmc/nXjHHcvt0+SViwubZAIAMGOBQo0xZo8xptMY026MaSt8RFXBGTk64I7l9mnyysWFTTIBAJixoC017ZL2SHpR0uGCR/U2dgji2jsn9mnK5SZfK9yn6do746mfh00yAQCYsaBjanqttZNW1zHGbLLW7gyxTuFpPle6oUfa/QVp143SqtsKBuDe5wbgrv22KxcnNskEgNltbMg9yvFWtUdRQUPNpOUAjTEdkkr23Rhj5kqaW3CqMeDrzdyyz7ng8uRX3P5MntRid74WpkqzSSYAzG4DD0vPfLN8uau/zPfANCqe0p0fR9MxXSuNMeZrku6aep4VhafwEvprz0rPP+DCjadxofTJW6QlV5HQASCpprbU/PSQ9NdflP7Dg9JHCtalmaXfA5GvU2OM6bXWdpUpU6yl5s1YQk29qOXwBQCojrd+JO28Wtr0jNtAeZaLdJ0aY0y7n3LW2pOSTq0mZExtbpleU7xNMgEAs1NuXHrrJffzWy9JrR+L5R+3/f392rNnjyQpnU6rs7PztDKZTEa9vb3q6elRW1uburpcW8fhw4d1/PhxrVu3rujvRaWilhpjTK+kw1MHDfv4vfg2tAQAoNbV0HY5xhi99957GhhwQ2c7OjpKlk2n02pra1Nvb++k80uXLlVXV5c2b948o7r4bampdPG9DknZCn8XAABMdfB7brZuyyXSTf3S1qPu2HKJO3/we1WryuDgoNra2pRKpdTR0TFtoJlOV1eXtmzZEnLtSqs01LRJyoRZEQAAZq3cuGuhufB6af0jbpucufPy2+U84s4/+SeuXJWkUqnQ7pHNZmd8Lz8qDTUZScfDrAgAALPWkedcl9Oq24tvl7PqNil7xJWL2ODgoHp7e5XJZNTT06O9e/eW/6USXnzxRbW3t4cSkPyoaKCwtXZp2BUBAGDWOvG2O5bdq/DtyKvS3t6urq4u9ff3VzwWJpvNaufOnRoYGNBTTz0Vcg1LS/Yu3QAA1IPC7XLOX3n69TrYLmdgYEA7d04sXdfR0THjAcJBEWoAAIjb4ivcLKf9O9wYmtO2y7nPrYS/+Ir46ljGihUrtGnTpljrUOmYGgAAEJaGOW7a9qF9bq/CNw5IJ8fccdeN7vzqe1iMtQxaagAAqAX1sFdhjSPUAABQK5Z9TvrV33QbGH//D6XP/LnU/gVaaHyi+wkAgFrSMEda+Gvu54W/VvVAMzg4qO3btyuTyWjLli0aHByU5FYYnvrwpn0PDAyov79fPT09VVuTppiKN7Ss6MXYJgEAgPLY0HKSSDe0RJ1h528AqG1jQ+7h+emhyUdPY6t7oChCTVJ5H5DXnpWef0AaOzZxrXGB9MkvSUuu4gMCALVg4GHpmW+efv6vvzj5+dVflq7ZWp061SFCTVIVfkAuvF5a+x23IuXwq9Kzfyb13emu8QEBgPit2ChddEP5cvwjdFqMqUmqkaPSX14nLfi4tP7R0xdy2rVBOvaydHO/1HxufPUEAKAMv2NqmP2UVMczrstp1R0lNke7XRp7y5UDACABCDVJVUObowEAUA2EmqQq3BytmDrYHA0AgCAINUlVuDlaLjf5Wp1sjgYAQBCEmqR6/x1p5Rfzm6NtmLI52gZ3fuXNrhwAAAnAlO6kKpzS/ZM+F2I8DWdIsm5a9y/eZ0o3ACARCDVJVbjmQW5cGnpZ+tm70ofPllovm1hRmDUPAAAJQahJqqkrBZ93eXx1AQCgChhTAwAAEoFQAwAAEoFQAwAAEoFQAwAAEoFQAwAAEoFQAwAAEqGiKd3GmG5Jh/NPj1tr94ZXJQAAgOAChRpjTErSU5Kus9ZmjTHtkl6UZCKoGwAAgG9Bu5+6JT1mrc1KkrV2UFI67EoBAAAEFbT7aZOkpcaYNklt1tp+a21/qcLGmLmS5hacaqygjgAAAGX5bqnJBxlJapeUkpQxxvQaYzqm+bWtkkYKHm9WWE8AAIBpBel+8kJN1lo7aK3NSNoiac80v7NdUnPB47yKagkAAFBGJVO6B7wf8mNrUqVaa6y1J621o95D0lhl1QQAAJhekFCTKXE+q4lWHAAAgFj4DjX57qaMTg8wKRW03gAAAMQhaPfTFknrvCfGmE5J/fmp3QAAALEJNKXbWrvXGDPfGLM5f+psay3r1AAAgNgF3ibBWrsziooAAADMBBtaAgCARKhoQ0vMUmND7iFJuXFp6GXpZ+9KHz5bar1MapjjrjW2ugcAAFVEqIF/Aw9Lz3zT/dwwxwUbT+Hzq78sXbO1+vUDAMxqdD/BvxUbpfQ2SUa6IC3d1C9tPeqOF6Td+fQ2Vw4AgCoz1trqvZgxTZJGRkZG1NTUVLXXRUhy49L9y6WWS6T1j0gNBZk4l5N23SgNH5RufWmiKwoAgBkaHR1Vc3OzJDXndygoipYa+HfkOSn7urTq9smBRnLPV90mZY+4cgAAVBmhBv6deNsdWy4uft0775UDAKCKCDXwb9457jj8avHr3nmvHAAAVUSogX+Lr5BSi6T9O9wYmkK5nLT/Pim12JUDAKDKCDXwr2GOtPob0qF9blDwGwekk2PuuOtGd371PQwSBgDEgnVq4N/YkGupSX9dev4B6aGCbb8aF7rzqUWuHIvvAQCqjFAD/woX35tq7C2p7073M4vvAQBiQKiBfys2ShfdUL4crTQAgBgQauAfezoBAGoYA4UBAEAiEGoAAEAiEGoAAEAiEGoAAEAiEGoAAEAiEGoAAEAiEGoAAEAiEGoAAEAiEGoAAEAiEGoAAEAiEGoAAEAiBNr7yRjTIalLUp+kjKS0pBestXsjqBsAAIBvQTe0TEnqkNQpF2q6CTQAAKAWVLJL9xJrbTbsigAAAMwEY2oAAEAiVNJSs9YYc1zSfElLrbVbShU0xsyVNLfgVGMFrwcAAFBW0FAzKEnW2owkGWM2GWP2WGvXlCi/VdJdM6gfAACAL8ZaW/kvG5OS9J6ks4qNsynRUvPmyMiImpqaKn5dAAAwe4yOjqq5uVmSmq21o6XKBZ3S3Vk428lamzXGSFKb8q04hay1JyWdLPj9IC+H2WBsyD3KaWx1DwAASvAdavKtMnuMMUsLup9S+cuZ8KuGWWHgYemZb5Yvd/WXpWu2Rl8fAEDd8h1q8q0yPV6gydskaS9TvFGxFRuli26QXntWev4BaezYxLXGBdInvyQtuYpWGgBAWUEHCm83xmwueH72NIOEgfIaW6U3Dkh9X5UuvF5a+x2p5WJp+FVp/w53fu23pYXL464pAKDGzWigcOAXM6ZJ0ggDhXFKbly6f7nUcom0/hGpoWDppFxO2nWjNHxQuvUlqWFObNUEAMTH70BhFt9DvI48J2Vfl1bdPjnQSO75qtuk7BFXDgCAaRBqEK8Tb7tjy8XFr3vnvXIAAJRAqEG85p3jjsOvFr/unffKAQBQAqEG8Vp8hZRa5AYF53KTr+Vy0v77pNRiVw4AgGkQahCvhjnS6m9Ih/a5QcFvHJBOjrnjrhvd+dX3MEgYAFBWJRtaAuEZG3ItNemvu3VqHkpPXGtc6M6nFrlyrFUDAJgGoQbxmm5F4bG3pL473c+sKAwAKINQg3h5KwqXQysNAKAMQg3ixUaVAICQMFAYAAAkAqEGAAAkAqEGAAAkAqEGAAAkAqEGAAAkAqEGAAAkAqEGAAAkAqEGAAAkAqEGAAAkAqEGAAAkAqEGAAAkAqEGAAAkAqEGAAAkAqEGAAAkAqEGAAAkAqEGAAAkwoxCjTGmL6yKAAAAzETFocYY0ympI8S6AAAAVOyMSn7JGJOSND/cqgAhGRtyj3IaW90DAJAIFYUaSWsl7ZbUG2JdgHAMPCw9883y5a7+snTN1ujrAwCoisChxhjTIanfZ9m5kuYWnGoM+npAYCs2ShfdIL32rPT8A9LYsYlrjQukT35JWnIVrTQAkDCVjKlJWWszPstulTRS8HizgtcDgmlslbKvS31flRYsl27ql7YedccFy9357OuEGgBIGGOt9V/YmE3W2p35n1OS3rPWmmnKF2upeXNkZERNTU2V1RgoJzcu3b9carlEWv+I1FCQ3XM5adeN0vBB6daXpIY5sVUTAODP6OiompubJanZWjtaqpzvlhpjTLukgSCVsNaetNaOeg9JY0F+H6jIkedcS8yq2ycHGsk9X3WblD3iygEAEiPImJr5ktrzY2okaakkGWM2S8pYa/eGXTmgIifedseWi4tf98575QAAieA71Fhr+1UwQDjfcrPJWtsTRcWAis07xx2HX5XOX3n69eFXJ5cDACRCRYvv5Rfe25r/ubug9QaI3+IrpNQiaf8ON4amUC4n7b9PSi125QAAiVFRqLHW7rXWrrHWGmvtlnwrDlAb3n9HWvlF6dA+adcG6Y0D0skxd9y1wZ1febMrBwBIjEoX3wNqV+Hiez/pcyHG03CGJCv13Sn94n0W3wOABCHUIHm8xfckN7176GXpZ+9KHz5bar1sYho369QAQKIQapA8U/d0Ou/y+OoCAKiainfpBgAAqCWEGgAAkAiEGgAAkAiEGgAAkAiEGgAAkAiEGgAAkAiEGgAAkAiEGgAAkAiEGgAAkAiEGgAAkAiEGgAAkAiEGgAAkAiEGgAAkAiEGgAAkAhnxF0BoC6MDbmHJOXGpaGXpZ+9K334bKn1MqlhjrvW2OoeAICqI9QAfgw8LD3zTfdzwxwXbDyFz6/+snTN1urXDwBA9xPgy4qNUnqbJCNdkJZu6pe2HnXHC9LufHqbKwcAiIWx1lbvxYxpkjQyMjKipqamqr0uMGO5cen+5VLLJdL6R6SGgn8P5HLSrhul4YPSrS9NdEUBAEIxOjqq5uZmSWq21o6WKkdLDeDHkeek7OvSqtsnBxrJPV91m5Q94soBAGJBqAH8OPG2O7ZcXPy6d94rBwCoOkIN4Me8c9xx+NXi173zXjkAQNURagA/Fl8hpRZJ+3e4MTSFcjlp/31SarErBwCIRaBQY4xJGWM25R/dxpg9xphURHUDakfDHGn1N6RD+9yg4DcOSCfH3HHXje786nsYJAwAMQo0+8kY0yup21qbKXjeZq1N+/x9Zj+hPnmL7732rPT8A9LYsYlrjQulT94iLbmKxfcAIAJ+Zz8FXXyvTVKnpJ7888OS1lZUQ6CeFC6+N9XYW1Lfne5nFt8DgNgECjVFWmRWSuoPrzpAjVqxUbrohvLlaKUBgNhUvE2CMaZTUkrSmmnKzJU0t+BUY6WvB8SKbiUAqHmBZz95g4XluqL2WGuz0xTfKmmk4PFmJZUEAAAoJ3CosdZmrbU7rbU9kmSMeW+aGVDbJTUXPM6rtKIAAADT8R1q8i003VMCTL9cF1RHsd+x1p601o56D0ljM6ksAABAKUFaatokbZY0v+BcKn/MhlQfAACAivgONdbaQUk93ho1eeskDVprmQEFAABiFXT203ZjzOaC5ylJ14VXHQAAgMoEXacmq4mF9wAAAGoGG1oCAIBEINQAAIBEqHhFYQAz5G2SKUm5cWnoZeln70ofPltqvWxix29WMwYAXwg1QFwKN8lsmOOCjafwOZtkAoAvdD8BcVmxUUpvk2SkC9LSTf3S1qPueEHanU9vc+UAAGUZa231XsyYJkkjIyMjampqqtrrAjUpNy7dv1xquURa/4jUUPBvjFxO2nWjNHxQuvWlia4oAJiFRkdH1dzcLEnN+R0KiqKlBojLkeek7OvSqtsnBxrJPV91m5Q94soBAMoi1ABxOfG2O7ZcXPy6d94rBwCYFqEGiMu8c9xx+NXi173zXjkAwLQINUBcFl8hpRZJ+3e4MTSFcjlp/31SarErBwAoi1ADxKVhjrT6G9KhfW5Q8BsHpJNj7rjrRnd+9T0MEgYAn1inBojL2JBrqUl/XXr+Aemh9MS1xoXufGqRK8fiewBQFqEGiEvh4ntTjb0l9d3pfmbxPQDwhVADxGXFRumiG8qXo5UGAHwh1ABxYU8nAAgVA4UBAEAiEGoAAEAiEGoAAEAiEGoAAEAiEGoAAEAiMPsJSJqxIfeQpNy4NPSy9LN3pQ+fLbVeNrFCMbOvACQMoQZImsJF/RrmuGDjKXzOon4AEobuJyBpVmyU0tskGemCtHRTv7T1qDtekHbn09tcOQBIEGOtrd6LGdMkaWRkZERNTU1Ve11gVsmNS/cvl1oukdY/IjUU/Nsll3ObZQ4flG59ic0yAdSF0dFRNTc3S1KztXa0VDlaaoCkOfKclH1dWnX75EAjueerbpOyR1w5AEiQwGNqjDGb8z8ulSRrbVeoNQIwMyfedseWi4tf98575QAgIQK11Bhjuq21PflHV/5cXzRVA1CReee44/Crxa97571yAJAQvkONMSYlqT1/9PRK6jDGtIVcLwCVWnyFlFok7d/hxtAUyuWk/fdJqcWuHAAkSNAxNSskFQaYTP6YCqU2AGbu/XeklV+UDu2Tdm2Q3jggnRxzx10b3PmVN7tyAJAgvsfUWGuzks6acrojf8yoCGPMXElzC041BqkcgAoUrlPzkz4XYjwNZ0iyUt+d0i/eZ50aAIky08X3tkrqygeeUtfvmuFrAAhixUbpohvcz+VWFAaABKl4nRpjTLekd621PdOUKdZS8ybr1AAAAL/8rlNTUUuNMaZT0mFr7c7pyllrT0o6WfB7lbwcAABAWYEX3zPGdEiSF2iMMSlmPwEAgLgFXaemXVK7pEFjTFs+zGySdDyKygEAAPjle0xNfn2a11Rk+ra11le/Ens/AXVqbMg9pPKDjxmADCBkoY+pKTGlG8BsUDhNvGGOCzaewudXf5lp4gBiw4aWAMpbsVFKb5NkpAvS0k390taj7nhB2p1Pb3PlACAmFU/prujF6H4C6lNuXLp/udRyibT+kcm7f+dy0q4bpeGD0q0vTXRFAUBI/HY/0VIDoLwjz0nZ16VVt08ONJJ7vuo2KXvElQOAmBBqAJR34m13bLm4+HXvvFcOAGJAqAFQ3rxz3HH41eLXvfNeOQCIAaEGQHmLr5BSi6T9O9wYmkK5nLT/Pim12JUDgJgQagCU9/470sovuh2/d22Q3jggnRxzx10b3PmVN7tyABCTme7SDWA2KFyn5id9LsR4Gs6QZKW+O6VfvM86NQBiQ6gBUN6KjdJFN7ify60oDAAxIdQAKG/q9gfnXR7u/XPjbjr4ibfdYOPFV7DeDYDACDUA4uHtJ/Xas9LzD0hjxyauNS6QPvklaclV7CcFwDdCDYB4FI7TufB6ae133Ho3w69Kz/6ZG6MjsZ8UAN+Y/QQgHu1fcC0yF14vrX9UOn+lNHeeO27Y5c43LnTlAMAHQg2AeBzPuC6nVXeU2HrhdmnsLVcOAHwg1ACIB1svAAgZoQZAPNh6AUDICDUA4sHWCwBCRqgBEA+2XgAQMqZ0A4gHWy8ACBmhBkA8ot56gVWKgVmHUAMgHlFsvcAqxcCsRqgBkBysUgzMagwUBpAcrFIMzGqEGgDJwSrFwKxGqAGQHKxSDMxqgUKNMSZljNlkjOmLqkIAUDFWKQZmNd+hxhjTLmmtpJSk+VFVCAAqNr/NjanZf2+JVYp3uDE189viqR+ASPkONdbaQWvtTkl0RgOoTYPfdmNqDu2THl0/eZXiR9e782NvuXKVyI1Lr+2X/mmvO+bGw60/gBlhSjeA5PAW9PPWqXkoPXGtcaGU3jaxTo1frH0D1I1IQ40xZq6kuQWnGqN8PQCznBcsFi6XPvX74awozNo3QN2IuqVmq6S7In4NADhdwxxpyaqZ36f9C9Lg/5AWfNytfeNNFffWvtm1QTr2MmvfADUg6ind2yU1FzzOi/j1ACBcrH0D1I1IW2qstSclnfSeG2OifDkACB9r3wB1g8X3AGA6rH0D1I1KQg1r1ACYPaJe+4Zp4kBofHc/GWPaJHVKWiep3RjTLekFa+3eqCoHALHz1r4ZO+bWurnqjoLZT/dKP35iopzf2U9MEwciYay11XsxY5okjYyMjKipqalqrwsAFZs2gCyUPnlL8ADy99snTxNfdcfkaeJeUGKaOCBJGh0dVXNzsyQ1W2tHS5Uj1ACAX7nxcNa+GTkq/eV1p08Tl1yXljdN/OZ+qfnc8OoP1Cm/oYYVhQHAr7DWvvGmia/9Tulp4g+lXTlCDeAboQYAqi3qaeJhtSgBdYZQAwDVNueX3HH4Vbcy8VTeNHGvXBAHvyc9+RUp+/rEudQiafU3pGWfC34/oI6wTg0AVNvQK67l5Nk/Kz5N/Nl7pYYzXDm/xoakH94v7f6C1LJMuqlf2nrUHVuWufM/vN+VAxKKUAMA1bbyJum6r0k/ftINCn7jgHRyzB13bXDnr7vLlfPrhYekp74mXfhpN/j4/JXS3HnuuP5R6aOrpafuduWAhKL7CQCqrbFV+ve3Smf9O9dV9FB64lpqsbT228G7ilovdWNpSu1RddUdbqp466WV1ZlxOqgDhBoAiMuyz0m/+pvhhIXxf3XHcoOPvXJBME4HdYJQAwBxCmuaeBSDj8eGpJd3S31fdd1av/vfJxYJ3H+vG6eT/rp02VpWPkZNYEwNACRBFIOPGaeDOkOoAYAkiGLwsZ9xOrl/q3ycjsSGnggV3U8AkARRDD6OcpyOxFgdhI5QAwBJEubg46gWCYx6rA4ztWYtQg0AJE1Yg48Lx+ls2HX6xpuF43SW/Zb/+77wkPSDHRNjdbz7emN1Hl3vxuqcHJOu/UqwOtP6M6sxpgYAUFwU43Sk6MbqHPxefkXlS6asqHyJO3/we8Huh7pDSw0AoLgoxulI0ol33LHshp7v+L/nyFHp7zbnW38emdL684gLYX+3RTr38sp2PqdLqy4QagAA0wtznI4kHR1wx3JjdY4OSLrZ3z2f3iaNHZPWfqd468+q210oe3qb9Dv/LVh96dKqG3Q/AQDK88bpfKzTHWfSSnHtnVLjAjcouNiaOvt3SI0LXTm/zl3hjuVaf7xyfkXZpcV09tDRUgMAqK7mc6Ubelwo2HWjtOq2gtlP90mHnnBdW0G6ieb9ijuWa/3xyvkRZZcWrT+RoKUGAFB9yz7ngsvwP7tuoe3nuePwwcrG6kSxorLXpVVqQPOq26Wxt1y5IGj9iQwtNQCAeIQ5VmflTdLcRrf2za4NLnCcav3Z4WZqeWvf+PWRC92xXJeWV84PWn8iRagBAMQnrDV1opip9dND7liuS8sr50dUA5q91p8Lr5+ymOEOd77SmWp1hlADAEiOMFt/rr1TyvwfN6C5cJFAqfIBzfXW+lNnGFMDAEiWsGZqeQOaDz3hBjRPWnzwRnf+hu5gQaGw9aeYmbT+hD32pw4RagAAKCXsAc1RTGePovWnTgXufjLGbJaUzT9NWWt7Qq0RAAC1JMwurSims0cx9qdOGWut/8Iu0MgLMsaYDklrrLVdPn+/SdLIyMiImpqaKqguAAAJUHSm0mJp9T3BW39Gjkp/eZ204OPFx/7s2iAde1m6ub9ux9SMjo6qublZkpqttaOlygUNNe9JWmKtzRacs9Za4/P3CTUAAEjh7idVOPvptNaffXU/+yn0UGOMaZN0eGqAMcZYSWlrbb+PexBqAACIQpitPzXGb6gJMqamrcT5rKRUsQvGmLmS5hacagzwegCAGjGeszrw2nENj32glsYz9Ykl8zWnwVcjfdXvO2vvuexzGr/wN/R///EJ/fy9o/rQWefqV3/905pzxuxZvSWMP+lxSfNLXNsq6a4QXgMAYlcXX2wR3HPfK8d09+MHdWzkg1PnFjSfqbs+u0zXX7qgpu7LPQ/q2IgkubEzC559ZsbvUz0J0v3UIamvSPfTe5K2WGt3FvmdYi01b9L9BKDQbP1ir4d77nvlmG757qCmflN4/yW/9fn2mrkv9wz/faoVjKkBEInZGBbq5Uso7HuO56yu7H560n/HqfdtbT5TP9hybaD/B6K4L/cM/32qJX5Dje/F96y1GUnZfLiZeq1soAFQfeM5q384/K7+14+O6h8Ov6vxnP/ZjsXse+WYrux+WhsefF5/sOtH2vDg87qy+2nte+VYxfe75buDp/1lPDTygW757mBF9w37nuM5q7sfP3haUJB06tzdjx8M9N/2WPbn+pO/faXkPa2kP/nbV3Qs+/NY7/nkPw+V/KL07nts5AM9+c9Dvu8Z1X2juOeegdd93XPPwOsly9TrPetV0BWFt0vq8J4YYzolndbtBCCYsMOHVPsBpF7CQhRflvc++S/66YlfTFvmpyd+oXuf/Bff99z2/YO+7rnt+wd933P3wBuhlovyvlHc88H9r4Varp7uWa8ChZr8onspY0xnPtCs9LvwXtyi+NLA7FTrrR/ePcMMIPUSFurli33pr8wLtZwk/fxfx0MtJ0kf+iV/a6b4LRflfaO45xdXLQm1XD3ds14F3vvJWttjrd2bf2yJolJhi+JLA/Wh1gNIFN0vUQSQKFoWoggL9fLFfvidE6GWk6S1K84PtZwk3fmZZfrIvF+etsxH5v2y7vzMMt/3jOq+UdxzzYpFWtB8pkqNQjFyY7XWrFiUuHvWq8RvaBnFlwbqQ60HkCjChxRNAImiZSGKsFAvX+x3rL7I1z3vWH2R73uuvqTV1xfb6ktafd9zQepDuue3L5WRTruvd+6e375UC1If8n3PqO4bxT3nNBjd9dllp+4x9Z6SdNdnlwUafFsv96xXiQ41UX1poPbVw/iPKMKHFE0AiaJlIYqwUC9f7PXyBSxJ11+6QN/6fLtam8+cdL61+cwZTROO4r7cM/z3qd4E2vtpxi9W5Sndt+/+kf7n4NGy5X63/VztWLs88vpgemFNFT6W/bk++19/MG1g+Mi8X9bj//FK318af/dPx3TLXw2WLfet32vXDR/z95fHA3//E/U8UT6wbP70RfrSNRf4uqcUzf/3Ufw3lSbCp6RJgTGMac1h3tO7b61PPY/qnhIrCs/me9aCSDa0nKlqh5qovjQQvjD/Io7iS33jwwf09//yTtly11z0K3p44yd83TOq0F1PAcS772z+Yq+XewJximLvp7oTRZN5odn8F0eYf/ZSC4Z5XUVBvyzrZfzHHasv0jOH3ikbPoKMq5AmujamCyCVjIPwmrenhoXWGYaF6y9doPSy1lA/S1HcU3JdPJ9aevaM7lGv9wTqQaJDTVRfGlJ0/xKMQi2vAFtu3JPkxj19/LyU7y/hqMZ/HPh/x8v+vxRk/EdU4UOqrwAi8cUOIByJ7n6Sou2zj2KPjVoOIN79wvyzf+m7L+p/v1J+HZLfuLRVD3z+cl/3pPtlwmxuTQSQHIypKRB2y0IUX5hh19O7X5gBJIo/exRjVaT6CyCEDwAojVAzRVhfGlEN7qyHABLFnz2KWUUeAggAJAMDhacIq389ikGoUYwrCbIGit8AEsWf3VtXZGjkg6J/fm932SDrinjqafwHAGDmEr34XhSiGIRaLyvARvFnj3olTC+A/Nbyc/WppWfTogIACUaoCSiK5c3rJYBE8WeXWAkTABCOWdP9FJYopuFGFUDCns4e9RTkKLqKAACzBy01FQi7ZSGKFpCoNqKLslWFriIAwEzMmtlPUYhiVV2JKcgAABRiSncdIoAAAHA6Qk2dIoAAADAZ69TUKdZAAQCgMgwUBgAAiUCoAQAAiUCoAQAAiUCoAQAAiRDLQOHR0ZIDlwEAACbxmxuqPaX7XElvVu0FAQBAkpxnrT1a6mK1Q42RtFDSWJmijXLh5zwfZREf3qf6wPtU+3iP6gPvU7waJb1lpwkuVe1+ylekZMLyuOwjSRqbbpEdxIv3qT7wPtU+3qP6wPsUu7L/zRkoDAAAEoFQAwAAEqFWQ81JSXfnj6hdvE/1gfep9vEe1QfepxpX1YHCAAAAUanVlhoAAIBACDUAACARCDUAACARYtkmYTrGmM2SsvmnKWttT4zVQRHGmA5JXZL6JGUkpSW9YK3dG2vFZjFjTErSWklrrLXpItf5XNWA6d4nPle1Jf+ZkaSlkmSt7SpyPZt/ymeqRtRUqPH+J7LW7sw/7zDG9E79nwmxS0nqkNQp95dvN3/xxscY0y5phdz7Mr/IdT5XNaDc+yQ+VzXDGNNtrd1S8LzXGNPnBVE+U7WrpmY/GWPek7TEWpstOGettab0b6HajDGdkvoL3yfEL/++bLXWXj7lPJ+rGjLN+8TnqgbkW9P2yLWmZfPn2iW9KGmptTbDZ6p21cyYGmNMm1wTXrbItY7q1wiof3yugIqskNRW8DyTP6b4TNW2Wup+aitxPivXLIvastYYc1yuGX1pYVMtagqfq/rC5ypm+bBy1pTTXljJyAWeYrLiMxW7Wgo1pXgfcNSOQUmy1mYkyRizyRizx1q7Jt5qIQA+V7WHz1Xt2iqpy1qbLdjUcio+UzWgZrqfpsH/JDXGWpvx/uLN2y2pM98XjfrA56rG8LmqTcaYbkmPeYOCp8FnqgbUUqjJlDifmuYaYpAf0HhKQd9yqa4OxIfPVZ3gc1V78u/J4SnTtflM1bCaCTX5f6Fk84Owpl7rj6FKKMKbGVD4PhX8S5IPdI3hc1Uf+FzVHm/Qb8G07ZQxpo3PVG2rmVCTt10TA7K8lFyuyQ9VlP/XY8+UZvJNkvYyFTV2pZq/+VzVltPeJz5XtSU/hbtd0qAxpi0fYDbJjZuR+EzVrJpap0Y6taiR98Feyej/2pP/F+SmglNn8z7FJ/8XbqekdXJ/Efdoykq0fK7iV+594nNVG/Lvw2sqMpOpcB0aPlO1qeZCDQAAQCVqrfsJAACgIoQaAACQCIQaAACQCIQaAACQCIQaAACQCIQaAACQCIQaAACQCIQaAACQCIQaADUvv+9OKu56AKhthBoA9WCr2K0aQBmEGgD1oN1aOxh3JQDUNkINgJpmjOmQ1Bd3PQDUPkINgFq3RtLesqUAzHqEGgC1rs1am4m7EgBq3xlxVwBAMhhj2iWtkLRU0guS+iVtyl/OWmt3VnDPTkl7prm2UtJhSZn847i1Nhu48gASgZYaADOWn27dYa3daa3dIulBSVuttT35IlsqvPU6SbuLvN4mSWlr7ZZ8WErJhZsVFb4OgASgpQZAGDYVBBjP4fxxUFJXhfdNTW15Mca0SeqWtKTgdFaSrLX9Fb4OgAQg1AAIw6mBvPnQkVK+hWVq0Mhf75TrLlopqbfYmJl8a0xvkdfqldQ/Jeyk5cITgFmMUANgxqaEkg5JmWnGtuyx1l4uScaYfklPSbq8SLk11tp0kfMdcjOiCrXLjeEBMIsxpgZA2NKaMgXb2+IgP5j4lHzwSeVbb6aWz069cUG5qa0yrGUDgFADYObyXUWeTrnZT6euFbTalBrI2z7leamuJ0mTW4byi/PJWttvjGmfGpwAzB6EGgAzkg803fmfO1XQDVRkE8qUpONTzmUlzZ9yLl1s0G8+zGS84JK/f5fc+BzJzcBibA0wSzGmBsBM9UvamQ83A3IhY4sxRpLmT1mfJqvTA0xKBUEn38U03WJ7ayR1GWNelCRr7RpjzJ786xNogFnMWGvjrgOAWSLfwvKgN1A4f+49SZd7XUrGmG5Jj9HiAiAoup8AVE0+qKS85/nuo8yU2VPsyA2gInQ/Aai2NfnWmBfk1qk5NT0735JDoAFQEbqfANQMY0yvpG42sARQCbqfANSS+QQaAJWipQYAACQCLTUAACARCDUAACARCDUAACARCDUAACARCDUAACARCDUAACARCDUAACARCDUAACAR/j9PJRpKFNFT7AAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "p_obs['f_A'].show(comp=p_obs['f_P'], y_range=[-0.8, 8])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Constructing the PCAC mass" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For the PCAC mass we now need to obtain the first derivative of f_A and the second derivative of f_P" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "first_deriv_fA = p_obs['f_A'].deriv()\n", "first_deriv_fA.tag = r\"First derivative of f_A\"" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "second_deriv_fP = p_obs['f_P'].second_deriv()\n", "second_deriv_fP.tag = r\"Second derivative of f_P\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can use these to obtain the unimproved PCAC mass:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "am_pcac = first_deriv_fA / 2 / p_obs['f_P']\n", "am_pcac.tag = \"Unimproved PCAC mass\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And with the inclusion of the improvement coefficient $c_\\mathrm{A}$ also the $\\mathrm{O}(a)$ improved PCAC mass:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "cA = -0.03888694628624465\n", "am_pcac_impr = (first_deriv_fA + cA * second_deriv_fP) / 2 / p_obs['f_P']\n", "am_pcac_impr.tag = \"Improved PCAC mass\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can take a look at the time dependence of the PCAC mass with the method `Corr.show`:" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl8AAAGLCAYAAAD5+Pe5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAA9hAAAPYQGoP6dpAABL70lEQVR4nO3df3RU1b03/vdOkOAtSYYAkd9cBkQN1OIU8EsLuqwTxcfKU9uJqdrrXV1dJPWPiq2uxGifxeN97I3JUm99+qzrnfDV/nj8AUm+0qv2Fk3EIt56RTJQC3gvkEHld7DhJMElFDP7+8f5kZnJ/DgzmXPOnMn7tdasyTl7n5MdJsN8svdn7y2klCAiIiIiexQ53QAiIiKi8YTBFxEREZGNGHwRERER2YjBFxEREZGNGHwRERER2YjBFxEREZGNGHwRERER2WiC0w3IR0IIAWAWgCGn20JERESuUgrghEyxkCqDr8RmATjmdCOIiIjIleYAOJ6skMFXYkMAcPToUZSVlTndFiIiInKBwcFBzJ07F0gzcsbgK4WysjIGX0RERJRTTLgnIiIishGDLyIiIiIbMfgiIiIishGDLyIiIiIbMfgiIiIishGDLyIiIiIbMfgiIiIishGDLyIiIiIbMfgiIiIishGDLyIiIiIbMfgiIiIishGDLyIiIiIbMfgiIiIishGDLyIiIiIbMfgiIiIishGDLyIiIiIbTbDjmwghGgAo2qFHStk61mtMlNcB8Gh1FgJollIqICIiInKQ5cGXFiRBStmmHfuFEEEpZX2215gsb9ODLSGEB8AmADWW/JBEREREJgkppbXfQIizABZE9zoJIaSUUmR7jYnyLillddw9R51L8f3LAAwMDAygrKzMzCVEREQ0zg0ODqK8vBwAyqWUg8nqWZrzJYTwQh0SVBKU+bO5xuQ9FSFEl9bjpd8znOWPQURERJQzVg87epOcV6DmY2VzjZl7rgfQA+CsEKIVQG+aYc4SACVRp0qT1SUiIiIaC6dmO/YDqMjxNUa51ivWAqATQAOAGr0XLIkmAANRj2MZto2IiIjIFKeCr0wDLzPXGOVCiBYAYSllDdSZjhVQe8KSaQZQHvWYk0X7iIiIiNKyetgxWZ6VJ0VZumtSlkflhHUDgJQyDOCrQogeIURAStkZf6GU8gKAC/qxEEnnAtA41Td4Hn1DF9LWqywtQWXZJBtaREREbmVp8CWlDAshFCGEVwuCosu6s70mVbmWdK8kuHVwTD8MjWu/3RnCv74TSlvvv6/2oe7Wr9nQIrLN0Cn1kU7pDPVBRJSGHYusNgPwA9DX5AroX2vHXgCBuEVSU16TqlwLwBqFEPEzIr+aKumeKJW7i99EXckTaet9VvwgAAZfjrEiUNr9S2DH4+nrXf8QcEOTuXsS0bhm+TpfgLHoqd5LtUJK2RhVVgegUUq50Ow1Ju7pgZpE/xeMzIJsS7Q8RZL2cp0vihX3oX700F7MfWsDjt7wNOZevmykHns/nPVWc+4DpfiA7tODwMvrgW9vAqYtHjnP155o3DO7zpctwZfbMPiidA7/6R0s2norDt/+Oyz6ymqnm0M6OwKlE3uBtuuBuh3ArGVjaS0RFRizwZctezsSEdkiWVA1bTEDJSLKGwy+iMh+TGKnXOLvE7kMgy8ish+T2CmX+PtELsPgi4jst/z7wBW3jBynys0iSoe/T+QyDL6IyH7MzaJc4u8TuYxT2wsRERERjUsMvoiIiIhsxOCLiIiIyEYMvoiIiIhsxIR7IiJKjOtnEVmCwRcRESXG9bOILMHgi4gohb7B8+gbumAcT/r0HBYBOHzmHM7LAeN8ZWkJKssmOdBCC3H9LCJLMPgiIkrhhfc+wdNvHjKOl4gj+F0JsGHzXuyPCr423Hg5fly9ONEtRnPLcB7XzyKyBIMvIipMkWHgxB716xN7gBlfBoqKM77N3dfOQ3XVZcbxmYMTgR3AgzddgemLVxrnK0tLzN+Uw3lE4xqDL6IMDX/xBY4f3AMlcjk+O7gHC5b8PyiekMVbyS29H25pJ0aGCMuO/B4z3nsME4eOqgWv3Y+/7ngSp679KQYX3JLREGFl2aSYuoc/vRQAMLfiUiyaXZ5dQzmcl1PjemiYXInBF1EG9rz+a8x672e4PnJaXahl/09x+sNf4MS1j+Cam/8+s5u5pffDLe2EOkT4n2+9gGcmPg1cfjNwxy+ByquAvg8x4e0nMKf7h7j3rxtw5Q13mx8itMJ4Hs6zIJi3ZGiYyEIMvohM2vP6r/GVdzeoH+rXPWh8qE9/+wlMf3cD9gCZBWBu6f1wSzsB3L1iNjwf/H8QM2+G+O5LQJG2lOHcFSi68yXIzXfiFydfhrKiwdmGjmcWBPOWDA0TWYjBF5EJw198gVnv/Qy4/GYU3Tn6Qz3y0p2Y+d4/YvjGu80PQbql98OCdlo1TFR5NgQMHVV7vIri1pAuKoJY8wAmPlut1vOsyartNEYWBPOWDA0TWYjBF5EJ//ne61gSOa32eCX4UC+67gHMOFSN/e+9jiVfv9WZRrpI9DBRESK4o+gtPD4R+H+3vIz2yFlEtM03Mh4mOndafa68KnG5fl6vR/Zzyx8dRBZi8EVkwudnj6tfpPlQN+pRSvowUXxi/OMTn8U/lL4Rkxifkcna0FPfh8DcFaPL+z6MrZepyDAuPfMBAKjPkVVZzaC0hIsmRhCNdwy+iEy4dMps9Ys0H+pGPUqpsmwSKo+9AXT/EFi8NiYxfuLOJzGv+4fAHb8BZq/L7MbzvwZ45gE7nwS++2JsL2UkAux8CvDMV+tl6sArwBuPYLbyCQBg9jtNwL5ngJt+BlRl2E4ruGhiBNF4x+CLyIQrr70Zp9+8DNPffiI25wsAIhFE3n4SfUUzcOW1NzvXSDeJDANvPKIGXtFB0twV6vHmu4A3fgpceWtmPUtFxWow1H6Peo81PzGCOux8Cji4TQ3qMu2tOvCKes/Fa4HvPBd1zyfV83f8xvkAzEUTIyyVz72TRBoGX0QmFE+YgBPXPoLp725A5KU7UXTdA8YHcOTtJ4FDr+PkqqcxI5v1vsajj/8IKJ+ogUyCHDqs+QnwbLVab0GGifFV69Rg6I1H1HvoPPOzC5KsChRzjblU+d87SaThJwWRSdfc/PfYA2DWez/DZYdGPtT7imbg5KqnM1/nazyzOjG+ah1w5a04vj2I2e804fjqZsz+Rn12wZGVgSLljht6J4k0RemrEJHumpv/HtMePoAdSx7D7sjl2LHkMUx/eD8Dr0xFJ8YnMtbEeAAoKsbn068GAPU5214pzqDMf/G9k3NXACWTR3onF69Veycjw063lAgAgy+ijBVPmIDZi6/B8qJDmL34muy2FhrvohPjI5HYsrEmxueaHYGiG8TvlZlPgYzeO7nmgeS9k8rHaj2iPMBPDSKHjOv96KxKjLeClTMo85wVe2Vagr2T5DK2BF9CiAYAinbokVK2jvUaM/cUQrQA6NUO+6WUnRk3nsgi434/ulwnxlvFgkDRLYG3a/bKtHp9N6Icszz40oIkSCnbtGO/ECIopazP9hoT5R4AbwK4UUqpCCF8AHoACIt+TKKMcT865DYx3ko5DhTdEni7Zq/Mcdw7Se5kR89XE4AF+oGUslsI0QUgafBl4pp05S0AtkgpFa08JISI+h+TyHkx+9FFhnH8Q/XDePHwIcye+Y28CUAs76XJVWK81XIYKLol8HbNXpluGsYmgsXBlxDCC3VIUElQ5pdSdmd6DYCwiXvWAVio3csrpexO9L2irisBEP2/XGm6n40oZ/J8bSK39NLEG45I7D39BfYPr8LF019gQUSiuGiMnd85ChRdsxG0BblUlgXzbhnGJoL1PV/eJOcVAJ4sr0lZrgVcAOCDGqiFhRBBAB0pArAmABuTlBFZxwVrE8X00kSGcXH3QeBPwGMrL+KS5SOrhzvdSxNt276TePTVAzg5cB7Aj4Dtn+HJnu3YeFsV1i6d6XTz3MOCXCrLNlUH3DOMTeOeU7Md+wFUZHmNkqZcD74UKWUIAIQQjQCOAJiS5NpmAE9FHZcCOJZh+4gy45KV041eGq2HDloP3TV/+p/Ax8/lTQ+dbtu+k7j3+RBk3PlTA+dx7/MhPPM9HwMwsyzIpbJsU3WdW4axaVxzap2vTAMvM9fEl+/Wv9CGKD3asOUoUsoLUspB/QFgKIv2EWXGTWsT6T10lUuAH3QDTcfV58ol6vkDrzjdQgDqUOOjrx4YFXgBMM49+uoBDEcS1TB3/72nv8C/Dq/C3tNfZH0f19BzqQ5uU/8YOLoLuDCkPm++Sz1/02MZBTiVZZOwdGAH5nX/EBNnLo35fZo4cynmdf8QSwd2ZD3Lc9y9RuRKVvd8hZOc96QoS3dNtuUKkg9ZEtnPLWsTuaSHDgB2HenXhhoTkwBODpzHriP9WLVwakb3zvehTNfkUln4+5TvrxGRztKeLyllGIASlYcVXZYw/yrdNSbLwxgdaHkQ1RtG5Di3rJxucQ9dLnsq+oaSB17Z1NPpQ5nxgZ0+lLlt38mM7meFF977BN/8xTvGY8PmvQDUiRHR519475PMb161DrhvL46vbgYA9fm+PdkNN1v0++SG14hIZ0fOVzMAPwB9Ta6A/rV27AUQiFskNeU1JsobAdQCCEWVd+s5YER5wS1rE1nYQ5frnorKUnM9OmbrAemHMgXUoczqqhljn005BpYvX5HHe2Va8hoNnVIf6ZTOUB9EGbA8+JJStgohGrQACABWxC2w6oe6Pler2WtMlHcKISr0xVgBTJVScp0vyi9uWZvIotXDrUiMXzntr5g5uQinzkUSfhALADMmF2PltL+avqeVQ5m55JrlKyz4fbLkNdr9S2DH4+nrXf8QcEOTuXsSaWyZ7RjXq9UZV9aG2F6rtNeYLB91T6K8k+t8Giv+Wregh86q3qTi0K+w8cKbuBf3Q0BCRmVWCEQACGy88ASKQzea/sC0aihz3LLg98mS12j594Erbhk5/vQg8PJ64NubgGlRS2Cw14uywI21iZyWy7WJrPhr3YIeOst6k5Z/H2uvuAXPHP4cj76t4OS5iFE0Y/Il2HhdOdYueiKjD0wrhjJjRIZx6ZkPAEB9jqxyvrfTShb8PlnyGiX7A2XaYmDWMvP3IUqAwRdRPshVPo1Vf63nuIfOst4k7QNz7SygerXElvc/wcNb9+Efb1+K2hXzssrJWrmgAjPLJ+HUwPnkQ5nlk7ByQRYr6Fi1u0G+B3Q5/n2y9DUisgCDLyITPj3xMZQzR43jsx/vN54PR9XzTJ+LabPmZ3z/nG2FY+Vf6znsobO8NwlAcZHA1XM8AICr53iyToYvLhLYeFsV7n0+BAHEfLjrd9x4W1Xm97dqd4M8367KkMPfJ8teIyKLMPiighO/3lEymax3dOj3v8Cqo5tGnV8RatDm1Krenbse037whOm2Ai5bmyhHPXRu66lYu3QmnvmeL+p1Us0on5Td62TVWlcu2K4qRg5Xo8/5a0RkIQZfVHB+uzOEf30n/aoi/321D3W3mkvqvfyWH+HwmW+lrzd9rqn76cbrVjjFn53Gxq//De79t/PJeyq+/jco/ux03iQ0r106E9VVM7C1ewcu2fk4Lq55CLf7r8+uN0Vf6+o7zyVf6+rZarXegjXm7umixXCtktPXiMhCDL6o4Nxd/CbqStL3Pn1W/CAAc8HXtFnzsxpOTMUt60dZYvcvsXbH43jmkhV49OI9OImRpPoZ+BQbL/m/WLv9fWA4v6bxFxcJLLtsAhYVv4vDl03I/nWxYu00KwK6KDkbGrdYzl4jIgsx+KKC86Wvrweuvs04PnpoL+a+tQFHb3gacy9fNlLP4R4Vt6wfZQltYsBaANURia0HBvDz7Udw/zcW4PaqWSgu0oLnPOn1yjkr1k5z0WK4ROMdgy8qPHFJ5xfOnFOfPYvyaoq4G9ePsmJiQDGAK8UAjm3/DFcuuQbF+bQgqFWs2N3ARYvh6tzSm0aUa5bu7UhEydkx4y+Xtu07idUt2/Hg9s+w4eKP8OD2z7C6ZTv3zMuGvtbVwW1qLtbRXcCFIfV5813q+Zseyyw3Kzqgi0RiyyxaDBdQh8az2Y+Tv080njH4InKIPuMv2d/5AsDMPJnxx02LLaCvddW3X83Fap6jPvcdyG5WogUBXSZD45nI+e/T0CngxF7jUaKoC8CUKIdjzpva/YHIBhx2JHKIW9YmGtcTA4BRWzbFfrBPHqmXzQbLudzdQL9fLhfDPWMuP6zvzGnAZF6iJb9PcTs76HOO5761AXgrqh73YaQ8weCLyEFuWJtoXE8MAKz/YM/hWlcAcrsY7vFuAAtN1qsydU9Lfp/idnY4fOYcNmzei6e/uwyLpscFyNmIDAMn9qhfn9gDzPhywS7XQfZg8EXkFK1HZW0FUP13FfjdrgOQe/4vxDV/h1tXVqG46DRw4nR2PSo55MaJATll9Qe7FXK1GK6/BjM/3ItT5yLJF8OdXIyV/hrT97Tk9ynuPXJeDmC/HMD5aV8GZo1xAoe2YwC0HQPw2v3AO0/l344B5CoMvoicEtWjUgxgnf7FB+8CH0TVy6BHJX51/0mfnsMiqAHDeTlgnM9kdX+3TQzIOSs/2JHfM/6Ky2di47eQemj8W19Bcbn5HlpX/T65bccAcg0GX1TQ8vmDzYoelRfe+wRPv3nIOF4ijuB3JcCGzXuxPyr42nDj5fhx9eJEtxjFbVsBuYkb1s/K9dC4W36f+pTP4Pn9w7hk8c0QCXYMkJvvxMXfPwJl1o2o9HzJ0baS+zD4ooK1bd9J/K9X/oy55/6ESnwVfX94H/+0+6/4H+u+nB8fbBb0qNx97TxUV42s43Tm4ERgB/DgTVdg+uKVxvnK0hLT93TLxAC3cdPWUvq2PVve/wQPb92Hf7x9KWpXzMvqNXfL79OO7ldQM3QUuOOXCXcMEGsewMRnq9V6gTudaSS5FoMvKkjb9p3Eb1/8F3SUvIhZE/uM8ycuVuIfXrwLuOuHefPBlkuVZZNihhMPf3opAGBuxaVYlO3ipUOnsLbiNJ75bxV49G0FJ8+NrCE1Y3IxNl5XjrUVp4Eh4XjeU/yw6+G+czHPukyGXa1g9QxSK3p8i4sErp7jAQBcPcczpvu5YaLJTfMksA9pdwy4aV6Ga5zFzZ5NyuFcT7IWgy8qOMMRiT/89jn888SngUU3A9c9aORqzHj7Cfzzoafx8G8norrqYcf/urZUZBiXnlGTxy498wEQWZVd4rWWm7YWQLUU2HXJleiDB5VQsPLif6J4uwS2Iy+m8ccPu+ru37I35jiTYVcrWDmDNO+HMl0y0aR8ujavNc2OAUY9s+JmzyaVB+8nsg6DLyo4u3rP4L7hXwGX34yiO1+KydUouvMlRF66E/cd/jV29a7HqssrHW2rZbQZWrO1GVqz32kC9j2T3QytqNy0YgDTz5zDY1puWnGezfaLH3ZNJpNhVytYNYPUFUOZFkw0sYQVW0ABo3I98elB4OX1wLc3AdOi/iDIg/cTWYfBFxWc4Y/+HbNkn9rjlSBXo+i6BzDrUDXCH/07cPntzjTSSrmeoWXxbL9cih92zVdWzPhzzWK4blm6Q98xoP0edYeANT+Jei89pe4YcMdvMu9NTtajN21xXu09S9Zi8EUFp1Io2hepczWMeoUkMqyuSbR4bexf69oMLWy+C3jjp8CVt3KRSAdZMePPNYvhuiiYz/WOAUQ67u1IBWehV1uRW8vJGEU7b9QrJB//UV0Mcs0DCXv9sOYngPKxWo8co8/4AzBqb89sZ/yN+8VwrVK1DrhvL46vbgYA9fm+PQy8aEzY80UFp/hvv47PvzQHJW8/EZvzBQCRCCJvP4kLX5qDS//268410irntL340vT6GfUc4pZZiVbK9Yw/Vy1emmOW/z7legsoGvcYfFHhKSrGpbc2Q7bfg8hLd6LougeMXI3I209CHHodl2aTq+EGk7Vk8zQztIx6DnHLrESr6etnbe3egUt2Po6Lax7C7f7rs8rJcsvipVbg7xO5DYMvKkxV6yAS5GoIz3z1fKEOGVg1QyvH3DIr0Q7FRQLLLpuARcXv4vBlE7JOhnfL4qVW4O8TuQ2DLypcVesgrrwVx7cHMfudJhxf3YzZ36jPmx4vS4ZKrJqhlWNumZUIuGuI1A2Ll1rBTb9PRIBNwZcQogGAoh16pJStY70mk3sKIbqklNXJyqmA5XGuhmVDJZyhlVNuG9LK5VAmEVnD8uBLC5IgpWzTjv1CiKCUsj7bazK5pxAiAMCf4x+LaMwsHSqpWgfkca+fm7hxSCtXQ5lEZA07er6aACzQD6SU3UKILgBJgy8T15i6pxDCA6DwskupIFg+VJLHvX5uwiEtsmKvTBrfLA2+hBBeqEOCSoIyv5SyO9NrAIQzuOcdANoBBLP9GYiIaPzK9V6Z8TmEkz49h0VQV/o/LweM8/mQQ0jWsbrny5vkvALAk+U1pu6pBWqjgrtEhBAlAKLHDErNXEdERIXLir0y43MIl4gj+F0JsGHzXuyPCr4yyiHUNitPy+HNymmEU7Md+5H5cKB+jWLynh4pZVgbekynCcDGDNtDRJQ/4j6AS5TDI88n4vZMNPkBbMVMT7fMHrVqr8z4HMIzBycCO4AHb7oC0xevNM5nlEMYtVl5Sk5vVk4Gp4KvbPKw0l1jlAsh6vRkfJOaATwVdVwK4FgG1xPlnVzlqbjlw3Lci/sAnqs/v7UBeCuqXgYfwFbM9HTL7FGr9sqMzyE8/OmlAIC5FZdi0ews97aM26wcnx4EXl4PfHuTumG3jr1eecPq4Cuc5LwnRVm6a1KWCyF8AHaba55KSnkBgPHpIgQTKcndcpmn4pYPy3Ev7gP48Jlz2LB5L57+7jIsmh7X82WSFTM93TJ7tO+MuS24+s6cBpzcqBxI3ps5bTEwa5ntzaH0LA2+tGE/RQjhlVKG48oS5mOZuSZVuZbr5dOeAWChdk0DgLCUsjNHPx7lqU9PfAzlzFHj+OzH+43nw1H1PNPnYtqs+Ta3znq5zlNxy4fluBf3AXxeDmC/HMD5aV8GZmXXo2LFTE+3zB6tPN4N7ePDRL0qy9tDhcWOYcdmqOts6WtyBfSvtWMvgEDcIqkpr0lVrgVoRmCn9YTVmVnYlQrDod//AquObhp1fkWoAQiNHL87dz2m/eAJG1tmPSvyVNzyYekqFuRnUW6t9Ndg5od7cepcJPlemZOLsdJfY3fTqABYHnxJKVuFEA1agAQAK+IWQ/VDXZ+r1ew1Ju4JwAjKarWvWwB0JetxI2fE5xMlk0k+0eW3/AiHz3wrfb3pc9PWcRur8lQoxyzIz6LcKi6fiY3fQuq9Mr/1FRSXj2HLpsgwLj3zAQCoz5FVXI9vnLAl4T6u16kzrqwNsb1aaa8xU67V6UxWRvkhWT5RvEzyiabNml+Qw4lm9A0lD7yyqUcWsSA/i3LP0r0yD7wCvPEIZiufAABmv9ME7HtG3ZuVW4AVPG6sTY6Kzyc63HcO92/Zi5/XLsOiypEPIeYTmVNZaq530Gw9sogF+VlkDX2vzC3vf4KHt+7DP96+FLUr5o1thfsDrwDt9wCL1wLfeQ6ovAro+xDY+aR6nnuwFjwGX+SoZPlEiyonY2m2067HsZULKjCzfBJODZxPnqdSPgkrF3DXLSKziosErp7jAQBcPccztsArMqxuer94LfDdF4GiIvX83BXq8ea7gDd+Clx5K4cgC1iR0w0gotwpLhLYeJs68yr+48HIU7mtivvSETnl4z8CyifAmgdGAi9dURGw5ieA8rFajwoWgy+iAqPnqcwoj+1RnFE+KavtUIgoh85p64dVXpW4XD9/ztw6Y+ROHHYkKkB6nsrW7h24ZOfjuLjmIdzuv549XkROm6zluPZ9qA41xuv7MLYeFSQGX0SFJGr9qGIA15Z8hLnF7+JoyUcoPuUZqcf1o4icMf9rgGeemlwfnfMFAJEIsPMpwDNfrUcFi8EXUSHh+lFE+a2oWF1Oov0eNbl+zU+iZjs+BRzcps52ZLJ9QWPwRXljOCLxwTEFAPDBMQVXzSzjMFmmuH7UuMUN0F2kap0aYL3xCPBs9ch5z3wuMzFOMPiivBC7ETTw8NZ9+MX2w2NfyHC84fpRrmBFoMQN0F2mah1w5a04vj2I2e804fjqZsz+Rn1WPV7xv0+TPj2HRVD/+DovB4zzDLzzB4MvctbQKWzbcwT3/lt/8o2g/1sF1l6zgL01VDCsCJS4AboLFRXj8+lXA4D6nOVQY/zv0xJxBL8rATZs3ov9UcEXA+/8weCLHDX8/i/x6BuzIVGB+JWp1I2gI3j03w6i+os/oPgbzFGiwmBFoMQN0MevmN+nyDAu7j4I/Al4bOVFXLJ8ZL9IBt75g8EXOWpXZQAncTBpuUQRTmIadlV+DatsbBeRlRgoEaDmue49/QX2D6/CxdNfYEFEZpXnavw+aftFQtsv8po//U/g4+e4X2QeYvBFjur74m9yWo+IKBesnsAQm+f6I2D7Z3iyZ3v2ea7cL9JVGHyRo7gRNBHlIysnMGzbdxL3Ph9Knuea6U4U3C/SdRh8kaO4ETQR5SOrJjAMRyQeffVAwv/v1DxX4NFXD6C6aob5IUh9v8jvPJd8v8hnq9V6C9Zk1F6yBoMvcpS+EfS9z4cggJj/kLgRNBE5xaq8vF1H+o0ldRKRAE4OnMeuI/1YtXCquZtyv0jX4cba5DhuBE1E40XfUPLAK5t6AGL3i0x4M+4XmW/Y80V5Ye3Smai+cjre2foMvvTnX+OzL/89Vt9+L4on8FeUiAqHJXmu3C/SddjzRfnhwCso/j/X4Pr9P8XyokO4fv9PUfx/rlFn8BARFQg9zzVZIoUAMDPTPFd9v8iD29Tk+qO7gAtD6vPmu9TzNz3GZPs8wuCLnKdPka5cAvygG2g6rj5XLlHPMwAjogKh57kC8ctKjzHPVd8vsm+/mlzfPEd97jvAZSbyEIMvclb8FOm5K4CSySNTpBevVadIR4adbikRUU5YludatQ64by+Or24GAPX5vj0MvPIQE2rIWZwinVNWLwxJRLmxdulMVFfNwNbuHbhk5+O4uOYh3O6/fuwzu3O0XyRZi8EXOYtTpHPKyoUhiSi3iosEll02AYuK38XhyyZwSZ1xhMEXOSt6ivTcFaPLOUU6I1YtDElERLnD4Isc1TfFB0/pXFyy8wmI7740aoq03PkkLpbOgzLFh0rnmuka3LCZiCj/MfgiR73w/nH851++g2eGnoZ86U4UXfeAsSFs5O0ngUOv40d/3YAr3z/OYTIicr+hU+pDU6IcHnk+MXmkXukM9ZGh4YjE3tNfYP/wKlw8/QUWRCSHM/OQkDLRDlM5/iZCNABQtEOPlLJ1rNeYLAeAhQAgpazPoL1lAAYGBgZQVlZm9jLKgp4gXnbk95jx3mOYOHTUKPtr6TycuvYRDC64hQniRFQY3moGdjyevt71DwE3NGV06237TuLRVw/EbF80s3wSNt5WxZ1CbDI4OIjy8nIAKJdSDiarZ3nwpQdBenAkhPADqEkVDKW7xkR5i5SyMep+QQBeKWW1yTYz+HJCZBgI/QZ47X7gmz8HfPdwpg4RFZa4nq/DZ85hw+a9ePq7y7BoevY9X9v2ncS9z4dGbdit93lxqzZ75FPwdRbAAimlEnVOSimT9oOmuyZVuRDCA6ADajCmaGU+AD0AFkopwybazODLKSf2Am3XA3U7gFnLnG4NEZGl9h0fwDd/8Q5e+9FqLJ1dntU9hiMSq1u2J92wW0BdQ+ydxm9wCNJiZoMvSxdZFUJ4oQ4JKgnK/NlcY/KeywF4o4r0gMuTQfOJiIjy3q4j/UkDLwCQAE4OnMeuI/32NYpSsjrh3pvkvILkgVC6a1KWa0HZlLgyPShL2OslhCgBED33vjTJ9yAiIsorfUPJA69s6pH1nNpeqB9ABruGmromVXkTgPpEvWVR5QNRj2MZto2IiMgRlaXmJiOZrUfWcyr4yjTwMnNNwnIhRAuALVLKthTXNgMoj3rMyaJ9REREtlu5oAIzyyeN2qhbJ6DOely5IJuPXrKC1cFXsuR2T4qydNeYvqcQIgCgN93SFlLKC1LKQf0BYChVfSIionxRXCSw8bYqABgVgOnHG2+rYrJ9HrE050tKGRZCKEIIb/wsQylld7bXmLmnnnyv93hpsyArzMx2JBvFTbvGpwdjn3VZLjhIRDQerF06E898zzdqna8ZXOcrL9mxwn0z1IR3PQgK6F9rx14AgbjeqZTXmLinD4APQKd2fwCIvwflg92/TLzg4MvrY4+zWHCQiGg8Wbt0JqqrZmBr9w5csvNxXFzzEG73X88erzxkefAlpWwVQjRoARIArIhbYNUPoB5Aq9lrUpVrPVxvQh2GbIlvSw5/NMqF5d8HrrglfT32ehERJRY1glAM4NqSjzC3+F0cLfkIxac8I/U4gpA3bNleyG24yCoREdkhF4usWrllEWXG7CKr3FibiIjIJvp+trrDfedinnUZ7WcbN4KQcssiygsMvoiIiGzywnuf4Ok3D406f/+WvTHHG268HD+uXmzupnHDieflAPbLAZyf9mVgVpa9aWQpBl9EREQ2ufvaeaiuuixtvcrSkrR1yL0YfBEREdmksmyS+eFEKlhOrXBPRERENC4x+CIiIiKyEYMvIiIiIhsx54uIiIhixC+JkUxGS2KQgcEXERERxUi2JEa8jJbEIAODLyIiIorxd0tKcFvlyBphR/s/xxNv/BcevOkKzK241Djvmc4lMbLB4IuIiIhiTPuvFzEtasuiRQBuKAGwI67i9Q8Bs7hlUaYYfBEREVGsuC2Ljh7ai7lvbcDRG57G3MuXjdTjlkVZYfBFRETkYpbsFxm3ZdGFM+q9LngWAbOWja3BxOCLiIjIzSzZL5IsxeCLiIjIxbhfpPsw+CIiInIx7hfpPlzhnoiIiMhGDL6IiIiIbMTgi4iIiMhGDL6IiIiIbMTgi4iIiMhGDL6IiIiIbMSlJsi0+FWUk8loFWUiIqJxhsEXmZZsFeV4XEWZiKhwDEck9p7+AvuHV+Hi6S+wICJRXCScbparCSml023IO0KIMgADAwMDKCsrc7o5eSPR/mH3b9mLn9cuw6LKycZ59nwRERWGbftO4n+98mfMPfcnVEJBHzw4Ovkr+B/rvoy1S2c63by8Mzg4iPLycgAol1IOJqvHni8yLdkqyosqJ2Pp7HIHWkRERFbZtu8kfvviv6Cj5EXMmthnnD9xsRL/8OJdwF0/ZACWJSbcExERUYzhiMQffvsc/nni05ixyAf8oBtoOg78oBszFvnwzxOfxh9++xyGIxw9y4YtPV9CiAYAinbokVK2jvWasZYTERFRYrt6z+C+4V8Bl9+MojtfAoq0vpq5K1B050uIvHQn7jv8a+zqXY9Vl1c62lY3srznSwuCIKVsk1K2AQgJIYJjuWas5URERJTc8Ef/jlmyD0XXPTgSeOmKilB03QOYJU9j+KN/d6aBLmfHsGMTgDb9QErZDaBujNeMtZyIiIiSqBSK9sVVSSpcFVuPMmJp8CWE8EId8lMSlPmzuWas5Um+Z4kQokx/AChN+YMREREVsIXeheoXfR8mrqCdN+pRRqzu+fImOa8A8GR5zVjLE2kCMBD1OJakHhERUcEr/tuv4/MvzUHk7SeASCS2MBJB5O0n8fmX5qD4b7/uTANdzqnZjv0AKnJ8zVjKmwGURz3mZNg2IiKiwlFUjEtvbYY49DoiL90JHN0FXBgCju5C5KU7IQ69jktvbQaKip1uqSs5tc5XpoGXmWuyLpdSXgBgrB4qBFfuJSKica5qHcQdvwHeeAR4tto4LTzz1fNV6xxsnLtZ3fMVTnLek6Is3TVjLaccGI5IfHBMAQB8cEzhWi9ERIWoah3EfXtxfHUzAOD46maI+/Yw8BojS4MvKWUYgKIlwceXdWdzzVjLs/k5KNa2fSexumU7Ht66DwDw8NZ9WN2yHdv2nXS4ZURElHNFxfh8+tUAoD5zqHHM7Mj5agZgzDIUQgQQtQyEEMKrr8tl9poclFOWtu07iXufD+HkwPmY86cGzuPe50MMwIiIiNKwPPjSVpb3CCECWhC0QkpZH1XFD6A+k2vGWk7ZGY5IPPrqASQaYNTPPfrqAQ5BEhERpWBLwn3c1j6dcWVtSNArleqaXJRT5nYd6R/V4xVNAjg5cB67jvRj1cKp9jWMiIjIRbixNpnWN5Q88MqmHhER0XjE4ItMqyydlNN6RERE4xGDLzJt5bS/YubkIiRbBU0AmDm5GCun/dXOZhEREbkKgy8yrTj0K2y88CQACYHY7SbUY4mNF55AcehXTjSPiIjIFZxa4Z7caPn3sfaKW/DM4c/x6NsKTp4bCcBmTL4EG68rx9pFTwClMxxsJBERUX5j8EXmlc4ASmdg7SygerXE1u4duGTn47i45iHc7r8exUXclomIiCgdBl+UleIigWWXTcCi4ndx+LIJDLyIiIhMYvBFREREMfoGz6Nv6IJxfKb/cywCcLT/c5w/PmCcrywtQWUZZ7hnisEXERERxXjhvU/w9JuHjOMl4ghuKAGeeOO/sP/1kRntG268HD+uXuxEE12NwRcRERHF+LslJbitstw4LlEmA28B/7J2Mi54Rs57ppc40TzXY/BFREREMab914uYtuPxUefnvrUh9sT1DwGzmmxqVeFg8EXZiQzj0jMfAID6HFkFFBU73CgiIsqJ5d8HrrglfT0uLZQVIaV0ug15RwhRBmBgYGAAZWVlTjcn/xx4BXjjEUD5ZOScZx5w08+AqnXOtYuIiMhBg4ODKC8vB4ByKeVgsnpc4Z4yc+AVoP0eoHIJ8INuoOm4+ly5RD1/4BWnW0hERJTX2POVAHu+EutTPoPn2WtxycwlEN99CSiKit0jEcjNd+LiyQNQfvAfqPR8ybmGEhEROYA9X5RzO7pfwcShoxBrHowNvACgqAhizQOYOPQJdnSz94uIiCgZBl9k2k3ztF7SyqsSV9DOG/WIiIhoFAZfZFr59LnqF30fJq6gnTfqERER0SgMvsi8+V9TZzXufBKIRGLLIhFg51OAZ75aj4iIiBJi8EXmFRWry0kc3AZsvgs4ugu4MKQ+b75LPX/TY1zvi4iIKAXOdkyAsx3TSLjO13w18OI6X0RENE6Zne3IFe4pc1XrgCtvBUK/AV67H/jmzwHfPezxIiIiMoHDjpSdomJg1jXq17OuYeBFRERkEoMvIiIiIhsx+CIiIiKyEYMvIiIiIhtZnnAvhGgAoGiHHill61ivMVkOAAsBQEpZn03biYiIiHLN0uBLD4KklG3asV8IEUwVDKW7xkR5i5SyMep+QSFEl5Sy2pqfchwZOqU+dJ8ejH3Wlc5QH0RERDSKpet8CSHOAlggpVSizkkppcj2mlTlQggPgA4ANXq5EMIHoAfAQill2GS7uc5XIm81AzseT1/v+oeAG5qsbw8REVEecXydLyGEF+qQoJKgzC+l7M70GgDhNOW7ASwH4AUQ0or0gMuTzc9BUZZ/H7jilvT12OtFRESUlJXDjt4k5xUkD4TSXZOyXAvKpsSV+bXnpL1eQogSACVRp0qT1R3XOJxIREQ0Zk7MduwHUJHja1KVNwGoT9RbFldnIOpxLMP2EREREZliuudLCBEAUGuiarOUMpSiPNPAy8w1CcuFEC0AtujJ+Sk0A3gq6rgUDMCIiIjIAqaDLyllJ4DODO6dbJjPk6Is3TWm76kFi70mAi9IKS8AuBB1bbpLiIiIiLJi2bCjNrNQ0ZLo48tGJdubucbsPbXk++jlKDyJriEiIiKym9U5X80YSXjXe6Paoo69UQuimrrGxD19AHwAQtr9vQDqoOaFERERETnK0nW+AGNRVH1IcEXcAqh1ABqllAvNXpOqXFvn6wgSzKZMtbZYgjZznS8iIiLKiNl1viwPvtyIwRcRERFlymzwxY21iYiIiGzE4IuIiIjIRgy+iIiIiGzE4IuIiIjIRgy+iIiIiGzE4IuIiIjIRgy+iIiIiGzE4IuIiIjIRgy+iIiIiGzE4IuIiIjIRgy+iIiIiGzE4IuIiIjIRgy+iIiIiGzE4IuIiIjIRgy+iIiIiGzE4IuIiIjIRgy+iIiIiGzE4IuIiIjIRgy+iIiIiGzE4IuIiIjIRgy+iIiIiGzE4IuIiIjIRgy+iIiIiGzE4IuIiIjIRgy+iIiIiGzE4IuIiIjIRgy+iIiIiGw0wepvIIRoAKBohx4pZetYr8nknkKILilldYbNJiIiIrKEpT1fWpAEKWWblLINQEgIERzLNZncUwgRAODPzU9DRERENHZCSmndzYU4C2CBlFKJOiellCLba8zeUwjhAXAHgGCq75ekDWUABgYGBlBWVpbJpURERDRODQ4Oory8HADKpZSDyepZ1vMlhPBCHRJUEpQl7I1Kd02G97wDQLvJtpYIIcr0B4BSM9cRERERZcrKYUdvkvMKAE+W15i6pxaIdadsXawmAANRj2MZXEtERERkmhOzHfsBVOT4mvhyj5QynMH9mwGURz3mZNg+IiIiIlNMz3bUktdrTVRtllKGUpRnGniZucYoF0LUaYn4pkkpLwC4EHWPzFpHREREZJLp4EtK2QmgM4N7J+t58qQoS3dNynIhhA/AbnPNIyIiIrKfZet8SSnDQghFCOGNHwKUUibMxzJzTapyLdfLF5V8v1C7pgFAWAsgiYiIiBxjdc5XM6LW2dKGLtuijr36ul1mr0lVLqXsllK26g8AQe18KwMvIiIiygeWBl9aAOQRQgS0IGmFlLI+qoofQH0m15i4JwAjKGvSvm5JtrwFERERkZ0sXWTVrbjIKhEREWXK8UVWiYiIiGg0Bl9ERERENmLwRURERGQjBl9ERERENmLwRURERGQjBl9ERERENmLwRURERGQjBl9ERERENrJsb0ciIrJe3+B59A1dSFuvsrQElWWTbGgREaXD4IuIyMVeeO8TPP3mobT1Ntx4OX5cvdiGFhFROgy+iIhc7O5r56G66jLj+HDfOdy/ZS9+XrsMiyonG+crS0ucaB4RJcDgi4jIxSrLJiUcTlxUORlLZ5fb2pZQKITu7m40NzejoqIC9fX1CAQC8Hq9trbDbvX19Whvb0dHRwf8fn/SeuFwGMFgEK2trfB6vaivrwcA9Pb2or+/H7W1tQgEAgmvbWxsBABMnToVHo8HFRUVCAQCaGxsREtLS8Jruru7EQqF0NDQkPZnyOb+NAZSSj7iHgDKAMiBgQFJROQWXwxH5Av/8ZGc3/iafOE/PpJfDEccaYfP55N1dXWOfG+n+Hw+2dXVZaqu3+9P+O/j9XplS0tLzLmenp6E9+7t7ZWBQEB6vd6k3ydd+VjvT6MNDAxIABJAmUwRZ3C2IxFRAdi27yRWt2zHw1v3AQAe3roPq1u2Y9u+k7a3paKiwvbvWQjq6+uNHihdTU0NWlpaRvWoRfecJVNRUYFwOIxwOJy0zljuT9lj8FWA+gbPY9/xgbSPvsHzTjeViHJg276TuPf5EE4OxL6nTw2cx73PhxwJwChzHo8HAKAoCoCRocBkQ5l+vz/pkG5nZydaWlrg9XoRDAYT1hnL/WlsmPNVgDj7iWj8GI5IPPrqAcgEZRKAAPDoqwdQXTUDxUXC5tapuru7jQ/6TZs2IRwOo7+/Hz09PQgGg2hra0NFRQW2bNmCpqYm+Hy+mOsqKipQU1MDQA1M/vKXvxh5SHodvaemq6sLAIxyPb8KUHOuGhoa0NnZiebmZoTDYSNPKxwOo7q62ghWvF6vcW04HIbX643Jx2ptbTVyo3Klp6cHPp/PCMI6OztT5pABGNVTpguHw/B4PAgEAkYgFm8s9weyf10B9XVsa2uD1+tFV1cX6uvrY8r1MkVRjJ+lrq4u6XnXSTUmOV4fcHnO1+mBz+WfjynGY2vomJzf+JrcGjoWc/70wOdON5WIxuiPhz+V8xtfS/v44+FPbWtTopymrq4u6fV6Y3KLvF6vbGhoMI47Ojqkz+eLua6jo0MCkL29vca5hoaGmPvr13V1dcmenh7jnoFAIOb79fb2Sr/fH9OeaNH5VoFAQHZ0dMT8TD09Pcb3DwaDRtnZs2clgKxzvs6ePStbWlqkz+eTZ8+eNc4DGJUDZsbZs2eN9vX29koARtujZXv/aNm+rg0NDTGvqdfrNX72jo6OmH/f3t5eGQwGk57PJ8z5GscqyyZh6exy46FPN9dnP+kPLrhI5H59Q+bSB8zWs4qefxTd0xI/pOXz+UblJ3k8Hvh8vpi6TU1NaGtrM+p6PB6EQiH4/X74fD60tLQYMy/jv19/f79xvr+/H6FQKOZ7AWqvUWdnZ0xPV01NDYLBIBRFQWtra0xvi97GTOzevRttbW1oa2tDe3s7/H4/enp6jDaMRXt7O+644w4A6s/s8/mwZcuWMd83kWxf13A4jO7u7phroo87OjqM4Vev14vly5enPO82HHYkInKxylJzf0SZrWel+A9lj8eDhQsXZnwfj8djBFz6PePvvXv37oT5Svowl9/vR11dHYLBIILBILq7u42Apbu7Gx6PJyYY6O3tNQKGXARIy5cvTztc5vV60dvbm7KOPiQaraurywhQdG1tbaOGHrO9f6J2RjPzunZ0dACAMXzY39+P/v5+AEAgEEAwGMSUKVPg8/lQW1uLhoYG+Hy+hOfdiD1fREQutnJBBWaWT0KybC4BYGb5JKxcUNgzEOMDovjgIxF9fS5gJEdKv9br9cLv9xuPlpYWI5/MrtmcgUAgJgBMJL5cURQjKNEfb775JhRFienly/b+uRIKhVBTU4P29nZ4vd6EAWRPTw9qa2uNtdFSnXcbBl9ERC5WXCSw8bYqABgVgOnHG2+rcizZ3gqKokBRlJRDfXoSfbxwOIwVK1YAUHtsKioq0NnZGRNQJRom079vsjIrRE8qSERRlFGBYHt7+6iFWvVh0fhZj9ncPxcURcGNN96IpqYm1NXVwePxGMFyOBxGW1sbAPV1aGhoQE9PD7Zs2ZL0vBsx+CpwwxGJD44pAIAPjikYjiSaE0VEbrZ26Uw88z0fZpTHDi3OKJ+EZ77nw9qlM21tjz58lI6Z3ilA7SWJrtvc3Iy6urqUw2E+nw9+vz8msNB7fqKDk/r6eqxfvz4mZ8nv92P58uXo7OyMuafeS6PPuov+OeLbmCsdHR1obGxM2MPV1tY2KtDq6elJeJ/a2lqjl28s9zcj3b9DOBweFTzrvzP6v2P0vy8AY4ZjovNuxJyvArZt30k8+uoBY+2fh7fuwy+2H8bG26ps/8+YiKy1dulMVFfNwJb3P8HDW/fhH29fitoV82zt8dKT3PUPVz0xPRwOG0s7tLa2oqGhAa2trdi9ezeAkR6o5uZmKIqCxsZGNDU1GcOAPp/PyLUKhUKYOnVqTK9NS0uLce/o7Yz0wELvqert7R0VnNTV1aG3t3fUsGVXVxcaGxvR399v9P7oOVr6cFdnZ2dMG5ubm+HxeJIu36An8u/evdtor97zk4zP50NPTw8aGxvR1dVlbP8DICbfSV/2IRQKYeHChaPK9DywmpqamG2MzN4/kVAolNXrqvdcNTY2orq6GsDIa1VbWxuz1Ib+77Zp0yYjeIw/70ZCSvaExBNClAEYGBgYQFlZmdPNyYq+6GL8q6v/N+zEX8NEZL19xwfwzV+8g9d+tNr2vR2toAcVyXp0iPLJ4OAgysvLAaBcSjmYrB6HHQtQukUXAXXRRQ5BEhER2Y/DjgVo15H+UduMRJMATg6cx64j/Vi1cKp9DSOinOsbPI++oQvG8eG+czHPusrSEq7tR5QnLA++hBANABTt0COlTDsvNN01Zu4phGgBoC9g0i+l7IyvU6jcsugiEY1dsu3E7t+yN+bYjduJ6flcoVDIyCkiKgSWBl9akAQpZZt27BdCBKWUSbdKT3eNiXIPgDcB3CilVIQQPgA9GD0Lu2C5adFFIhqbu6+dh+qqy9LWqywtsaE1uaWvsUVUaCxNuBdCnAWwQEqpRJ2TUsqkgVC6a0yUBwH0RveGCSH8UkrTK8W5PeF+OCKxumU7Tg2cT5j3JaBOQX+n8RsFtfYPERGRkxxPuBdCeKEOCSoJyhL+KZPuGpP3rAPQKYTw6ucyCbwKwXhcdJGIiMgtrJztmGzlMwWAJ8trUpZrwRkA+LT6YSFEMFmwpxNClAghyvQHgNJU9d0g3xZdJCIiIpUTsx37AWS6X4F+jZKmXA++FCllCACEEI0AjgCYkuL+TQA2ZtimvJcPiy4SkcWGTqmPdEpnqA8icpzp4EsIEQBQa6Jqsx74JJHNRlHprokv361/oSXde9LkfTUDeCrquBTAscybmX+KiwSunuMBAFw9x8PAi6jQ7P4lsOPx9PWufwi4ocn69hBRWqaDL22phkyWa0i286gnRVm6a7ItV5B8yBJSygsAjIVyhGCAQkQusfz7wBW3jBx/ehB4eT3w7U3AtKilJdjrRZQ3LMv5klKGAShReVjRZQl7oNJdY7I8jNGBlgdRvWFERAWjdAYwa9nIQw+4pi2OPW9D8KXv8TdlyhQsXLgQra2tMZssNzY2YsqUKaipqTE2uabR6uvrMWXKlFGbXccLh8NobGyEEML4925tbUV9fT1qampGbQwerbGxEY2NjWhtbUVbW5tRt7GxMek13d3daG1Nu1RnVvced6SUlj0ANACoizoOAAhGHXsBNGR4TbryAICWuOOuDNtdBkAODAzIQvDnY4qc3/ia/PMxxemmEJHVju+RcmOZ+uwQn88n6+rqEpY1NDRkfL+GhgYZCATG2ixX8fl8squry1Rdv9+f8N/b6/XKlpaWmHM9PT0J793b2ysDgYD0er1Jv0+68rHcu1AMDAxIqBvJlMkUcYaleztKda0tjxAioOWMrZCxC6z6AdRnco2J8k4AvUKIBm1B1hVSymrrfsr80zd4HvuODxiP6O1Gos/3DXKFe6KCEhkGTuxRvz6xRz12QEVF8jTdhQsXZny/6upq1NaaSTmmaPX19aN6m2pqatDS0jJq8Vqv14v6+qTrnwNQX9dwOIxwOHGGz1juPd5YPttRxm790xlX1gagLZNrTJaPuud4UsjbjRBREgdeAd54BFA+UY9fux945yngpp8BVescbdpYcZX77Hg8HgCAoijweDxGIJbs39Pv98PrTZwe3dnZiZaWFnR3dyMYDKKlpSWmfCz3Ho+4sXYBKuTtRogogQOvAO33AIvXAt95Dqi8Cuj7ENj5pHr+jt/kZQDW3d1tfGhv2rTJ6FX5y1/+Yny4h0IhNDY2IhwOo7e3N+l1/f396OnpQTAYRFtbGyoqKrBlyxY0NTXB5/PFXFdRUYGamhoAamAS/f30OnpvTVdXFwAY5a2trUYQEQ6H0dDQgM7OTjQ3NyMcDqOjowN+vx/hcBjV1dXwer0IBoPwer3GteFwGF6vF4FAwPi3aG1thcfjSdlrmKmenh74fD4jCOvs7EwbyCbLywqHw/B4PAgEAkYgFm0s99Zl+7oC6uvY1tYGr9eLrq4u1NfXx5TrZYqiGD9LXV1d0vOWSzUmOV4fKLCcLyIqYMNfSPlPS6V8oVbK4eG4smH1/D99Wa1nk2Q5SFJKGQwGY467urqk1+uNyRPyer2yp6fHOO7p6RmVL5Tsuuicso6ODunz+WKu6+jokABkb2+vca6hoSGmvfp1XV1dsqenx7hnIBCI+X69vb3S7/fHtCdadL5VIBCQHR0dxrHf7zd+xoaGhph/l7Nnz0oAWed8nT17Vra0tEifzyfPnj1rnAcwKgfMjLNnzxrt6+3tlQBiXp+x3Dtetq9rQ0NDzGvq9XqNn72joyPm37e3t1cGg8Gk58ciL3K+iIjIYh//UR1qXPMAUBT3X3pREbDmJ4DysVovD+l5RNG9JnrvUDbXRfP5fKPu4/F44PP5Yuo2NTWhra3NqOvxeBAKheD3++Hz+dDS0oJQKITu7u5R36+/v98439/fHzOLU+9xCofD6OzsjOnpqqmpQTAYhKIoaG1tjelt0duYid27d6OtrQ1tbW1ob2+H3+9HT0+P0YaxaG9vxx133AFA/Zl9Ph+2bNky5vsmku3rGg6HY2aHer3emOOOjg5j5q3X68Xy5ctTnrcahx2JiNzs3Gn1ufKqxOX6eb2ew6KXntDFf7h6PB709/envVei67JJ6Pd4PEbApd8z/t67d+9OmLOkD3P5/X7U1dUhGAwiGAyiu7vbCFi6u7vh8XhigoHe3l4jYMhFgLR8+fK0w2Ver9cYuk1GHxKN1tXVNep1a2trixl6zPbeydoZzczr2tHRAQDG8GF/f7/xOxQIBBAMBjFlyhT4fD7U1taioaEBPp8v4Xk7sOeLiMjNJmv5nX0fJi7Xz09OnweaK2Z6rvJdfECUKGiMV19fj/b2dgAjOVL6tV6vF36/33i0tLQY+WS5zPNKJRAIpF07LL5cURQjKNEfb775JhRFienly+beuRQKhVBTU4P29nZ4vd6EAWRPTw9qa2sRDAaN9cqSnbcagy8iIjeb/zXAM09Nro9EYssiEWDnU4BnvlrPJtXV1a4KvhRFgaIoKYf69CT6eOFwGCtWrACgBp0VFRXo7OyMCagSDZPp3zdZmRWiJxUkoijKqECwvb09ZrgUGBkWDQaDY7p3riiKghtvvBFNTU2oq6uDx+MxguVwOIy2NnUBBJ/Ph4aGBvT09GDLli1Jz9uBwRcRkZsVFavLSRzcBmy+Czi6C7gwpD5vvks9f9Njaj2bBAIBeL1e48NNF5/blIyZXqaxXBcKhWLqNjc3o66uLuWQmM/ng9/vjwku9J6f6OCkvr4e69evj8lZ8vv9WL58+agV5/VeGn3WXfTPEd/GXOno6EBjY2PCHq62trZRgVZPT0/C+9TW1hq9fNne26x0/w7hcHhU8KwPOer/jvG/i/oMx0Tn7cCcLyIit6tapy4n8cYjwLNRa0p75ju2zERXVxdaW1vR2NiIqVOnAlCDlOjhvFAoZCzR0NraioaGBrS2tmL37t3o7+9HRUUFvF7vqDqprgNGeqCam5uhKAoaGxvR1NRkfG+fz2fkWoVCIUydOjWm56alpcW4tx5IAiPBhd5T1dvbOyo4qaurQ29v76hhy66uLjQ2Nho/l14XgDHc1dnZGdPG5uZmeDyepEs46In8u3fvNtqr9/wk4/P50NPTg8bGRnR1dWHq1KlG/eh8J33Zh1AohIULF44q0/PAampqUFtbi0AgYPreyWT7uuo9V42NjaiuVn//9deqtrY2ZqkN/d9t06ZNRvAYf94OQqpLK1AUIUQZgIGBgQGUlZU53RwiInMiw0DoN+oCq9/8OeC7x9YeLzfQg4pkPTpEYzE4OIjy8nIAKJdSDiarx2FHIqJCUVQMzLpG/XrWNQy8iPIUhx0L0dAp9ZFO6Qz1QUTuFf9+//Rg7LOO73eivMHgqxDt/iWw4/H09a5/CLihyfr2EJF1kr3fX14fe8z3u5HPFQqFjJwiIicw5ysB1+d8JfpL+OX1wLc3AdOiNtLmX8JE7seebqK8YTbniz1fhSjZf7LTFgOzltneHCKyEIMqItdhwj0RERGRjRh8EREREdmIwVehiwwDJ/aoX5/Yox4TERGRYxh8FbIDrwD/e5m64CKgPv/vZep5IiIicgSDr0J14BWg/R6gcgnwg26g6bj6XLlEPc8AjIiIyBFcaiIB1y81ERlWe7gqlwDffREoioqxIxF1s92+A8B9e7gCNhERUY5we6Hx7OM/AsonwJoHYgMvQD1e8xNA+VitR0RERLZi8FWIzp1WnyuvSlyun9frERERkW0YfBWiyZepz30fJi7Xz+v1iIiIyDYMvgrR/K8BnnnAzifVHK9okQiw8ynAM1+tR0RERLZi8FWIioqBm34GHNymJtcf3QVcGFKfN9+lnr/pMSbbExEROYCzHRNw/WxH3YFXgDceUZPvdZ75auBVtc65dhERERUgs7MdGXwloAdfR48edXfwBajLTux9CXj9IeDmx4Fld7LHi4iIyAKDg4OYO3cuwOArc0KI2QCOOd0OIiIicqU5UsrjyQoZfCUghBAAZgEYSlO1FGqQNsdEXXIOX6f8x9fIHfg6uQNfJ2eVAjghUwRYE2xsjGto/2BJI1adGqMBAIZSdS+Ss/g65T++Ru7A18kd+Do5Lu2/OWc7EhEREdmIwRcRERGRjRh8jc0FAI9qz5S/+DrlP75G7sDXyR34OuU5JtwTERER2Yg9X0REREQ2YvBFREREZCMGX0REREQ2YvBFREREZCMuspolIUQDAEU79EgpWx1sDiUghPADqAfQBSAMoBrA+1LKTkcbNo4JITwA7gBQI6WsTlDO91UeSPU68X2VX7T3DAAsBAApZX2CckU75HsqTzD4yoL+yy6lbNOO/UKIYPwvPTnOA8APIAD1Q6KFHxDOEUL4ACyH+rpUJCjn+yoPpHudwPdV3hBCtEgpG6OOg0KILj1g5nsqf3GpiSwIIc4CWCClVKLOSSmlSH4V2U0IEQDQHf06kfO016VJSvnVuPN8X+WRFK8T31d5QOud7IDaO6lo53wAegAslFKG+Z7KX8z5ypAQwgu161ZJUOa3v0VE7sf3FVFWlgPwRh2HtWcP31P5jcOOmfMmOa9A7Y6n/HKHEKIf6vDJwuguesorfF+5C99XDtOCqilxp/WgKgw1MEtEAd9TjmPwlTv6f0SUP0IAIKUMA4AQok4I0SGlrHG2WZQBvq/yD99X+asJQL2UUhEi6cgi31N5gMOOucNf5jwjpQzrHxCadgABLVeC3IHvqzzD91V+EkK0ANiiJ9enwPdUHmDwlblwkvOeFGXkAC0x2BCV+5BsiIucw/eVS/B9lX+016Q3bhkJvqfyGIOvDGl/8SlaMmN8WbcDTaIE9JlA0a9T1F/m/I8nz/B95Q58X+UfPXk+ajkJjxDCy/dUfmPwlZ1mjCQ26n91pOvqJRtpf423xg2P1AHo5BR5xyUb9uD7Kr+Mep34vsov2tISPgAhIYRXC7TqoOZ1AXxP5S2u85UlbfE6/T+gFZztk3+0v8jrok5N5evkHO2DIQCgFuoHRiviVkbn+8p56V4nvq/yg/Y6HEGCmYvR63jxPZWfGHwRERER2YjDjkREREQ2YvBFREREZCMGX0REREQ2YvBFREREZCMGX0REREQ2YvBFREREZCMGX0REREQ2YvBFRJQj2tYuHqfbQUT5jcEXEVHuNIEbTBNRGgy+iIhyxyelDDndCCLKbwy+iIhyQAjhB9DldDuIKP8x+CIiyo0aAJ1paxHRuMfgi4goN7xSyrDTjSCi/DfB6QYQEdlJCOEDsBzAQgDvA+gGUKcVK1LKtizuGQDQkaJsBYBeAGHt0S+lVDJuPBEVBPZ8EdG4oS0D4ZdStkkpGwFsAtAkpWzVqjRmeetaAO0Jvl8dgGopZaMW1HmgBmHLs/w+RFQA2PNFRONJXVSgpevVnkMA6rO8rye+J0sI4QXQAmBB1GkFAKSU3Vl+HyIqAAy+iGg8MRLiteDIA63HKj4g0soDUIcJVwAIJsrp0nq3ggm+VxBAd1xQVg01yCOicYzBFxGNG3HBkx9AOEXuVYeU8qsAIIToBvAmgK8mqFcjpaxOcN4PdQZkNB/UHDMiGseY80VE41U14paG0LcG0pLyDVqA5tF6w+LrK/E3jqoX38vFtcCIiMEXEY0f2hChLgB1tqNRFtULliwh3hd3nGzIEUBsT5u2CCuklN1CCF98gEdE4weDLyIaF7TAq0X7OoCo4b8Em2F7APTHnVMAVMSdq06UPK8FXWE9wNLuXw81fwxQZ1wy94tonGLOFxGNF90A2rQgbDfUYKhRCAEAFXHreykYHWh5EBWQaUOLqRZVrQFQL4ToAQApZY0QokP7/gy8iMYxIaV0ug1ERHlF67HapCfca+fOAviqPpQohGgBsIU9WESUKQ47EhHF0QIqj36sDRuG42ZL+hh4EVE2OOxIRJRYjda79T7Udb6MZSO0njEGXkSUFQ47EhFlSAgRBNDCjbSJKBscdiQiylwFAy8iyhZ7voiIiIhsxJ4vIiIiIhsx+CIiIiKyEYMvIiIiIhsx+CIiIiKyEYMvIiIiIhsx+CIiIiKyEYMvIiIiIhsx+CIiIiKy0f8PD7mzDw5U74UAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "am_pcac_impr.show(comp=am_pcac)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Plateau values" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can now construct a plateau as a derived observable from the masses." ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Fit with 1 parameters\n", "Method: Levenberg-Marquardt\n", "`ftol` termination condition is satisfied.\n", "chisquare/d.o.f.: 0.2704765091136813\n", "Result\t 5.03431904e-03 +/- 5.38835422e-04 +/- 8.24919899e-05 (10.703%)\n", " t_int\t 5.15384615e-01 +/- 1.25000000e-01 S = 3.00\n", "64 samples in 1 ensemble:\n", " · Ensemble 'test_ensemble' : 64 configurations (from 1 to 64)\n" ] } ], "source": [ "pcac_plateau = am_pcac_impr.plateau([7, 16]) # We manually specify the plateau range here\n", "pcac_plateau.gamma_method()\n", "pcac_plateau.details()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can now plot the data with the two plateaus" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl8AAAGLCAYAAAD5+Pe5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbfElEQVR4nO3de3hb1Z0v/O+SE9u52N5xEuPciRxCcAIFkcCkTchQZEiHkikdmxToaV+mL3Z55rQwpa+Ny7xPhjPtGPsFTpnOHEbOocx0uCS2T5kCnQZsYEJoGUIsUpoLTSKFkLuT2NuXJHZia71/bG1Zd23J2rrY38/z6JH3XnstLWnr8vNaa68lpJQgIiIiotSwpLsCRERERBMJgy8iIiKiFGLwRURERJRCDL6IiIiIUojBFxEREVEKMfgiIiIiSiEGX0REREQpNCndFchEQggBYC6A/nTXhYiIiLJKAYATMspEqgy+wpsL4Fi6K0FERERZaT6A45ESGXyF1w8AR48eRWFhYbrrQkRERFmgr68PCxYsAGL0nDH4iqKwsJDBFxERESUVB9wTERERpRCDLyIiIqIUYvBFRERElEIMvoiIiIhSiMEXERERUQox+CIiIiJKIQZfRERERCnE4IuIiIgohRh8EREREaUQgy8iIiKiFGLwRURERJRCDL6IiIiIUojBFxEREVEKMfgiIiIiSiEGX0REREQpxOCLiIiIKIUmpeJBhBC1AFTvpiKlbBprHgPp1QAU7zFlABqklCqIiIiI0sj04MsbJEFK2ezdtgshHFLKmkTzGExv1oMtIYQCYDOAKlOeJBEREZFBQkpp7gMI0QNgsX+rkxBCSilFonkMpLdLKSuCygzZF+XxCwH09vb2orCw0EgWIiIimuD6+vpQVFQEAEVSyr5Ix5k65ksIYYXWJaiGSbMnksdgmaoQot3b4qWX6U7waRAREREljdndjtYI+1Vo47ESyWOkzAcBdALoEUI0AXDF6ObMA5Dnt6sg0rFEREREY5Guqx27ARQnOY8v3dsq1gigDUAtgCq9FSyCegC9frdjcdaNiIiIyJB0BV/xBl5G8vjShRCNANxSyipoVzoWQ2sJi6QBQJHfbX4C9SMiIiKKyexux0jjrJQoabHyRE33GxPWAQBSSjeAG4UQnUKISillW3BGKeUQgCF9W4iI1wLQBNXVN4iu/qGYx5UU5KGkMD8FNSIiomxlavAlpXQLIVQhhNUbBPmndSSaJ1q6d9C9GqZox5ieDE1o/77DiV+974x53J+vsaH6zi+moEaUMv2ntFssBaXajYgohlRMstoAwA5An5OrUv/bu20FUBk0SWrUPNHSvQFYnRAi+IrIG6MNuieK5v6ct1Gd91TM487n/BAAg6+0MSNQ2vUCsP3J2Metewy4td5YmUQ0oZk+zxfgm/RUb6VaJaWs80urBlAnpSwzmsdAmQq0QfTnMHoVZHO46Ski1JfzfFGgoB/1owd3Y8G7D+Porc9iwVXXjx7H1o/0erch+YFScEB39gDwyweBr28GZi0d3c9zTzThGZ3nKyXBV7Zh8EWxHPr9+1jy6p04dPevseQLa9JdHdKlIlA6sRtoXgdUbwfmXj+W2hLROGM0+ErJ2o5ERCkRKaiatZSBEhFlDAZfRJR6HMROycT3E2UZBl9ElHocxE7JxPcTZRkGX0SUeisfAK7+yuh2tLFZRLHw/URZhsEXEaUex2ZRMvH9RFkmXcsLEREREU1IDL6IiIiIUojBFxEREVEKMfgiIiIiSiEOuCciovA4fxaRKRh8ERFReJw/i8gUDL6IiKLo6htEV/+Qbzv/7ACWADh0ZgCDste3v6QgDyWF+WmooYk4fxaRKRh8ERFF8dKHn+PZtw/6tpeLw/h1HvDwlt3Y6xd8PXzbVfjriqXhigiVLd15nD+LyBQMvohofPKMACc+1v4+8TFQei1gyYm7mPtvXoiK8it822cO5ALbgR/efjVmL73Jt7+kIM94oezOI5rQGHwRxWlkeBjHD3wM1XMVzh/4GIuX/wlyJiXwUcqW1o9sqSdGuwgLD/8GpR/+GLn9R7WENx7Bpe1P49TNf4O+xV+Jq4uwpDA/4NhDZ6cAABYUT8GSeUWJVZTdeUk1obuGKSsx+CKKw8dv/ivmfvgTrPOc1iZq2fs3OL3/Zzhx8+O44Y5vx1dYtrR+ZEs9oXURfvruS3gu91ngqjuAe14ASq4BuvZj0ntPYX7Hd/HQpYex7Nb7jXcRmmEid+eZEMyb0jVMZCIGX0QGffzmv+ILHzys/ajf8kPfj/rs957C7A8exsdAfAFYtrR+ZEs9Ady/ah6UT/4PxJw7IL7xCmDxTmW4YBUs974CueVe/OzkL6Guqk1vRScyE4J5U7qGiUzE4IvIgJHhYcz98CfAVXfAcm/oj7rnlXsx58O/x8ht9xvvgsyW1g8T6mlWN1FJjxPoP6q1eFmC5pC2WCDWPorc5yu045S1CdWdxsiEYN6UrmEiEzH4IjLg0w/fxHLPaa3FK8yPuuWWR1F6sAJ7P3wTy790Z3oqmUX8u4ks8OAey7t4Mhf431t/iRZPDzzexTfi7iYaOK3dl1wTPl3frx9HqZct/3QQmYjBF5EBF3uOa3/E+FH3HUdR6d1EwQPjn8x9Hv+j4K2AgfFxme7teuraDyxYFZretT/wuHh5RjDlzCcAoN17Vid0BaUpsujCCKKJjsEXkQFTZszT/ojxo+47jqIqKcxHybG3gI7vAkvXBwyMz93xNBZ2fBe45xfAvA3xFbzoi4CyENjxNPCNlwNbKT0eYMczgLJIOy5e+14D3noc89TPAQDz3q8H9jwH3P4ToDzOepohiy6MIJroGHwRGbDs5jtw+u0rMPu9pwLHfAGAxwPPe0+jy1KKZTffkb5KZhPPCPDW41rg5R8kLVilbW+5D3jrb4Bld8bXsmTJ0YKhlm9pZaz9gS+ow45ngAPbtKAu3taqfa9pZS5dD/zFz/3KfFrbf88v0h+AZdGFEabK5NZJIi8GX0QG5EyahBM3P47ZHzwMzyv3wnLLo74fYM97TwMH38TJ1c+iNJH5viaiI78D1M+1QCbMGDqs/QHwfIV23OI4B8aXb9CCobce18rQKYsSC5LMChSTjWOpMr91ksiLvxREBt1wx7fxMYC5H/4EVxwc/VHvspTi5Opn45/nayIze2B8+QZg2Z04/o4D896vx/E1DZj35ZrEgiMzA0VKnmxonSTyssQ+hIh0N9zxbcz60T5sX/5j7PJche3Lf4zZP9rLwCte/gPjwxnrwHgAsOTg4uzrAEC7T7RVildQZr7g1skFq4C86aOtk0vXa62TnpF015QIAIMvorjlTJqEeUtvwErLQcxbekNiSwtNdP4D4z2ewLSxDoxPtlQEitkgeK3MTApk9NbJtY9Gbp1Uj2jHEWUA/moQpcmEXo/OrIHxZjDzCsoMZ8ZamaZg6yRlmZQEX0KIWgCqd1ORUjaNNY+RMoUQjQBc3s1uKWVb3JUnMsmEX48u2QPjzWJCoJgtgXfWrJVp9vxuRElmevDlDZIgpWz2btuFEA4pZU2ieQykKwDeBnCblFIVQtgAdAIQJj1NorhxPTokd2C8mZIcKGZL4J01a2VO4NZJyk6paPmqB7BY35BSdggh2gFEDL4M5ImV3ghgq5RS9aY7hRB+35hE6RewHp1nBMf3az/GS0cOYt6cL2dMAGJ6K02yBsabLYmBYrYE3lmzVmY2dWMTweTgSwhhhdYlqIZJs0spO+LNA8BtoMxqAGXesqxSyo5wj+WXLw+A/7dcQaznRpQ0GT43Uba00gQb8UjsPj2MvSOrcfn0MBZ7JHIsY2z8TlKgmDULQZswlsq0YD5burGJYH7LlzXCfhWAkmCeqOnegAsAbNACNbcQwgGgNUoAVg9gU4Q0IvNkwdxEAa00nhFc3nUA+D3w45suY/LK0dnD091K42/bnpN44vV9ONk7COB7wDvn8XTnO9h0VznWr5iT7uplDxPGUpm2qDqQPd3YNOGl62rHbgDFCeZRY6TrwZcqpXQCgBCiDsBhADMi5G0A8IzfdgGAY3HWjyg+WTJzuq+VxttCB28L3Q2//1vgyM8zpoVOt23PSTz0ohMyaP+p3kE89KITz33TxgDMKBPGUpm2qLouW7qxaUJL1zxf8QZeRvIEp+/S//B2USrebssQUsohKWWffgPQn0D9iOKTTXMT6S10JcuB73QA9ce1+5Ll2v59r6W7hgC0rsYnXt8XEngB8O174vV9GPGEO8JY+btPD+NXI6ux+/RwwuVkDX0s1YFt2j8DR3cCQ/3a/Zb7tP23/ziuAKekMB8rerdjYcd3kTtnRcD7KXfOCizs+C5W9G5P+CrPCXeOKCuZ3fLljrBfiZIWK0+i6Soid1kSpV62zE2UJS10ALDzcLe3qzE8CeBk7yB2Hu7G6rKZcZWd6V2ZWTOWysT3U6afIyKdqS1fUko3ANVvHJZ/WtjxV7HyGEx3IzTQUuDXGkaUdtkyc7rJLXTJbKno6o8ceCVynE7vygwO7PSuzG17TsZVnhle+vBzfPVn7/tuD2/ZDUC7MMJ//0sffh5/4eUbgO/vxvE1DQCg3X//48S6m016P2XDOSLSpWLMVwMAOwB9Tq5K/W/vthVAZdAkqVHzGEivA7ARgNMvvUMfA0aUEbJlbiITW+iS3VJRUmCsRcfocUDsrkwBrSuzorx07FdTjoHp01dk8FqZppyj/lPaLZaCUu1GFAfTgy8pZZMQotYbAAHAqqAJVu3Q5udqMprHQHqbEKJYn4wVwEwpJef5osySLXMTmTR7uBkD42+adQlzpltwasAT9odYACidnoObZl0yXKaZXZnJlDXTV5jwfjLlHO16Adj+ZOzj1j0G3FpvrEwir5Rc7RjUqtUWlNaMwFarmHkMpoeUGa/+/n4IwUnxKdTFixd99/39Y7g+Y8GtmLTBgbz//DtY/MbTeIoWYmiDA8MLbgXiKF8MnIY43xXzODmtBNLoj1vxtZhWuABix1OBs5wDgMcDueNpyKKFOF98reG6jngkNv1qT9SWir99bS/+ZMG0uFqTcv/LgU1D7+MhPAIBCek3skLAA0Bg09BTGP6vNbjwxUcNlfn5GdXwcStKcg3X1V/S3k/ZUKYJ7yczzpFYVgWxYJ1v23LuEKb85nu4+JWfwTNziW+/nFYCmaTXl7Kf0c8FF9aO4s0338TUqVPTXQ3KQJfVo7gWwO7du7H3s3NjLk/M+RFm5PwWt/e8iLdmfBM9JV+CPCCBA7+Oq5wVZ17HinNvxDxuz8yvYs/suwyXO7/gz/ClA82QW+6FWPuor4VO7ngaOPAmfjevGsd+s81wea7+HJzuj/zZkgBO9Q3hn1reRFnBiOFy84fnYErZ7ajuP4qW03PQMzz6w65MGsY9V5yCKLgdvzlThMFfG3ttXf05AGJ/Dxz6gxO//sx4XXVCejCj67e4FsDJD/8d+w6fgRRjH46b7PdoMss04/1k5jkCgBmDp3AHgPf2n0JPvn8Al8AYOhq3Lly4YOg4Bl9R5ObmorCwMN3VoAx0YVDr0pmSPwVTk/Qe6Ru6BugB+oquQUGRklAZp/P/DGrp6BixaReP4wb3P+Fj61/h/JR5vv1DkxUU5hqvd1/hn8I5ZSrKP38JU/xa6Abzr8C+JY+gr/gmxPMqDA8aG1Q/PHkqCgvjaX0uxAgW4AslwLVWid+eBF45BNy7BPjSnFxYxCKMAMj13oz4QoGEchRQo/RUzsgDvjB3KixxtpRf0b0T5cdewpRBrbXy9p4XcfHiW9g3/36cLr4pRu4opAfTerQB5gvlSZwvuAZIQkCXrPd9st9PZp4j3bScadr9tGkYmcbfBQpveHjY0HEMvqLIz89nyxcBAC72ncXl892+7UkXT/vuh3tHf8YnTyvGlMJZcZfvkRL7L0/Hr0ZW48jl6bhhypTEfiSmTsUwRoOskX5tDNDIjDIMF5T59htrJwjUP/VP8eG8tZjsfgtfOvrP+O2C7+Ky9XZA5MRdVknBCIDYVxyWFORj6tTEx7xdPXsEODSIq2fnY/q0xMv5Zvkw/nH3UMT0+6/Jw/Rp8X2dzjrzAZYf+imw9A5g7Q99rT/5O56C7cBPsXd5Hc7OXh13XWed+QBL3C8g3/seXXf6eQz2vYFD1gcSKs/fcJ72Xs/Nyx3zd2My30+AOefIX/6I9lnKz8/HMH8XKAK2fNGEpQ56oA7FbllR8gSUfIOtAQe3YUN/a8jur53+B8DvoqzfFFQBN37TaFUBALtODeOl/ZfQMzQbwPcAFzDj2EXcf00uVpZm2EdU5ODcVC2IOze1DIUisYDm6mILZuQJ9EQ5T8X5AlcXp2se6EArSyfhv18P73karXNxvsB9yxI4T3IES9wvAEvvCBz3tGAVxDdegdxyL5a4/wVnZ90ExPEazzrzAZbvbQwJ6PJ2PIXlexsTDuhMk6T3E2DCOSIyEd+NNO50fnYGziNnYh5nWzQbty0zOOj8qvV47XzsbqDJ0+JbvGHXqfD/rfcMSfzj7iH89+sxLn808i/14DuLL+CpTxXvHv9WPu2H8y+v7EH+pam4lJfIghjJt7J0EmxX5ODjQ0ew5PMtOLTwG7hhyaKEWigVdZ/WMrX2h2HnuhJrH0X+8xVQ1H1QZ1xrrFCTArpsksxzRGSm8fetThPe/Tlv4+/ytsY87tOcjTiF+wyVOaVwVkLdidF4pMRL+6NPefDyp5dguyJn3P14zD3xJr54ZAuWTF6FJy5/Cycxevn/HJzDpsn/hvWffYTP5Dfw2eJ701jTQBYhcNX0S9iQ8wFem/71hM9L7qUe7Y8Yc135jjPAlIDOj0dKHBzIxa9GVuPQQC5ukDIj35fJOkdEZmLwReNO98L12FV6s2/7/NkjWHfkWWxf9DCmzVrk238pN9I666nxx25P1G43AOgelPhjtwfXzBxfLRUn5t6Bs7NuwiwAP5WX8f7pM3jVJXF3mcCaK0aQI+7FLtyb9nNkFt/zijHXVTzP34yATpdVXeNEWYCfGhp3LuUVB3RV9Q1ol5b35s+H9Bt0nm69BsalxXNcKiSr9SP4HM2UIzjmGsTMknxcLBxfgWY4qlKOwSlXIC/KXFdDU0qhKuWGyzQjoAPM7RrPltY0omRj8EWUJkV5xn5kjB5nNrZ+JJHIwSHrA1i+tzHiXFeHltfFNTbLjIDOzK5xvp9oIsuMS4mIJiD9ir9oMuWKP731I7ibVG/92HXK2Nw2NOrs7NXYu7wOQ0c/Bp6vABrmA89XYOjo7sSuSvQGdDjwJuSWe4GjO4GhfuDoTm37wJs4ZP2/4gro4ukaj0ey30+5Q92Y3u/y3YoGjwEAigaPBezPHeqOURJRavDfiyj+7d/+LeZcNiUlJbj77rsD9r366qvo6oq9xMvKlStx4403+rYvXbqEF154wVDd/vzP/xylpaOLubpcLnR0dMTMN3nyZPzlX/5lwL7t27fj008/jZnXarWioiJwicwXX3wR58+fj5n3lltuwTXXjI5F6e7uRmtr6NQN4dx///2YPn26b/uTTz7BBx98EDPfjBkzcM899wTs+/Wvf41jx47FzHvddddh9erAHz+Hw2Govn/2Z3+GBQsW+LaPHj2K//iP/wh77OwpC9Az+xZtI0zLwY2Ww9jc/H7Mx5w/fz7uvPPOgH0tLS04f/owSk8N4tQf2nApVwmbd/Xq1bjuuut82wMDA3jppZd82xICznlfA3Kmhq0jMNr68cdPP8V7770Xs77Tpk3DN78ZOCXHwN530XLgWMyWvmXLlmHdunUB+37+85/j8uXLIcf2Dkn0nBhGy4FJKMoTsNvtKCsb7Xo+deoUfvWrX0V9vJyRQeSMDKL6vj9HXu5kCO8P+8HO9/DJ4Vd9x43k5GMkJ3TB7ljfEQI2LBGfYdnQ7/Fp3hdwSF4JufsTAJ8k9B2xavoN+PbI+5h5YHSG+KEppXh/5rfx/C+1cqPx/444f74fwOSoxwPAv7/xH3hv8ISh7wij76crJ/fh/7QZ+46oX5OP68780re948gw6g4MA2gMOK636Br0Fo1+D8XzHZF7SQ34LKXqOyJYTU1NwPYHH3yATz6Jfk6ByN8RPT2xxwDG+o6IpqqqCsXFo0MM9u/fn/B3RHt7O9xud8y88XxHBEvkO0L3wAMPGDoOYPAV1YULF+DxRP+PLtwM+IODgxgYGIhZ/tBQ6DgKI/kAhNRreHjYUN7c3NB5vY3WV1/Xzd/58+cN5Q2e9dfj8Rh+rlIG/nd8+fJlQ3nz8vJC9l28eNH0cxP8XKOdm7yB/Vg4OIiTc76Ey5NHA0x9bqKBT8+gM8Fzc+HCBfSfv4D8QYn+8xdw+VL4j3vwF5KUMqC+A1Pn4tKkaVEfX2/9MPo+DEdeHsSFSwPIuRw9+BocDJ2c9fz587h0KbR77MIlCc/gCC6cz0HOZZHQ+7Cg/xCm9btw48e/Rf6k0botPf5LHPhstLz+gjIMFCwJyW/kO2LnhVycVkdwRMnF5KmjgUoi78N3B6Zj+6kb8H/fMg93nd/im7zUdeAQBgZi/3D5f0eU9e8E8KWYeSad+yMGpDD0HWH0/XSo1/hn7sQVX8GlhWt82+9e2oNXdn+E8mILpk4ePWce5GHEr0yj3xEWSCyZchqLii3IzTmNTwZyUvYdEcvQ0FDC398XLlwwlDfWd0Q0if5WhWP0+zue74hgY/mtigeDryimTp0as+UrPz/0P938/PyAlppIwn3wjeQDAEvQpeSTJk0ylHfy5ND/Yo3Wd8qUKSH7pk2L/iXqXz9/FovF8HMNXtx88uTJhvKGO3dTpkwx/dwEP9dI50ZvUSkeOogrPzuEc5ZCVC9TcbL0NtywoBg5Atjh6UbRlElhW1T8hTs3U6dOhZw2FUq/wOC0qbiUG77+we8JIURAfQenGptnq3dIosjg+zDc+0ZMzsfUydMxPUbLV7jP3LRp08L+YzEyJGHJH8bUaZMwPU8k9D60TFmGwZlXovMGreXrxMAIHJ9cws2LXRi8NNpibMnJx/Qw58nId8QlcQnKoMDZaVOQO210/1jeh6fzrgTOj05emsh3xOyylZh5egTnLlkQOBebl5TIGx6Akp8LT06eoe8Io++ngRHj3xHD+cUY8H/PTu9Hb95RWIomIS/K+8nId8Sq6afw7dIDmJkzAG1RKhfOjZzGf04KnXom2d8RRuTl5SX8/T116tSwQWSwWN8R0ST6WxXuO8Lo93c83xHBxvJbFQ8R3KpAgBCiEEBva2srZs1K7txOlHp9Jw9gwx//H7x29f+HwjlL010dnysPv4Irj2yJedxni4zPdRU8u3/xBZfvuXdPHW1Kj2d2//3nRtD4UeylgOpW5Sc8JcZnvSP42w8G8ber83FlUfKudjSj3GSX6ZHSlElBk/W+j3S1o+6/X58X1wD5bHo/+a8YIPxWDJA7ngIOvJl5KwZQ2p09exZVVVUAUCSl7It0HFu+aFzL5EvZ9bmufNveFpWa63Ixd/roD0Y8UwO8e3QYv3KNdhEsF5ewIQ9wfHIJe+XoD96fl03G3VcZW1o625YCyibZcMVfspftyZb3k3rxMlYdir5iwJWH/gWHpq+EMiX2uDgif5nx6SYywa5Tw3hl/yCuunwGR3Ajug6fwcvHZuHea/Iz4octeK6rbs8I9spBdE/NR2FBYv+t37pgEm4oGc07cnYycBT4+pLJqJo12hSvxDF9hUUI3H9NbtTWj/uW5WZMUJstsmlpKX3Znu1HL+Nf913Gt8snY92CyQmd82x5Px117cG0oegrBkw/UIGjrj1QVtyQnkpS1sqMTzZRku06NYyDn+zA63kvY27u6JWnJ0QJnvjkPgBrM+aHLZmUfAsUv+EOfRe0H7DZUwUKE+x+yR3qxp9O60H+sjy84C7EuUuj5czMHcED1j78ybQhXBqakfZ1GIO7XU8MeALudXEtqm4Cs5eWMqPF1yIEFhflALiMxUVjW/IqGxbB/hOlDziLmCsG/InSh9jXe4/KHeo2tMrApdz0f57IPOl/hxMlmUdKnNz/Pp7LfRZYcgdwy+hYjdL3nsJzB59F7acCnivWpf2/a1PJEcy84AIAzLzgwmVZltCCynNPvIkrj2zBSgAPCYGdk5ehCwpKoOIm8SlyPpPAZ/GNTTNLcLerrvkPgYFOPN2uZjBzaalM78rUg48/nQasvRH4+Gg35px6O+BCE/SnP/iYPM372DFWDPAdZ5D+eYolEz5PZJ70fxKJkuzAuct41PISsOQOWO4NHKthufcVeF65Fz849DJeO/dFLJuVvh9gM8068wGWuF/QFloG8KWj/4zBs6/ikPWBuAcIB49NOzMwgmbv2LSPExybZpbgbtdI4ul2NYNZS0tlQ1dmcPBxMwDkADjzAXBm9Lh0Bx9mrBgAhH6epl44hvL9z2DfNT/Ahanzffsz4fNE5mHwReNOoboPc2WX1uIVZqyG5ZZHMfdgBQrVfcCs69NSRzP5X6EFvyu08nY8heV7G+O+QsuMsWlmCe52zVRmLC1ldldmsphxoYkpTFgCCgj9POkuTJ2PgQxae5bMxeArisHBQVy4cCHd1aA4zRj2/vscY6zGjOEzGXV+Bwel934QFyYn+OMoPShz/TzqFVplrhfw+dRrAZHYmKek1DMFZZolGXVdkC+h5AJqlFhpRh6wIH8QFy4Ye4wDqkRPjCmbugclPjl5AUuVxOqdjOd+AflAzhzf9gmLxF4JnLAAk3L8yhwBkODnM1nvp8+nfQFDSx5B+ecvYcrzozP3D+ZfgX1LHsHpaV9IuI66Sd4JQQcHB3EhJ3O+jygx4SZ4DYfBVxSXLl1CX1/EaTooQ82a7O1KjDVWY3IuzmbQ+T1/wQJgGs6fP48+Gd9aebqS83/ElMGuqFdoTXm+AvmnOtE17eq01TMVZZolWXX96txJePEzvZnOP0DQAoc75wxioN/4GoeneicBCJ1IM/S4iyi1JLYWZ7ac+2SW2TdpGQ4tegIzun6L23texFszvomeki9BCguQhO+PnEFtuP758+fRN5I530eUGCOz6AMMvqK64447wi4NQhnOsx4XHFuR/95TgWO+AMDjgee9pzE4dT5urnwYsGROt9m+k/342YGPsWbNGpTPKUiojEn7LwNHEbPVb/W1Vgxfc2f4Y1JQzzP9QzgzMPolJc9eAA78EXOX2bB41uis47On52J2Qegs7+mUjOcPAHcCuPHTs3jyrUM43T/6WpQW5qOuogz2ZfFN8FxyRMWWI7HX+Lt97c1YtUiJs7aaZD33ZJeZivfTZ3tnA9texJybv4bVy/8koTLCsZz+A/AZsGbNGniuuDZp5VJ6GG2wYfAVRUFBAQoKkvMFQyn21SchW74Fzyv3wnLL6FgNz3tPQxx8E1Pv+QVQpKS7lgGm9Wn/oU+bNi3x993sK7X7GK1+U2ZfCST4GMmo5//+r5N49u2DIfvrX/tjwPbDt12Fv67InFUJgCSdJ6+7VxVgw41X4tWO7Zi840lcXvsY7ravQ44l/q6ydeXTMafoAE71DiLcMH0BoLQoH+vK5ydUPpDc557MMlPxftKX55kyZUpyfxf6teBw2tSpCX8mKXMYXTWIwReNT+UbIO75BfDW44DfWA2hLNL2l29IY+VMtOiLgLIQ2PE08I2XQ1r9sOMZQFmkHZdG99+8EBXlV8Q8riTDWr3MkGMRuP6KSViS8wEOXTEp4cAoxyKw6a5yPPSiEwIICMD0EjfdVZ5w+ZmM7yfKNgy+aPwq3wCx7E4cf8eBee/X4/iaBsz7ck3GdDV29Q2iq390hPShroGAe11JQR5KCg1ewmfJAW7/CdDyLWDLfcDaH/ha/bDjGeDANuCeX6T9NSgpzDf+nNLMlPNkkvUr5uC5b9rwxOv7cLJ3dOBvaVE+Nt1VjvUr5kTJnb2y6f1EBKQo+BJC1AJQvZuKlLJprHniKVMI0S6lrIiUTuOYJQcXZ18HANp9hgReAPDSh5+H7Sp5ZOvugO24u0rKN2gBVlCrH5RF2v7x2upnEtPOk0nWr5iDivLSpHRlEpE5TA++vEESpJTN3m27EMIhpaxJNE88ZQohKgHYk/y0iMbM1K6S8g1ABrf6ZZNs7NJKVlcmEZkjFS1f9QAW6xtSyg4hRDuAiMGXgTyGyhRCKAC4OBZlJNO7SjK41S+bsEuLRjwSu08PY+/Ialw+PYzFHsmAlsbE1OBLCGGF1iWohkmzSyk74s0DwB1HmfcAaAHgSPQ5EBHRxLVtz0m/MXTfA945j6c730l4DF3wGML8swNYAuDQmQEMyl7f/kwYQ0jmMbvlyxphvwpASTCPoTK9gVpIcBeOECIPgH+fAa/3JSKa4LbtOYmHXnSGTN1xqncQD73oxHPftMUdgAWPIVwuDuPXecDDW3Zjr1/wFdcYwv5T2i2WglLtRmmXrqsduxF/d6CeRzVYpiKldHu7HmOpB7ApzvoQEWWOoB/gPPXQ6P2J6aPHxfEDbMaVntly9eiIR+KJ1/eFnTNNQpu+44nX96GivDSuLsjgMYRnDuQC24Ef3n41Zi8dXfMyrjGEu14Atj8Z+7h1jwG31hsvl0yTruArkXFYsfL40oUQ1fpgfIMaADzjt10A4Fgc+YkyTrLGqWTLj+WEF/QDvEC/f/dh4F2/4+L4ATbjSs9suXp05+HugOk6gkkAJ3sHsfNwN1aXzTRcbvAYwkNntclbFxRPwZJ5RYlVduUDwNVfGd0+ewD45YPA1zcDs/xeQ7Z6ZQyzgy93hP1KlLRYeaKmCyFsAHYZq55GSjkEwPfrIgQHUlJ2S+Y4lWz5sZzwgn6AD50ZwMNbduPZb1yPJbODWr4MMuNKz2y5erTrzGnjx8URfJkiUmvmrKXA3OtTXh2KzdTgy9vtpwohrFJKd1Ba2PFYRvJES/eO9bJ57wGgzJunFoBbStmWpKdHGersiSNQzxz1bfcc2eu7P+R3nDJ7AWbNXZTi2pkv2eNUsuXHcsIL+gEelL3YK3sxOOtaYG5iLSpmXOmZLVePlhzvgPfnw8Bx5abXh8aXVHQ7NkCbZ0ufk6tS/9u7bQVQGTRJatQ80dK9AZovsPO2hFUbmdiVxoeDv/kZVh/dHLJ/lbMWcI5uf7DgQcz6zlMprJn5zBinki0/llnFhPFZlFw32aswZ/9unBrwRF4rc3oObrJXpbpqNA6YHnxJKZuEELXeAAkAVgVNhmqHNj9Xk9E8BsoE4AvKNnr/bgTQHqnFjdIjeDxRJPGMJ7rqK9/DoTNfi33c7AUxj8k2Zo1ToSQzYXwWJVdO0Rxs+hqir5X5tS8gp2gMSzZ5RjDlzCcAoN17VnM+vgkiJQPug1qd2oLSmhHYqhUzj5F07zFtkdIoM0QaTxQsnvFEs+YuGpfdiUZ09UcOvBI5jkxiwvgsSj5T18rc9xrw1uOYp34OAJj3fj2w5zltbVYuATbucWFtSqvg8USHugbwyNbd+OnG67GkZPRHiOOJjCkpMNY6aPQ4MokJ47PIHPpamVs/+hw/enUP/v7uFdi4auHYZrjf9xrQ8i1g6XrgL34OlFwDdO0Hdjyt7ecarOMegy9Kq0jjiZaUTMeKRC+7nsBuWlyMOUX5ONU7GHmcSlE+blrMVbeIjMqxCFw3XwEAXDdfGVvg5RnRFr1fuh74xsuAxaLtX7BK295yH/DW3wDL7mQX5DhmSXcFiCh5ciwCm+7SrrwK/nnwjVO5q5zr0hGly5HfAernwNpHRwMvncUCrP0BoB7RjqNxi8EX0Tijj1MpLQpsUSwtyk9oORQiSqIB7/xhJdeET9f3DxibZ4yyE7sdicYhfZzKqx3bMXnHk7i89jHcbV/HFi+idJvuHePatV/ragzWtT/wOBqXGHwRjSd+80flALg57zMsyPkAR/M+Q84pZfQ4zh9FlB6LvggoC7XB9f5jvgDA4wF2PAMoi7TjaNxi8EU0nnD+KKLMZsnRppNo+ZY2uH7tD/yudnwGOLBNu9qRg+3HNQZflDFGPBKfHFMBAJ8cU3HNnEJ2k8WL80dNWFwAPYuUb9ACrLceB56vGN2vLOI0ExMEgy/KCIELQQM/enUPfvbOobFPZDjRcP6orGBGoMQF0LNM+QZg2Z04/o4D896vx/E1DZj35ZqEWryC30/5ZwewBNo/X4Oy17efgXfmYPBF6dV/Cts+PoyH/qM78kLQf1aM9TcsZmsNjRtmBEpcAD0LWXJwcfZ1AKDdJ9jVGPx+Wi4O49d5wMNbdmOvX/DFwDtzMPiitBr56AU88dY8SBQjeGYqbSFoD574jwOoGP5P5HyZY5RofDAjUOIC6BNXwPvJM4LLuw4Avwd+fNNlTF45ul4kA+/MweCL0mpnSSVO4kDEdAkLTmIWdpZ8EatTWC8iMzFQIkAb57r79DD2jqzG5dPDWOyRCY1z9b2fvOtFwrte5A2//1vgyM+5XmQGYvBFadU1PDWpxxERJYPZFzAEjnP9HvDOeTzd+U7i41y5XmRWYfBFacWFoIkoE5l5AcO2PSfx0IvOyONc412JgutFZh0GX5RWXAiaiDKRWRcwjHgknnh9X9jvO22cK/DE6/tQUV5qvAtSXy/yL34eeb3I5yu04xavjau+ZA4GX5RW+kLQD73ohAACvpC4EDQRpYtZ4/J2Hu72TakTjgRwsncQOw93Y3XZTGOFcr3IrMOFtSntuBA0EU0UXf2RA69EjgMQuF5k2MK4XmSmYcsXZYT1K+agYtlsvP/qc5j2h3/F+Wu/jTV3P4ScSXyLEtH4Yco4V64XmXXY8kWZYd9ryPnHG7Bu799gpeUg1u39G+T84w3aFTxEROOEPs410kAKAWBOvONc9fUiD2zTBtcf3QkM9Wv3W+7T9t/+Yw62zyAMvij99EukS5YD3+kA6o9r9yXLtf0MwIhonNDHuQLB00qPcZyrvl5k115tcH3DfO2+ax+nmchADL4ovYIvkV6wCsibPnqJ9NL12iXSnpF015SIKClMG+davgH4/m4cX9MAANr99z9m4JWBOKCG0ouXSCeV2RNDElFyrF8xBxXlpXi1Yzsm73gSl9c+hrvt68Z+ZXeS1oskczH4ovTiJdJJZebEkESUXDkWgeuvmIQlOR/g0BWTOKXOBMLgi9LL/xLpBatC03mJdFzMmhiSiIiSh8EXpVXXDBuUggWYvOMpiG+8EnKJtNzxNC4XLIQ6w4aS9FUza3DBZiKizMfgi9LqpY+O49Nzf4Hn+p+FfOVeWG551LcgrOe9p4GDb+J7lx7Gso+Os5uMiLJf/ynt5pWnHhq9PzF99LiCUu0WpxGPxO7Tw9g7shqXTw9jsUeyOzMDCSnDrTCV5AcRohaA6t1UpJRNY81jMB0AygBASlkTR30LAfT29vaisLDQaDZKgD5AvPDwb1D64Y+R23/Ul3apYCFO3fw4+hZ/hQPEiWh8eLcB2P5k7OPWPQbcWh9X0dv2nMQTr+8LWL5oTlE+Nt1VzpVCUqSvrw9FRUUAUCSl7It0nOnBlx4E6cGREMIOoCpaMBQrj4H0RillnV95DgBWKWWFwToz+EoHzwjg/AXwxiPAV38K2L7FK3WIaHwJavk6dGYAD2/ZjWe/cT2WzE685WvbnpN46EVnyILdepsXl2pLjUwKvnoALJZSqn77pJQyYjtorDzR0oUQCoBWaMGY6k2zAegEUCaldBuoM4OvdDmxG2heB1RvB+Zen+7aEBGZas/xXnz1Z+/jje+twYp5RQmVMeKRWNP4TsQFuwW0OcTer/syuyBNZjT4MnWSVSGEFVqXoBomzZ5IHoNlrgRg9UvSAy4ljuoTERFlvJ2HuyMGXgAgAZzsHcTOw92pqxRFZfaAe2uE/SoiB0Kx8kRN9wZlM4LS9KAsbKuXECIPgP+19wURHoOIiCijdPVHDrwSOY7Ml67lhboBxLFqqKE80dLrAdSEay3zS+/1ux2Ls25ERERpUVJg7GIko8eR+dIVfMUbeBnJEzZdCNEIYKuUsjlK3gYARX63+QnUj4iIKOVuWlyMOUX5IQt16wS0qx5vWpzITy+ZwezgK9LgdiVKWqw8hssUQlQCcMWa2kJKOSSl7NNvAPqjHU9ERJQpciwCm+4qB4CQAEzf3nRXOQfbZxBTx3xJKd1CCFUIYQ2+ylBK2ZFoHiNl6oPv9RYv71WQxUaudqQUCrrsGmcPBN7rEpxwkIhoIli/Yg6e+6YtZJ6vUs7zlZFSMcN9A7QB73oQVKn/7d22AqgMap2KmsdAmTYANgBt3vIBILgMygS7Xgg/4eAvHwzcTmDCQSKiiWT9ijmoKC/Fqx3bMXnHk7i89jHcbV/HFq8MZHrwJaVsEkLUegMkAFgVNMGqHUANgCajeaKle1u43obWDdkYXJckPjVKhpUPAFd/JfZxbPUiIgrPrwchB8DNeZ9hQc4HOJr3GXJOKaPHsQchY6RkeaFsw0lWiYgoFZIxyaqZSxZRfIxOssqFtYmIiFJEX89Wd6hrIOBeF9d6tkE9CFGXLKKMwOCLiIgoRV768HM8+/bBkP2PbN0dsP3wbVfhryuWGis0qDtxUPZir+zF4KxrgbkJtqaRqRh8ERERpcj9Ny9ERfkVMY8rKciLeQxlLwZfREREKVJSmG+8O5HGrXTNcE9EREQ0ITH4IiIiIkohBl9EREREKcQxX0RERBQgeEqMSOKaEoN8GHwRERFRgEhTYgSLa0oM8mHwRURERAH+2/I83FUyOkfY0e6LeOqtP+KHt1+NBcVTfPuV2ZwSIxEMvoiIiCjArD++jFl+SxYtAXBrHoDtQQeuewyYyyWL4sXgi4iIiAIFLVl09OBuLHj3YRy99VksuOr60eO4ZFFCGHwRERFlMVPWiwxasmjojFbWkLIEmHv92CpMDL6IiIiymSnrRZKpGHwRERFlMa4XmX0YfBEREWUxrheZfTjDPREREVEKMfgiIiIiSiEGX0REREQpxOCLiIiIKIUYfBERERGlEIMvIiIiohTiVBNkWPAsypHENYsyERHRBMPgiwyLNItyMM6iTEQ0fox4JHafHsbekdW4fHoYiz0SORaR7mplNSGlTHcdMo4QohBAb29vLwoLC9NdnYwRbv2wR7buxk83Xo8lJdN9+9nyRUQ0PmzbcxJ/99ofsGDg9yiBii4oODr9C/h/N1yL9SvmpLt6Gaevrw9FRUUAUCSl7It0HFu+yLBIsygvKZmOFfOK0lAjIiIyy7Y9J/HvL/8zWvNextzcLt/+E5dL8D9evg+477sMwBLEAfdEREQUYMQj8Z///nP8r9xnUbrEBnynA6g/DnynA6VLbPhfuc/iP//95xjxsPcsESlp+RJC1AJQvZuKlLJprHnGmk5ERETh7XSdwfdH/gW46g5Y7n0FsHjbahasguXeV+B55V58/9C/YqfrQay+qiStdc1Gprd8eYMgSCmbpZTNAJxCCMdY8ow1nYiIiCIb+ey3mCu7YLnlh6OBl85igeWWRzFXnsbIZ79NTwWzXCq6HesBNOsbUsoOANVjzDPWdCIiIoqgRKjeP66JcMA1gcdRXEwNvoQQVmhdfmqYNHsiecaaHuEx84QQhfoNQEHUJ0ZERDSOlVnLtD+69oc/wLvfdxzFxeyWL2uE/SoAJcE8Y00Ppx5Ar9/tWITjiIiIxr2cK7+Ei9Pmw/PeU4DHE5jo8cDz3tO4OG0+cq78UnoqmOXSdbVjN4DiJOcZS3oDgCK/2/w460ZERDR+WHIw5c4GiINvwvPKvcDRncBQP3B0Jzyv3Atx8E1MubMBsOSku6ZZKV3zfMUbeBnJk3C6lHIIgG/2UCE4cy8REU1w5Rsg7vkF8NbjwPMVvt1CWaTtL9+QxsplN7NbvtwR9itR0mLlGWs6JcGIR+KTYyoA4JNjKud6ISIaj8o3QHx/N46vaQAAHF/TAPH9jxl4jZGpwZeU0g1A9Q6CD07rSCTPWNMTeR4UaNuek1jT+A5+9OoeAMCPXt2DNY3vYNuek2muGRERJZ0lBxdnXwcA2j27GscsFWO+GgD4rjIUQlTCbxoIIYRVn5fLaJ4kpFOCtu05iYdedOJk72DA/lO9g3joRScDMCIiohhMD768M8srQohKbxC0SkpZ43eIHUBNPHnGmk6JGfFIPPH6PoTrYNT3PfH6PnZBEhERRZGSAfdBS/u0BaU1I0yrVLQ8yUin+O083B3S4uVPAjjZO4idh7uxumxm6ipGRESURbiwNhnW1R858ErkOCIioomIwRcZVlKQn9TjiIiIJiIGX2TYTbMuYc50CyLNgiYAzJmeg5tmXUpltYiIiLIKgy8yLMf5L9g09DQACYHA5Sa0bYlNQ08hx/kv6ageERFRVkjXDPeUjVY+gPVXfwXPHbqIJ95TcXJgNAArnT4Zm24pwvolTwEFpWmsJBERUWZj8EXGFZQCBaVYPxeoWCPxasd2TN7xJC6vfQx329chx8JlmYiIiGJh8EUJybEIXH/FJCzJ+QCHrpjEwIuIiMggBl9EREQUoKtvEF39Q77tM90XsQTA0e6LGDze69tfUpCHkkJe4R4vBl9EREQU4KUPP8ezbx/0bS8Xh3FrHvDUW3/E3jdHr2h/+Lar8NcVS9NRxazG4IuIiIgC/LflebirpMi3nadOB94F/nn9dAwpo/uV2XnpqF7WY/BFREREAWb98WXM2v5kyP4F7z4cuGPdY8Dc+hTVavxg8EWJ8YxgyplPAEC796wGLDlprhQRESXFygeAq78S+zhOLZQQIaVMdx0yjhCiEEBvb28vCgsL012dzLPvNeCtxwH189F9ykLg9p8A5RvSVy8iIqI06uvrQ1FREQAUSSn7Ih3HGe4pPvteA1q+BZQsB77TAdQf1+5Llmv7972W7hoSERFlNLZ8hcGWr/C61PNQnr8Zk+csh/jGK4DFL3b3eCC33IvLJ/dB/c5/oUSZlr6KEhERpQFbvijptne8htz+oxBrfxgYeAGAxQKx9lHk9n+O7R1s/SIiIoqEwRcZdvtCbytpyTXhD/Du9x1HREREIRh8kWFFsxdof3TtD3+Ad7/vOCIiIgrB4IuMW/RF7arGHU8DHk9gmscD7HgGUBZpxxEREVFYDL7IOEuONp3EgW3AlvuAozuBoX7tfst92v7bf8z5voiIiKLg1Y5h8GrHGMLO87VIC7w4zxcREU1QRq925Az3FL/yDcCyOwHnL4A3HgG++lPA9i22eBERERnAbkdKjCUHmHuD9vfcGxh4ERERGcTgi4iIiCiFGHwRERERpRCDLyIiIqIUMn3AvRCiFoDq3VSklE1jzWMwHQDKAEBKWZNI3YmIiIiSzdTgSw+CpJTN3m27EMIRLRiKlcdAeqOUss6vPIcQol1KWWHOs5xA+k9pN93ZA4H3uoJS7UZEREQhTJ3nSwjRA2CxlFL12yellCLRPNHShRAKgFYAVXq6EMIGoBNAmZTSbbDenOcrnHcbgO1Pxj5u3WPArfXm14eIiCiDpH2eLyGEFVqXoBomzS6l7Ig3DwB3jPRdAFYCsAJwepP0gEtJ5HmQn5UPAFd/JfZxbPUiIiKKyMxuR2uE/SoiB0Kx8kRN9wZlM4LS7N77iK1eQog8AHl+uwoiHTuhsTuRiIhozNJxtWM3gOIk54mWXg+gJlxrWdAxvX63Y3HWj4iIiMgQwy1fQohKABsNHNogpXRGSY838DKSJ2y6EKIRwFZ9cH4UDQCe8dsuAAMwIiIiMoHh4EtK2QagLY6yI3XzKVHSYuUxXKY3WHQZCLwgpRwCMOSXN1YWIiIiooSY1u3ovbJQ9Q6iD04LGWxvJI/RMr2D7/2no1DC5SEiIiJKNbPHfDVgdMC73hrV7Ldt9ZsQ1VAeA2XaANgAOL3lWwFUQxsXRkRERJRWps7zBfgmRdW7BFcFTYBaDaBOSllmNE+0dO88X4cR5mrKaHOLhakz5/kiIiKiuBid58v04CsbMfgiIiKieBkNvriwNhEREVEKMfgiIiIiSiEGX0REREQpxOCLiIiIKIUYfBERERGlEIMvIiIiohRi8EVERESUQgy+iIiIiFKIwRcRERFRCjH4IiIiIkohBl9EREREKcTgi4iIiCiFGHwRERERpRCDLyIiIqIUYvBFRERElEIMvoiIiIhSiMEXERERUQox+CIiIiJKIQZfRERERCnE4IuIiIgohRh8EREREaUQgy8iIiKiFGLwRURERJRCDL6IiIiIUojBFxEREVEKMfgiIiIiSiEGX0RERHFQVTWjyqHsY3rwJYSoFUJUe2+1ycgTT5lCiPZE605EROSvrq4OiqIkpazm5ma43e6klEXZRUgpzSvcGxhJKZu823YAVVLKmkTzxFOmEKISQKuUUsRZ70IAvb29vSgsLIwnKxHRhNfU1OQLUFRVRW1t7P+7Y+WJlt7R0QGHw4GKigpYrVa0t7dj1apVqKysNJRfVVW0tLQAAFwuF9xuNzZv3hwSZDU3N8Nut8NqtRp+XH8VFRVobw9sD6ipqYHD4Yj5+lB26OvrQ1FREQAUSSn7Ih4opTTtBqAHgBK0T44lj9EyASgAqmM9XoQ6FAKQvb29koiIjGtsbJSNjY2+7fb2dlldXT2mPLHSW1tbpaIoEoC0Wq3S4XDEVX51dbV0uVwB23a7PaAMl8sV8jxiPW7wsd7fowDt7e0BdaPs1tvbKwFIAIUyWpwRLXEsNwDWCEGRBGBPJE88ZXoDL8VI8AUgzxtw6bd5DL6IiOKnKIrs6ekJ2Bcu6IgnT6z01tbWkPR4yrfb7QEBUGNjo1QUJeD42tragADNyOPqenp6pMPhiPg62Gy2mGVQdjAafE0y3JYWP2uE/ao3KEokj6EyvV2RHVFrF6gewKY4jiciMk1HR0dI91Q4CxcuxF/91V8F7Punf/onbN68GXfccUfUvBUVFbDb7b7twcFBbNq0KWK6EW63G6qqhh0T1dHREba8WHmsVmvcZcZbp+DX+qOPPgopt6OjA42NjVEfK5KWlhbcc889qKkJP+LGarXC6XTCZrMlVD5lHzODr0i6ARQnmEc1WKYipXQLIRSD5TcAeMZvuwDAsTjrSESUFBcvXjR0JVxxcehX6cDAAG6++eaY+S9evBiyzz9PuPRYIg0eVxQlYn1i5TFaZktLC4qLi9Hd3Q2Xy+ULlOKtU1tbG1RVRWtra0Adw73W0R5XZyRArKioQEdHB4OvCcRw8OUdvL7RwKENUkpnlPR4Ay8jeXzpQohqKWVzPIVLKYcADPmVEV/tiIiSaMqUKYauqJs+fXrYfUbyTpkyJWSff75w6YnSg5NE8kR6Lv5l6kGLPhC+ubkZVVVVAQFUrDrpg+5VVUVVVVXA46qq6ivbn5HH1fNGC4aLi4vhcrkiptP4Yzj4klK2AWiLo+xI188qUdJi5YmaLoSwAdhlrHpERJnJbrfH3eWnC+6GNCo/Pz/hbrVY4g28jOTxTw8OjPQuvmgBT3D5iqKguroagBZEzZgxA4cPH4aiKHC73WGDwGiPqygKmpubfWVGY7VasXXr1pjH0fhh2jxfUko3AFUIEfLvgpQy7HisWHkMlFkMwO6dB6wWQCPgmxcs/LW/RESUFOFah4DILUdG8hgps60tsF1AD5TcbnfM/Kqqoq6uLiBQs9vtUFUVHR3Rhw5He1yn04mVK1dGza/r7u6O2K1J45PZk6w2QLtKEYCv67LZb9saZpLUqHmipXsDtCb9BsDh3d/kbbkjIiKTWK1WX0tRsEgtebHyxErXuwn90/VASg/eouV3u91oamoK6YIERoMpq9Uakj/W43Z3d6OjowNNTU1oampCXV0dAG2+seCgTVVVlJWVhX19aHwyNfjyBkCKEKLSGyStkoGTodoB1MSTx0CZAHxBWb3370bvFZBERGSi+vr6gBajtra2gK43PdiJJ0+0dEVRUFtbG9DC1dzcjMrKSl/wFC2/zWYLyb9161bYbDZfwBgu+Ir1uHa7HbW1tb6bfqVjbW1tyCSskbo1afwydYb7bMUZ7omIEtfU1OQLSj766KOAsWRtbW2oq6sLGWAeLU+sdFVV0dw82kFy7ty5MeXXr1r0D4jCzU5v5HH157x161a0tbWhtrY2ZBqPqqqqsDPqU/YxOsM9g68wGHwREZG/pqamgNawZIp1ZSZlD6PBl+kLaxMREWW72tpaU9ZgbGpqijj5Ko1fDL6IiIgM2LhxY8hg+bFQVRXnzp0zpTWNMhuDLyIiIgP0gfKRZs2PV3Nzs2lzq1Fm45ivMDjmi4iIiOLFMV9EREREGYjBFxEREVEKMfgiIiIiSiHDC2sTEVHm6eobRFf/UMzjSgryUFKYn4IaEVEsDL6IiLLYSx9+jmffPhjzuIdvuwp/XbE0BTUiolgYfBERZbH7b16IivIrfNuHugbwyNbd+OnG67GkZLpvf0lBXjqqR0RhMPgiIspiJYX5YbsTl5RMx4p5RSmti9PpREdHBxoaGlBcXIyamhpUVlYGLD49HtXU1KClpQWtra1RJ0x1u91wOBy+dSb1me1dLhe6u7uxcePGkEW3dXV1dQCAmTNnQlEUFBcXo7KyEnV1dRHnCuvo6IDT6URtbW3M55BI+TQGUkregm4ACgHI3t5eSUSULYZHPPKl//pMLqp7Q770X5/J4RFPWuphs9lkdXV1Wh47XWw2m2xvbzd0rN1uD/v6WK1W2djYGLCvs7MzbNkul0tWVlZKq9Ua8XFipY+1fArV29srAUgAhTJKnMGrHYmIxoFte05iTeM7+NGrewAAP3p1D9Y0voNte06mvC7FxcUpf8zxoKamxtcCpauqqkJjY2NIi5p/y1kkxcXFcLvdUWfkH0v5lDgGX+NQV98g9hzvjXnr6htMd1WJKAm27TmJh1504mRv4Gf6VO8gHnrRmZYAjOKnKAoAbc1HYLQrMFJXpt1uj9il29bWhsbGRlit1ogLgo+lfBobjvkah3j1E9HEMeKReOL1fQi3UJwEIAA88fo+VJSXIsciUlw7TUdHh++HfvPmzXC73eju7kZnZyccDgeam5tRXFyMrVu3or6+HjabLSBfcXExqqqqAIwuRq2PQ9KP0Vtq2tvbAcCXro+vArQxV7W1tWhra0NDQwPcbrdvnJbb7UZFRYUvWLFarb68brcbVqs1YDxWU1OTb2xUsnR2dsJms/mCsLa2tpiLbge3lOncbjcURUFlZaUvEAs2lvKBxM8roJ3H5uZmWK1WtLe3o6amJiBdT1NV1fdcqqurI+7POtH6JCfqDVk+5ut070X5h2Oq7/aq85hcVPeGfNV5LGD/6d6L6a4qEY3R7w6dlYvq3oh5+92hsymrU7gxTe3t7dJqtQaMLbJarbK2tta33draKm02W0C+1tZWCUC6XC7fvtra2oDy9Xzt7e2ys7PTV2ZlZWXA47lcLmm32wPq489/vFVlZaVsbW0NeE6dnZ2+x3c4HL60np4eCSDhMV89PT2ysbFR2mw22dPT49sPIGQMmBE9PT2++rlcLgnAV3d/iZbvL9HzWltbG3BOrVar77m3trYGvL4ul0s6HI6I+zMJx3xNYCWF+Vgxr8h30y83169+0m+ccJEo+3X1Gxs+YPQ4s+jjj/xbWoK7tGw2W8j4JEVRYLPZAo6tr69Hc3Oz71hFUeB0OmG322Gz2dDY2Oi78jL48bq7u337u7u74XQ6Ax4L0FqN2traAlq6qqqq4HA4oKoqmpqaAlpb9DrGY9euXWhubkZzczNaWlpgt9vR2dnpq8NYtLS04J577gGgPWebzYatW7eOudxwEj2vbrcbHR0dAXn8t1tbW33dr1arFStXroy6P9uw25GIKIuVFBj7J8rocWYK/lFWFAVlZWVxl6Moii/g0ssMLnvXrl1hxyvp3Vx2ux3V1dVwOBxwOBzo6OjwBSwdHR1QFCUgGHC5XL6AIRkB0sqVK2N2l1mtVrhcrqjH6F2i/trb230Biq65uTmk6zHR8sPV05+R89ra2goAvu7D7u5udHd3AwAqKyvhcDgwY8YM2Gw2bNy4EbW1tbDZbGH3ZyO2fBERZbGbFhdjTlE+Io3mEgDmFOXjpsXj+wrE4IAoOPgIR5+fCxgdI6XntVqtsNvtvltjY6NvPFmqruasrKwMCADDCU5XVdUXlOi3t99+G6qqBrTyJVp+sjidTlRVVaGlpQVWqzVsANnZ2YmNGzf65kaLtj/bMPgiIspiORaBTXeVA0BIAKZvb7qrPG2D7c2gqipUVY3a1acPog/mdruxatUqAFqLTXFxMdra2gICqnDdZPrjRkozg/9FBeGoqhoSCLa0tIRM1Kp3iwZf9ZhI+cmgqipuu+021NfXo7q6Goqi+IJlt9uN5uZmANp5qK2tRWdnJ7Zu3RpxfzZi8DXOjXgkPjmmAgA+OaZixBPumigiymbrV8zBc9+0obQosGuxtCgfz33ThvUr5qS0Pnr3USxGWqcArZXE/9iGhgZUV1dH7Q6z2Wyw2+0BgYXe8uMfnNTU1ODBBx8MGLNkt9uxcuVKtLW1BZSpt9LoV935P4/gOiZLa2sr6urqwrZwNTc3hwRanZ2dYcvZuHGjr5VvLOUbEet1cLvdIcGz/p7RX0f/1xeA7wrHcPuzEcd8jWPb9pzEE6/v883986NX9+Bn7xzCprvKU/5lTETmWr9iDirKS7H1o8/xo1f34O/vXoGNqxamtMVLH+Su/7jqA9PdbrdvaoempibU1taiqakJu3btAjDaAtXQ0ABVVVFXV4f6+npfN6DNZvONtXI6nZg5c2ZAq01jY6OvbP/ljPTAQm+pcrlcIcFJdXU1XC5XSLdle3s76urq0N3d7Wv90cdo6d1dbW1tAXVsaGiAoigRp2/QB/Lv2rXLV1+95ScSm82Gzs5O1NXVob293bf8D4CA8U76tA9OpxNlZWUhafo4sKqqqoBljIyWH47T6UzovOotV3V1daioqAAweq42btwYMNWG/rpt3rzZFzwG789GQkq2hAQTQhQC6O3t7UVhYWG6q5MQfdLF4LOrfw2n479hIjLfnuO9+OrP3scb31uT8rUdzaAHFZFadIgySV9fH4qKigCgSErZF+k4djuOQ7EmXQS0SRfZBUlERJR67HYch3Ye7g5ZZsSfBHCydxA7D3djddnM1FWMiJKuq28QXf1Dvu1DXQMB97qSgjzO7UeUIUwPvoQQtQBU76YipYx5XWisPEbKFEI0AtAnMOmWUrYFHzNeZcuki0Q0dpGWE3tk6+6A7WxcTkwfz+V0On1jiojGA1ODL2+QBClls3fbLoRwSCkjLpUeK4+BdAXA2wBuk1KqQggbgE6EXoU9bmXTpItENDb337wQFeVXxDyupCAvBbVJLn2OLaLxxtQB90KIHgCLpZSq3z4ppYwYCMXKYyDdAcDl3xomhLBLKQ3PFJftA+5HPBJrGt/Bqd7BsOO+BLRL0N+v+/K4mvuHiIgondI+4F4IYYXWJaiGSQv7r0ysPAbLrAbQJoSw6vviCbzGg4k46SIREVG2MPNqx0gzn6kAlATzRE33BmcAYPMe7xZCOCIFezohRJ4QolC/ASiIdnw2yLRJF4mIiEiTjqsduwHEu16BnkeNka4HX6qU0gkAQog6AIcBzIhSfj2ATXHWKeNlwqSLRGSy/lPaLZaCUu1GRGlnOPgSQlQC2Gjg0AY98IkgkYWiYuUJTt+l/+EddK/EGPfVAOAZv+0CAMfir2bmybEIXDdfAQBcN19h4EU03ux6Adj+ZOzj1j0G3Fpvfn2IKCbDwZd3qoZ4pmuItPKoEiUtVp5E01VE7rKElHIIgG+iHCEYoBBRllj5AHD1V0a3zx4Afvkg8PXNwCy/qSXY6kWUMUwb8yWldANQ/cZh+aeFbYGKlcdguhuhgZYCv9YwIqJxo6AUmHv96E0PuGYtDdyfguBLX+NvxowZKCsrQ1NTU8Aiy3V1dZgxYwaqqqp8i1xTqJqaGsyYMSNksetgbrcbdXV1EEL4Xu+mpibU1NSgqqoqZGFwf3V1dairq0NTUxOam5t9x9bV1UXM09HRgaammFN1JlT2hCOlNO0GoBZAtd92JQCH37YVQG2ceWKlVwJoDNpuj7PehQBkb2+vHA/+cEyVi+rekH84pqa7KkRktuMfS7mpULtPE5vNJqurq8Om1dbWxl1ebW2trKysHGu1sorNZpPt7e2GjrXb7WFfb6vVKhsbGwP2dXZ2hi3b5XLJyspKabVaIz5OrPSxlD1e9Pb2SmgLyRTKKHGGqWs7Sm2uLUUIUekdM7ZKBk6wagdQE08eA+ltAFxCiFrvhKyrpJQV5j3LzNPVN4g9x3t9N//lRvz3d/VxhnuiccUzApz4WPv7xMfadhoUF0cepltWVhZ3eRUVFdi40ciQY/JXU1MT0tpUVVWFxsbGkMlrrVYramoizn8OQDuvbrcbbnf4ET5jKXuiMf1qRxm49E9bUFozgOZ48hhMDylzIhnPy40QUQT7XgPeehxQP9e233gEeP8Z4PafAOUb0lq1seIs94lRFAUAoKoqFEXxBWKRXk+73Q6rNfzw6La2NjQ2NqKjowMOhwONjY0B6WMpeyLiwtrj0HheboSIwtj3GtDyLWDpeuAvfg6UXAN07Qd2PK3tv+cXGRmAdXR0+H60N2/e7GtVOXfunO/H3el0oq6uDm63Gy6XK2K+7u5udHZ2wuFwoLm5GcXFxdi6dSvq6+ths9kC8hUXF6OqqgqAFpj4P55+jN5a097eDgC+9KamJl8Q4Xa7UVtbi7a2NjQ0NMDtdqO1tRV2ux1utxsVFRWwWq1wOBywWq2+vG63G1arFZWVlb7XoqmpCYqiRG01jFdnZydsNpsvCGtra4sZyEYal+V2u6EoCiorK32BmL+xlK1L9LwC2nlsbm6G1WpFe3s7ampqAtL1NFVVfc+luro64n7TReuTnKg3jLMxX0Q0jo0MS/k/V0j50kYpR0aC0ka0/f/zWu24FIk0BklKKR0OR8B2e3u7tFqtAeOErFar7Ozs9G13dnaGjBeKlM9/TFlra6u02WwB+VpbWyUA6XK5fPtqa2sD6qvna29vl52dnb4yKysrAx7P5XJJu90eUB9//uOtKisrZWtrq2/bbrf7nmNtbW3A69LT0yMBJDzmq6enRzY2NkqbzSZ7enp8+wGEjAEzoqenx1c/l8slAQScn7GUHSzR81pbWxtwTq1Wq++5t7a2Bry+LpdLOhyOiPvHIiPGfBERkcmO/E7ralz7KGAJ+kq3WIC1PwDUI9pxGUgfR+TfaqK3DiWSz5/NZgspR1EU2Gy2gGPr6+vR3NzsO1ZRFDidTtjtdthsNjQ2NsLpdKKjoyPk8bq7u337u7u7A67i1Fuc3G432traAlq6qqqq4HA4oKoqmpqaAlpb9DrGY9euXWhubkZzczNaWlpgt9vR2dnpq8NYtLS04J577gGgPWebzYatW7eOudxwEj2vbrc74OpQq9UasN3a2uq78tZqtWLlypVR95uN3Y5ERNls4LR2X3JN+HR9v35cmvlPPaEL/nFVFAXd3d0xywqXL5EB/Yqi+AIuvczgsnft2hV2zJLezWW321FdXQ2HwwGHw4GOjg5fwNLR0QFFUQKCAZfL5QsYkhEgrVy5MmZ3mdVq9XXdRqJ3ifprb28POW/Nzc0BXY+Jlh2pnv6MnNfW1lYA8HUfdnd3+95DlZWVcDgcmDFjBmw2GzZu3Ija2lrYbLaw+1OBLV9ERNlsund8Z9f+8On6/umxx4Emi5GWq0wXHBCFCxqD1dTUoKWlBcDoGCk9r9Vqhd1u990aGxt948mSOc4rmsrKyphzhwWnq6rqC0r029tvvw1VVQNa+RIpO5mcTieqqqrQ0tICq9UaNoDs7OzExo0b4XA4fPOVRdpvNgZfRETZbNEXAWWhNrje4wlM83iAHc8AyiLtuBSpqKjIquBLVVWoqhq1q08fRB/M7XZj1apVALSgs7i4GG1tbQEBVbhuMv1xI6WZwf+ignBUVQ0JBFtaWgK6S4HRblGHwzGmspNFVVXcdtttqK+vR3V1NRRF8QXLbrcbzc3aBAg2mw21tbXo7OzE1q1bI+5PBQZfRETZzJKjTSdxYBuw5T7g6E5gqF+733Kftv/2H2vHpUhlZSWsVqvvx00XPLYpEiOtTGPJ53Q6A45taGhAdXV11C4xm80Gu90eEFzoLT/+wUlNTQ0efPDBgDFLdrsdK1euDJlxXm+l0a+6838ewXVMltbWVtTV1YVt4Wpubg4JtDo7O8OWs3HjRl8rX6JlGxXrdXC73SHBs97lqL+Owe9F/QrHcPtTgWO+iIiyXfkGbTqJtx4HnvebU1pZlLZpJtrb29HU1IS6ujrMnDkTgBak+HfnOZ1O3xQNTU1NqK2tRVNTE3bt2oXu7m4UFxfDarWGHBMtHzDaAtXQ0ABVVVFXV4f6+nrfY9tsNt9YK6fTiZkzZwa03DQ2NvrK1gNJYDS40FuqXC5XSHBSXV0Nl8sV0m3Z3t6Ouro63/PSjwXg6+5qa2sLqGNDQwMURYk4hYM+kH/Xrl2++uotP5HYbDZ0dnairq4O7e3tmDlzpu94//FO+rQPTqcTZWVlIWn6OLCqqips3LgRlZWVhsuOJNHzqrdc1dXVoaJCe//r52rjxo0BU23or9vmzZt9wWPw/lQQUptagfwIIQoB9Pb29qKwsDDd1SEiMsYzAjh/oU2w+tWfArZvpbTFKxvoQUWkFh2isejr60NRUREAFEkp+yIdx25HIqLxwpIDzL1B+3vuDQy8iDIUux3Ho/5T2i2WglLtRkTZK/jzfvZA4L2On3eijMHgazza9QKw/cnYx617DLi13vz6EJF5In3ef/lg4DY/777xXE6n0zemiCgdOOYrjKwf8xXuP+FfPgh8fTMwy28hbf4nTJT92NJNlDGMjvliy9d4FOlLdtZSYO71Ka8OEZmIQRVR1uGAeyIiIqIUYvBFRERElEIMvsY7zwhw4mPt7xMfa9tERESUNgy+xrN9rwH/cL024SKg3f/D9dp+IiIiSgsGX+PVvteAlm8BJcuB73QA9ce1+5Ll2n4GYERERGnBqSbCyPqpJjwjWgtXyXLgGy8DFr8Y2+PRFtvt2gd8/2POgE1ERJQkXF5oIjvyO0D9HFj7aGDgBWjba38AqEe044iIiCilGHyNRwOntfuSa8Kn6/v144iIiChlGHyNR9Ov0O679odP1/frxxEREVHKMPgajxZ9EVAWAjue1sZ4+fN4gB3PAMoi7TgiIiJKKQZf45ElB7j9J8CBbdrg+qM7gaF+7X7Lfdr+23/MwfZERERpwKsdw8j6qx11+14D3npcG3yvUxZpgVf5hvTVi4iIaBwyerUjg68w9ODr6NGj2R18Adq0E7tfAd58DLjjSeD6e9niRUREZIK+vj4sWLAAYPAVPyHEPADH0l0PIiIiykrzpZTHIyUy+ApDCCEAzAXQH+PQAmhB2nwDx1L68DxlPp6j7MDzlB14ntKrAMAJGSXAmpTCymQN7wsWMWLVaTEaAKA/WvMipRfPU+bjOcoOPE/Zgecp7WK+5rzakYiIiCiFGHwRERERpRCDr7EZAvCE954yF89T5uM5yg48T9mB5ynDccA9ERERUQqx5YuIiIgohRh8EREREaUQgy8iIiKiFGLwRURERJRCnGQ1QUKIWgCqd1ORUjalsToUhhDCDqAGQDsAN4AKAB9JKdvSWrEJTAihALgHQJWUsiJMOj9XGSDaeeLnKrN4PzMAUAYAUsqaMOmqd5OfqQzB4CsB+ptdStns3bYLIRzBb3pKOwWAHUAltB+JRv5ApI8QwgZgJbTzUhwmnZ+rDBDrPIGfq4whhGiUUtb5bTuEEO16wMzPVObiVBMJEEL0AFgspVT99kkppYici1JNCFEJoMP/PFH6ec9LvZTyxqD9/FxlkCjniZ+rDOBtnWyF1jqpevfZAHQCKJNSuvmZylwc8xUnIYQVWtOtGibNnvoaEWU/fq6IErISgNVv2+29V/iZymzsdoyfNcJ+FVpzPGWWe4QQ3dC6T8r8m+gpo/BzlV34uUozb1A1I2i3HlS5oQVm4ajgZyrtGHwlj/5FRJnDCQBSSjcACCGqhRCtUsqq9FaL4sDPVebh5ypz1QOokVKqQkTsWeRnKgOw2zF5+GbOMFJKt/4D4dUCoNI7VoKyAz9XGYafq8wkhGgEsFUfXB8FP1MZgMFX/NwR9itR0igNvAODffzGPkTq4qL04ecqS/BzlXm858QVNI0EP1MZjMFXnLz/8anewYzBaR1pqBKFoV8J5H+e/P4z5xdPhuHnKjvwc5V59MHzftNJKEIIKz9TmY3BV2IaMDqwUf+vI1ZTL6WQ97/xpqDukWoAbbxEPu0idXvwc5VZQs4TP1eZxTu1hA2AUwhh9QZa1dDGdQH8TGUszvOVIO/kdfoX0Cpe7ZN5vP+RV/vtmsnzlD7eH4ZKABuh/WA0IWhmdH6u0i/WeeLnKjN4z8NhhLly0X8eL36mMhODLyIiIqIUYrcjERERUQox+CIiIiJKIQZfRERERCnE4IuIiIgohRh8EREREaUQgy8iIiKiFGLwRURERJRCDL6IiJLEu7SLku56EFFmY/BFRJQ89eAC00QUA4MvIqLksUkpnemuBBFlNgZfRERJIISwA2hPdz2IKPMx+CIiSo4qAG0xjyKiCY/BFxFRclillO50V4KIMt+kdFeAiCiVhBA2ACsBlAH4CEAHgGpvsiqlbE6gzEoArVHSVgFwAXB7b91SSjXuyhPRuMCWLyKaMLzTQNillM1SyjoAmwHUSymbvIfUJVj0RgAtYR6vGkCFlLLOG9Qp0IKwlQk+DhGNA2z5IqKJpNov0NK5vPdOADUJlqsEt2QJIawAGgEs9tutAoCUsiPBxyGicYDBFxFNJL4B8d7gSIG3xSo4IPKmV0LrJlwFwBFuTJe3dcsR5rEcADqCgrIKaEEeEU1gDL6IaMIICp7sANxRxl61SilvBAAhRAeAtwHcGOa4KillRZj9dmhXQPqzQRtjRkQTGMd8EdFEVYGgqSH0pYG8g/J9vAGa4m0NCz5eDS7Y77jgVi7OBUZEDL6IaOLwdhHqKqFd7ehL82sFizQg3ha0HanLEUBgS5t3ElZIKTuEELbgAI+IJg4GX0Q0IXgDr0bv35Xw6/4Lsxi2AqA7aJ8KoDhoX0W4wfPeoMutB1je8mugjR8DtCsuOfaLaILimC8imig6ADR7g7Bd0IKhOiEEABQHze+lIjTQUuAXkHm7FqNNqloFoEYI0QkAUsoqIUSr9/EZeBFNYEJKme46EBFlFG+L1WZ9wL13Xw+AG/WuRCFEI4CtbMEionix25GIKIg3oFL0bW+3oTvoakkbAy8iSgS7HYmIwqvytm59BG2eL9+0Ed6WMQZeRJQQdjsSEcVJCOEA0MiFtIkoEex2JCKKXzEDLyJKFFu+iIiIiFKILV9EREREKcTgi4iIiCiFGHwRERERpRCDLyIiIqIUYvBFRERElEIMvoiIiIhSiMEXERERUQox+CIiIiJKof8f3dIeAK3jD54AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "am_pcac_impr.show(comp=am_pcac, plateau=pcac_plateau)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Refined error analysis" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There are two way of adjusting the value of S. One can either change the class variable `Obs.S_global`. The set value is then used for all following applications of the `gamma_method`." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Result\t 5.03431904e-03 +/- 5.38835422e-04 +/- 8.24919899e-05 (10.703%)\n", " t_int\t 5.15384615e-01 +/- 1.25000000e-01 S = 3.00\n", "64 samples in 1 ensemble:\n", " · Ensemble 'test_ensemble' : 64 configurations (from 1 to 64)\n" ] } ], "source": [ "pe.Obs.S_global = 3.0\n", "pcac_plateau.gamma_method()\n", "pcac_plateau.details()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Alternatively one can call the gamma_method with the keyword argument S. This value overwrites the global value only for the current application of the `gamma_method`." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Result\t 5.03431904e-03 +/- 5.38835422e-04 +/- 8.24919899e-05 (10.703%)\n", " t_int\t 5.15384615e-01 +/- 1.25000000e-01 S = 2.50\n", "64 samples in 1 ensemble:\n", " · Ensemble 'test_ensemble' : 64 configurations (from 1 to 64)\n" ] } ], "source": [ "pcac_plateau.gamma_method(S=2.5)\n", "pcac_plateau.details()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`pyerrors` also supports the critical slowing down analysis of arXiv:1009.5228" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Result\t 5.03431904e-03 +/- 7.82447810e-04 +/- 1.19787368e-04 (15.542%)\n", " t_int\t 1.08675071e+00 +/- 1.63643098e+00 tau_exp = 10.00, N_sigma = 1\n", "64 samples in 1 ensemble:\n", " · Ensemble 'test_ensemble' : 64 configurations (from 1 to 64)\n" ] } ], "source": [ "pcac_plateau.gamma_method(tau_exp=10)\n", "pcac_plateau.details()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The Monte Carlo history of the observable can be accessed with `plot_history` to identify possible outliers or have a look at the shape of the distribution" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl8AAAGICAYAAAB/bIUXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAiHElEQVR4nO3dv48bR4Iv8G89L2xYgGbmrEDAYR1oFChdyOvogE1OThxtINt/wcnBBZtZULR4kWAFD3CwgfT+glsruGgT6yUGNvKesKkCSYH3HaBANmeEJ511EOoFbGppihw2h2Tz1+cDEBK7Weya4gz5ZVV1dam1BgCAbvyPVVcAAGCXCF8AAB0SvgAAOiR8AQB0SPgCAOiQ8AUA0CHhCwCgQ8IXAECHhC8AgA4JXwAbppRypZTyH6WUH0spV6Y89nIp5Zvmsde6qiMwmfAFLEUp5XAbjrGOaq33aq0fJDlo8dj7tdaPll8roC3hC1i4UsrlJJc3/RgboDfDY39YViWA2QhfwDKcOBS2QccAWDjhC1iopkfqy00/BsCy/GLVFQC2RynlapLB/KLPSymD/1+vtfaGHnc5yWdJHia5mORhrfXO0P4rSQ7THyp7L83cplrrrbbHmFC/iccdCnS/TvIvTZHBsT9M8i8jP8PEOi7geB8l+aS5P+jh+yjJ7VrrvZEf62BkIv0HbdpiWv2AJaq1urm5uS30lqQmuTph35X0P+SHt/1HkmvN/w+TfD2mzJdtj3Ga4w5t+zHJ7SSHQ9u+Tj/4pG0dF3C8r4d/vvTnt9UkByNlvxl5vsvN9oOR7Q+Hj922fm5ubou/GXYEunY7bw4Z3kxyvfn/YXN7rfZ7ex4u+bgDPyR5r9b6aGjbd/n5HLM2dZz3eFeTvO7lqrXeb/7765HyX4/U435TbtqwbNv6AQsmfAGdaYa5DpP8ZWTX/Wb7IMQcNutS3W6GGVPnGA5rc9wR343c7w3fmVbHBR2vV1sMHWb8WYzfJfl0UoFT1A9YIHO+gC4NPtivlFJGe3A+H/r/hSQ30u/9uVZK6SX556Hen2Udd6DX4jlPquMijjfP0hC9nLwG2Kz1AxZI+AKWrpRyrekVGgyt3ZsUpEoph80Q3PUk10spB+kPj/3v9CeTTzvGOFOPO4sWdVzo8U7hYk4OkKuuH+w0w47AMvTGbWw+6Ht5c97S4OzBJLk8GMZryvRqrZ/nzeGwsceY47izOLGOSzjezPVL8sdJO9egfrDThC9gGf6S/vIMg0sADS+P8En+3luU5jEH+fvyEUl/OC8j+0eXWDjpGOO0Oe7AwZT7beq46ONN8rPnG1oCY9rE+VnqByxQqbWuug7AlmnC0O0k3yQ/X/uq2X85/blFD9P0YA1NVr+av6931WuKHCS5U3++ztYbxyiljH1Dq7WWFscd7LuW/rDc3Vrr9VLKl+nP6zpMcjf9MwIPW9Zx3uPdaX7G95rHXk1/Uvy/NT/vl02ZwTpfB0nO1VpfB69Jx5lWP2B5hC8AgA4ZdgQA6JDwBQDQIeELAKBDwhcAQIeELwCADlnhfoxSSknyj0merbouAMBGOZvkP+sJy0kIX+P9Y5K/rboSAMBG+mWS/ztpp/A13rMk+f7777O3t7fqugAAG+D4+Djvv/9+MmXkrJPwVUr5IkOrQI+udn2aMs1lMD5N8kmtddzlNT5Pf+XrR+lfLuO7WuvdWeq9t7cnfAEAC7X0CfdNiEqt9U5z2Yr7pZTb85RpLonxafqX0nhvzFMcJLmS/mU5bid5OGvwAgBYhqVfXqiU8mOSCyPXO6uDa63NU6a5BtyNWusHY7bfGy4/Y533khwdHR3p+QIAWjk+Ps7+/n6S7Ndajyc9bqk9X82Fbw/GhaBmaHAhZeZVSnmnlLI3uKV/pgIAwMIte87X4YTtvfSHBhdVZpxPSyk/pD8sebHWev2Ex95I8vsZnhsA4FRWtcjqIBQtq8z99Icd7zZzxh6WUr4+4fE3k+wP3X45Y90AAFpZ1VITswavmcrUWh+NbPpjktullLHDmbXWn5L8NLjfX2MVAGDxlt3zNRqCBg5O2HeaMj/TTLh/bShwTRrSBADoxFLDV9MD1Wsm0Y/uu7eoMsOa9b++Hi7fbEtahjcAgGXpYs7XzfTX3EryulfqztD9w8G6Xm3LDHljKLLp5bo1MvR4Lcnd0y49AQCwKEtf5yt5vWjqIAx9OHzmYSnlWpLrtdaLM5Q5THI1yWdJLie5laEV7JuermtDT3duytmOo/W1zhcAMJO263x1Er42jfAFsH5evHyVB0+e5dL5s3n37bdWXR14Q9vw5cLaAKy9Fy9f5eOvvs3jp89z4dyZ/Ol3vxHA2FirWucLAFp78ORZHj99niR5/PR5Hjx5tuIawekJXwCsvUvnz+bCuTNJkgvnzuTSeVeBY3OZ8zWGOV8A68ecL9adOV8AbJV3334rv3r/YNXVgLkZdgQA6JDwBQDQIeELAKBDwhcAQIeELwCADglfAAAdEr4AADokfAEAdEj4AgDokPDFWnnx8lX++n0vL16+WnVVmJPXEmA8lxdibbx4+Soff/VtHj99ngvnzuRPv/uN67dtKK8lwGR6vlgbD548y+Onz5Mkj58+z4Mnz1ZcI07LawkwmfDF2rh0/mwunDuTJLlw7kwunT+74hpxWl5LgMlKrXXVdVg7pZS9JEdHR0fZ29tbdXV2youXr/LgybNcOn/WMNWG81oCu+b4+Dj7+/tJsl9rPZ70OHO+WCvvvv1WfvX+waqrwQJ4LQHGM+wIANAh4QsAoEPCFwBAh4QvAIAOCV8AAB0SvgAAOiR8AQB0SPgCAOiQ8AUA0CHhCwCgQ8IXAECHhC8AVu7Fy1f56/e9vHj5atVVgaVzYW0AVurFy1f5+Ktv8/jp81w4dyZ/+t1v8u7bb626WrA0er4AWKkHT57l8dPnSZLHT5/nwZNnK64RLJfwBcBKXTp/NhfOnUmSXDh3JpfOn11xjWC5Sq111XVYO6WUvSRHR0dH2dvbW3V1AE704uWrPHjyLJfOn93Y4bpt+Bna2JWfc1cdHx9nf38/SfZrrceTHmfOF8AG25b5Uu++/VZ+9f7BqquxVNvyWjE/w44AG8x8qc3htWJA+ALYYOZLbQ6vFQPmfI1hzhewScwj2hxeq+1mzhfAjtiF+VLbwmtF0lH4KqV8kaTX3D2otd6at0wp5SDJp0k+qbV+tIhjAgAs29LnfDUhKLXWO7XWO0nul1Juz1OmlHI5/eB1kOS9RRyT3eASJgCs2tLnfJVSfkxyodbaG9pWa61l3jKllKtJbtRaP5j3mCPlzfnaQk7zBmCZ2s75WmrPVynlMP0hv96YfVcWVWYBx3ynlLI3uCVxCsoWcpo3AOtg2cOOhxO299IfMlxUmXnL30hyNHT7W4vjsGGc5g3My9QFFmFVZzv+kDFztZZQpm35m0n+19D9sxHAts67b7+VP/3uN07zBk6lzdQFS0nQxqrC12lC1DzB68Tytdafkvw0uF9Kq6lhbCCneQOnNW7qwvD7iXmltLXsYcdHE7YfnLDvNGUWWR4A3jBt6oJ5pbS11J6vWuujUkqvlHJYa300su/eosossjwAjDNt6sIgnA16vswrZZIuru14M8nrswyb5SHuDN0/HKzL1bbMkJPmcLUpDwCtDaYujBtOHISzf//XfzLkyIk6ubZjE64GvVAf1lqvD+27luR6rfXiDGUOk1xN8lmSy0luJfmu1nq3TfkW9bXOFwAwk7brfLmw9hjCFwAwq7VYZBUAgJ8TvgAAOiR8AQB0SPgCAOiQ8AUA0CHha0u42CsAbIZVXduRBXI9MQDYHHq+toDriQFA90476qTnawu4nhgAdGvcqFNbwtcWmHax17ZevHw193MAwC4YN+p0uN9uQFH42hKDi72elnljANDeuFGn//6v/9eqrPBFkvEJfp4wt830EG4PryVwWuNGnf77v9qVFb5IYt5YW3oIt4fXEjbbOnx5Ou2ok/BFksXNG9t2egi3h9cSNtemf3my1ASvDRL8Jv0Cd23QQ5hkpT2EFtWd37q8lsDsNn2JJT1fMIN16CHc9G9862IdXsu21mF4BdbJpk+VEb5gRvOeWTovw2WL0+a1XHXwEbbhTZv05Wkcw46wYQyXdWcQfH77hz/n46++Xckw76YPr8CybPJUGT1fsGE2/RvfJllEL+O8PWebPrwCvEn4gg206qHPXTFv8FnEkKGwDdtH+AKYYN7gs6j5ecI2bBdzvqBjlonYLPPMKzE/Dxin1FpXXYe1U0rZS3J0dHSUvb29VVeHLeLMtd2z6rMlge4cHx9nf38/SfZrrceTHqfnCzrkzLXds8lnZAHLIXxBhwxDAZh+YdhxDMOOLJNhKGCXbfP0C8OOsKYMQwG7rM30i23vGbPUBAA7Qa/zepi2ft4294wNCF8AbL1d+EDfFNPWz9uF69cadgRgK5w0VOVM4/Vy0vSLXTgxSc8XABtvWs+Wa2Rujl24pJbwBcDGmzZUtQsf6Ntk2y+pZdgRgI3XZqjKmcasC+t8jWGdL4DN42xGVq3tOl+GHQHYCts+VMX2MOwIANAh4QsAoEPCF7Cxtv0SJMB2MucL2EhWLAc2lZ4vYKxpvUqr7nWyYjmwqTrp+SqlfJGk19w9qLXemrfMSftLKVeSfJ7kmySPknyU5Lta693T/xSwO6b1Kq1Dr5MVy2E5LNmxfEsPX01ISq31TnP/Sinldq3189OWafGcB0muJLmafvj6cp7g5RexHe20PaatFr4OF761YjksXtsvVt7v59NFz9eNJBcGd2qt90op36TfM3XaMm2e80KttTdv5dfhG/4m0E7bZVqv0rr0OlnXCRarzRcr7/fzW+qcr1LKYfpDgr0x+66cpsxpnnMeXc0rWff5NdOsSzuxGINepX//138a+8Y6bT9wOqt+j2tzmSbzLee37J6vwwnbe+kPDZ6mTNvn/LSU8kOS95JcrLVen1TJUso7Sd4Z2vT6t62Lb/ibML9mmnVoJxZrWq+SXqftYQhpPazDe1yb4fx16fneZKtaamIQik5TptfiOe8nSa31UZKUUq6VUr6utX4yoeyNJL8ft6OLeSWbML9mmnVoJ2B26/CBT9+6vMe1+eJlvuV8VrXUxKzBq02Z1/trrY8GwavxxyRXSykHE8reTLI/dPvl8M7BL+KyfsGmdfO26QZeB6tuJ2B2hpDWxya9xy37/X7blVrr8p68Pz/rYa21jGyvST6qtd6btUz6Zy+e+JyllKujZzc2+z+otd5vUe+9JEdHR0fZ29tr9bPOa1q3v2GBPu0Ai6Xna714j+vOMtr6+Pg4+/v7SbJfaz2e9Lilhq8kKaX8mH7oeTS0rY6Gp1nKnLS/6d36Mf15XoNhx8G2f2hzBuQqwhfAqvjAZ9cs60tH2/DVxbDjzfTX3EqSlFKuJrkzdP9wsG5X2zIn7W/C1a2RYcdrSe4uYukJgG1jCIlds+rh9qX3fCWvF0UdhKEPh888LKVcS3K91nqxbZkWz3mQfuAaOHfS2Y5j6qvnCwC21Kp7vjoJX5tG+AJYLEObrJtVzvla1VITO8WbDrDLTOpnHa1yrcJVLTWxVU5akXjwpvPbP/w5H3/1rZXZgZ2z6vk1sG6ErzlNC1fedP5u1ZfNAFZjk9av2gTeSzefYcc5TVuR2GUY+gw7wO6yIvrieC/dDsLXnKaFK286fety2QxgNTbhWqCbMD/Xe+l2EL7m1CZcbcKbzrLpAQTW2ab0KC3ivXQTQua2s9TEGJaaWA5/8MC6+uv3vfz2D39+ff/f//Wf1vZL8zzvpZsSMjfVOq1wD0msog2sr006KWCe91Inga0Hw44A7LxdmZ9rCsh6MOw4hmFHALaVKSDLY9gRAHhDF1NArEV2MsOOAMDCmNQ/nZ4vYGv59r042pK2TOqfTs8XrZknwCbx7XtxtCWzMKl/OuGLVrz5smmsBL44bdrSlzMGduXM0XkYdtwR8w4Z6EZmFeb5vd2kdZvW3bS2HHw5++0f/pyPv/rW0CTWdZxCz9cOWESvlW5kujbv761v34szrS31MsJshK8dsIg3Rh9k22UThogW9XsrBCzGSW3pyxnMRvjaAYt6Y/RBth02Zf6eD/TFWXbY9uUMZmOF+zG2cYX7TejpYHFOer135QLCXVn3Om5K2IZt0HaFez1fO0Kv1e6Y9mG7ST1K6/57uwnBxnwsWD/CF2yZaR+2hogWZxOCzSaFbdgVwhdsmTYftuveo7QpNiHYCNuwfsz5GmMb53yxW9Z9HtI20dbAgDlfsMP0bHVHWwOzssI9AGwRF0Fff3q+AGBLbMIZuOj5AoCt4Tq8m0H4ggXT5Q+sigvKbwZnO47hbEdOS5c/sGrOwF2dtmc76vmCBdLlD6za4AxcwWt9CV+wQLr8AZjGsOMYhh2Zhy5/gN1kkVVYEYtuAnASw44AAB0SvgAAOiR8AQB0SPgCAOiQ8AUA0CHhCwCgQ8IXsBKugQnsqk7W+SqlfJGk19w9qLXemrfMvPuB1XENTGCXLb3nqwlBqbXeqbXeSXK/lHJ7njLz7gdWyzUwgV229MsLlVJ+THKh1tob2lZrreW0Zebd36LOLi+0w1weaPn0fAHbaC0uL1RKOUx/yK83Zt+VWuu9WcskeTTP/gnHfCfJO0ObXA15RwkF3Xj37bfyp9/9RsgFdtKyhx0PJ2zvJTk4ZZl5949zI8nR0O1vEx7HljMc1p3BNTAFL2DXrOpsxx+SvLfgMvPsv5lkf+j2yxnrxpa4dP5sLpw7kyS5cO5MLp3XCQrAYnVytuMYswavNmVOvb/W+lOSnwb3S2k1NYwtZDgMgGVbds/XownbD07YN63MvPvZYotYO8pwGADL1NXZjh/UWh8NbWtztuPEMvPub1FnZztuIJPlAViltmc7djHn62aSK4M7pZSrSe4M3T8crMvVtswC9rOFTJYHYBMsPXw1K8sflFKuNiHow1rr50MPuZLk81nKzLuf7WSyPACbYOnDjpvIsOPmskAqAItwms+TtVhkFbo2mCwPAKe17DnEq1rnCwBgLS17DrHwBQAwZNlziM35GsOcLwDYbcuc86XnCwDYOvMuur3MBbdNuAcAtsq6L7qt5wsA2Crrvui28AUAbJV1X3TbhPsxTLgHgM22ikW3LbIKAOysdV5027AjAECHhC8AgA4JXwAAHRK+AAA6JHwBAHRI+AIA6JDwBQDQIeELAKBDwhcAQIeELwCADglfsIZevHyVv37fy4uXr1ZdFQAWzLUdYc28ePkqH3/1bR4/fZ4L587kT7/7TWcXhQVg+fR8wZp58ORZHj99niR5/PR5Hjx5tuIaAbBIwhesmUvnz+bCuTNJkgvnzuTS+bMrrhEAi1Rqrauuw9oppewlOTo6Osre3t6qq8MOevHyVR48eZZL588acgTYEMfHx9nf30+S/Vrr8aTHmfMFa+jdt9/Kr94/WHU1AFgCw44AAB0SvgAAOiR8AQB0SPgCAOiQ8AUA0CHhCwCgQ8IXAECHhC8AgA4JXwAAHRK+AAA6JHwBAHRI+AIA6JDwBQDQIeELAKBDwhcAQId+sewDlFK+SNJr7h7UWm/NW+ak/aWUK0k+T/JNkkdJPkryXa317ul/CgCAxVhqz1cTklJrvVNrvZPkfinl9jxlWjznQZIrSW43t4eCFwCwLkqtdXlPXsqPSS7UWntD22qttZy2TIv9V5PcG95/inrvJTk6OjrK3t7eaZ8GANghx8fH2d/fT5L9WuvxpMctreerlHKY/pBgb8y+K6cpc5rnbFnXd0ope4NbkrOnfS4AgJMsc87X4YTtvfSHBk9Tpu1zflpK+SHJe0ku1lqvT6xl340kv5/yGACAua3ibMdBKFpkmeH999MfdrzbzAl7WEr5esrz30yyP3T75Yz1AwBopXXPVzOX6rMWD71Za71/wv5Zg1ebMq/311ofjez7Y5LbpZSxw5VNmZ+S/DS4X8rEKWkAAHNpHb6aMwZnOWtwNAQNHJywb1qZqc9ZSrk6fHZjrbXXhKnD9HvFAABWZmnDjk0PVK+ZJD+6795pykzbX0o5SPL18P5mWzI5uAEAdGbZc75upr/mVpLXQ5d3hu4fDtbtalvmpP3NsOKtkaHHa0nuzrP0BADAoix1na/k9aKogzD04fCZh6WUa0mu11ovti3T4jkP0g9cA+danO04WmfrfAEAM2m7ztfSw9cmEr4AgFmtfJFVAADeJHwBAHRI+AIA6JDwBQDQIeELAKBDwhcAQIeELwCADglfAAAdEr4AADokfAEAdEj4AgDokPAFANAh4QsAoEPCFwBAh4QvAIAOCV8AAB0SvgAAOiR8AQB0SPgCAOiQ8AUA0CHhCwCgQ8IXAECHhC8AgA4JXwAAHRK+AAA6JHwBAHRI+AIA6JDwBQDQIeELAKBDwhcAQIeELwCADglfAAAdEr4AADokfAEAdEj4AgDokPAFANAh4QsAoEPCFwBAh4QvAIAOCV8AAB0SvgAAOvSLZR+glPJFkl5z96DWemveMqWUgySfJvmk1vrRIo4JANCFpfZ8NSEotdY7tdY7Se6XUm7PU6aUcjn94HWQ5L1FHBMAoCul1rq8Jy/lxyQXaq29oW211lrmLVNKuZrkRq31g3mPOaYOe0mOjo6Osre317YYALDDjo+Ps7+/nyT7tdbjSY9bWs9XKeUw/SG/3ph9VxZVZhHlSynvlFL2BrckZ6cdCwDgNJY57Hg4YXsv/SHDRZVZRPkbSY6Gbn9rcSwAgJmt4mzHHzJmrtYSysxS/maS/aHbL+c4FgDARK3PdmzmWH3W4qE3a633T9h/mhA1T/CaWr7W+lOSnwb3S2k9PQwAYCatw1et9W6SuzM896MJ2w9O2HeaMossDwCwVEsbdqy1PkrSaybBj+67t6gyiywPALBsy57zdTPJ67MMm6HLO0P3DwfrcrUtM2TSUGLb8gAAnVvqOl/J60VPB0N+H9Zarw/tu5bkeq314gxlDpMM5p9dTnIryXfNsOjU8i3rbJ0vAGAmbdf5Wnr42kTCFwAwq5UvsgoAwJuELwCADglfAAAdEr4AADokfAEAdEj4AgDokPAFANAh4QsAoEPCFwBAh4QvAIAOCV8AAB0SvgAAOiR8AQB0SPgCAOiQ8AUA0CHhCwCgQ8IXAECHhC8AgA4JXwAAHRK+AAA6JHwBAHRI+AIA6JDwBQDQIeELAKBDwhcAQIeELwCADglfAAAdEr4AADokfAEAdEj4AgDokPAFANAh4QsAoEPCF8AKvXj5Kn/9vpcXL1+tuipAR36x6goA7KoXL1/l46++zeOnz3Ph3Jn86Xe/ybtvv7XqagFLpucLYEUePHmWx0+fJ0keP32eB0+erbhGQBeEL4AVuXT+bC6cO5MkuXDuTC6dP7viGgFdKLXWVddh7ZRS9pIcHR0dZW9vb9XVAbbYi5ev8uDJs1w6f9aQI2y44+Pj7O/vJ8l+rfV40uPM+QJYoXfffiu/ev9g1dUAOmTYEQCgQ8IXAECHhC8AgA4tfc5XKeWLJL3m7kGt9da8ZUopB0k+TfJJrfWjkX1Xknye5Jskj5J8lOS7Wuvd0/8UAACLsdSeryZEpdZ6p9Z6J8n9UsrtecqUUi6nH7wOkrw35ikOklxJcru5PRS8AIB1sdSlJkopPya5UGvtDW2rtdYyb5lSytUkN2qtH4zZfm+4/CnqbakJAGAmbZeaWFrPVynlMP0hw96YfVcWVWYRSinvlFL2BrckVjoEAJZimXO+Dids76U/NLioMuN8Wkr5If1hyYu11utTHn8jye9neH4AgFNZxdmOg1C0rDL30x92vNvMGXtYSvl6SpmbSfaHbr+csX4AAK207vlq5lJ91uKhN2ut90/YP2vwmqlMrfXRyKY/JrldShk7nNmU+SnJT4P7pUyckgYAMJfW4as5Y3CWswZHQ9DAwQn7TlPmZ0opV4fPbqy19powdZh+r1hrx8cT58oBAPxM29ywtDlftdZHpZReKeVwtDeq1npvUWWGNet/fV1KuTgo32xLWoa3xtkkef/992coAgCQpJ8jVnZh7Zvpr7l1J3k9dHlnsLM5u/HqyCKqJ5YZ8sZQZNPLdWskuF1LcnfGpSf+M/15X8+a+2eT/G1kG7PTjoujLRdDOy6OtlwM7bg4q2rLs+nniImWus5X8nrR1EEY+nD4zMNSyrUk12utF2coc5hkMP/scpJbGVrBvunpujb0dOdanO047WfYS3KUKet2cDLtuDjacjG04+Joy8XQjouzzm259PC1Ddb5Bdwk2nFxtOViaMfF0ZaLoR0XZ53b0oW1AQA6JHy181OS/5mh5Sg4Fe24ONpyMbTj4mjLxdCOi7O2bWnYEQCgQ3q+AAA6JHwBAHRI+AIA6JDwBQDQoWWvcL/xmgVfe83dg5HV+BmjWej20ySf1Fo/GrNfm86gaa8kuZgktdbPx+zvNXe15xhDv5NJvx0Pk/zL8JUvtOPplFK+Gf0715bTlVKuJPk8yTfpLyr+UYYWDG8eox1nUEr5MsnD5u4P69yWwtcJBh96tdbBpY6ulFJuj3748XellMtJfp3+xdDfuASUNp1NKeXLkSs83B7+sNOerX2Z5Muha77eTvJ1+h942vGUmsu/XRnZpi3bOUi/7a6mH76+HBMWtGMLzZer/5Pkn5vLDF5O8h9JSrN/7drSUhMnKKX8mOTCyLfjWmstq6vVZmjelG/UWj8Y2a5NWxpcKD79HsRes23wpnKxuRC99myhlPJNkm8G33abN+MbtdZ/aO5rxxkN9SbeHm4nbdlO8x55b9J1h7Vje82XqYfDvVmllCu11nvN/9euLc35mqC5huTBuD+MpruYGWnTU/l1+kNkA4Nrnh5oz/ZqrR+NDDN8mGTwxqwdT+fTJH8c3qAtF0M7zuxakrullMNB+wwFr7VsS8OOkx1O2N5Lv7uY2WnTGTRvFv8wsnnwZvEo/WA2Ti/ac6Kmx+EgySfNJr+XM2o+tO6N2aUtZ/NpKeWH9KdoXByaYqAdW2rCVZJcTv998dFgWkETwNayLYWv2Q3+UFgcbdrejSSfN/MaJj1Ge44xNEx2kP4bc29KEe042UEz7H3Q8vHa8k33k2RoHuK1UsrXtdZPTiijHd80CFe9Wuv9JCmlXE/yOG9+eR220rYUvmbnF3/xtGkLzZk8/zaYNHoC7TlGE7YGE26vDeaBnFBEO45RSrnW4ndwlLYcMQhdQ/6Y5PaUQKsdJ/vL4D/Nl9ODKcOKK21Lc74mG/3DGDg4YR8n06an1AyVPRyZt6Q9W2jehL8c+VC7l7+fbaYdW2pO+PjLCQ/Rli01f9OvDfXEHkY7zmJSe/Syxm0pfE3QfCvpDY0nD+8bN9eBKbTp6QxNIB302hyUUg61Z2uHSb7Iz7/pHjT/9rTjTN5LcqWU8kVzxuiXSf/s0VLKVW3ZzuBM5uF2Gvpy8Eg7tte01aO8ObfrIMlf1rUtha+T3czQGjbNN5VZu9t31aQuXW06g6an4XKS+82ZPIfpn9nzQ/MQ7TlFMw/k1sgwz2dJ7g+9+WrHFmqt92qttwa3JLeb7beG1qjSllM0vVyjv5PXktwd6gHTju1dT/9vOsnPlvG432xau7a0ztcUzbe7wR/Ih8MLXvKmJhxcTf8P4XKSWxm/arM2naL5Jvw4Y87IGVlXSXtO0bTltaFNF5NcH7PCvXZsqfkA+yz9v/db6a+jNji9X1tOMeZ38txoO2nH9kop1/L398q1b0vhCwCgQ4YdAQA6JHwBAHRI+AIA6JDwBQDQIeELAKBDwhcAQIeELwCADglfAAAdEr4AADokfAEAdEj4AgDo0P8HKEq58vhxTAsAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "pcac_plateau.plot_history()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If everything is satisfactory, dump the `Obs` in a pickle file for future use. The `Obs` `pcac_plateau` conatains all relevant information for any follow up analyses." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "pe.input.json.dump_to_json(pcac_plateau, \"pcac_plateau_test_ensemble\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 4 }