{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from packaging import version\n", "import pyerrors as pe\n", "import numpy as np\n", "import scipy" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As an example we look at a symmetric 2x2 matrix which positive semidefinte and has an error on all entries" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[Obs[4.10(20)] Obs[-1.00(10)]]\n", " [Obs[-1.00(10)] Obs[1.000(10)]]]\n" ] } ], "source": [ "obs11 = pe.pseudo_Obs(4.1, 0.2, 'e1')\n", "obs22 = pe.pseudo_Obs(1, 0.01, 'e1')\n", "obs12 = pe.pseudo_Obs(-1, 0.1, 'e1')\n", "matrix = np.asarray([[obs11, obs12], [obs12, obs22]])\n", "print(matrix)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We require to use `np.asarray` here as it makes sure that we end up with a numpy array of `Obs`." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The standard matrix product can be performed with `@`" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[Obs[17.81] Obs[-5.1]]\n", " [Obs[-5.1] Obs[2.0]]]\n" ] } ], "source": [ "print(matrix @ matrix)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Multiplication with unit matrix leaves the matrix unchanged" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[Obs[4.1] Obs[-1.0]]\n", " [Obs[-1.0] Obs[1.0]]]\n" ] } ], "source": [ "print(matrix @ np.identity(2))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For large matrices overloading the standard operator `@` can become inefficient as pyerrors has to perform a large number of elementary opeations. For these situations pyerrors provides the function `linalg.matmul` which optimizes the required automatic differentiation. The function can take an arbitray number of operands." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[Obs[78.12099999999998] Obs[-22.909999999999997]]\n", " [Obs[-22.909999999999997] Obs[7.1]]]\n" ] } ], "source": [ "print(pe.linalg.matmul(matrix, matrix, matrix)) # Equivalent to matrix @ matrix @ matrix but faster for large matrices" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Mathematical functions work elementwise" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[Obs[30.161857460980094] Obs[-1.1752011936438014]]\n", " [Obs[-1.1752011936438014] Obs[1.1752011936438014]]]\n" ] } ], "source": [ "print(np.sinh(matrix))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For a vector of `Obs`, we again use `np.asarray` to end up with the correct object" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[Obs[2.00(40)] Obs[1.00(10)]]\n" ] } ], "source": [ "vec1 = pe.pseudo_Obs(2, 0.4, 'e1')\n", "vec2 = pe.pseudo_Obs(1, 0.1, 'e1')\n", "vector = np.asarray([vec1, vec2])\n", "for (i), entry in np.ndenumerate(vector):\n", " entry.gamma_method()\n", "print(vector)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The matrix times vector product can then be computed via" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[Obs[7.2(1.7)] Obs[-1.00(46)]]\n" ] } ], "source": [ "product = matrix @ vector\n", "for (i), entry in np.ndenumerate(product):\n", " entry.gamma_method()\n", "print(product)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`pyerrors` provides the user with wrappers to the `numpy.linalg` functions which work on `Obs` valued matrices. We can for example calculate the determinant of the matrix via" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3.10(28)\n" ] } ], "source": [ "det = pe.linalg.det(matrix)\n", "det.gamma_method()\n", "print(det)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The cholesky decomposition can be obtained as follows" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[Obs[2.025(49)] Obs[0.0]]\n", " [Obs[-0.494(50)] Obs[0.870(29)]]]\n" ] } ], "source": [ "cholesky = pe.linalg.cholesky(matrix)\n", "for (i, j), entry in np.ndenumerate(cholesky):\n", " entry.gamma_method()\n", "print(cholesky)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can now check if the decomposition was succesfull" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[Obs[-8.881784197001252e-16] Obs[0.0]]\n", " [Obs[0.0] Obs[0.0]]]\n" ] } ], "source": [ "check = cholesky @ cholesky.T\n", "print(check - matrix)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can now further compute the inverse of the cholesky decomposed matrix and check that the product with its inverse gives the unit matrix with zero error." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[Obs[0.494(12)] Obs[0.0]]\n", " [Obs[0.280(40)] Obs[1.150(39)]]]\n", "Check:\n", "[[Obs[1.0] Obs[0.0]]\n", " [Obs[0.0] Obs[1.0]]]\n" ] } ], "source": [ "inv = pe.linalg.inv(cholesky)\n", "for (i, j), entry in np.ndenumerate(inv):\n", " entry.gamma_method()\n", "print(inv)\n", "print('Check:')\n", "check_inv = cholesky @ inv\n", "print(check_inv)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Eigenvalues and eigenvectors\n", "We can also compute eigenvalues and eigenvectors of symmetric matrices with a special wrapper `eigh`" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Eigenvalues:\n", "[Obs[0.705(57)] Obs[4.39(19)]]\n", "Eigenvectors:\n", "[[Obs[-0.283(26)] Obs[-0.9592(75)]]\n", " [Obs[-0.9592(75)] Obs[0.283(26)]]]\n" ] } ], "source": [ "if version.parse(np.__version__) < version.parse(\"1.25.0\"):\n", " e, v = pe.linalg.eigh(matrix)\n", " for (i), entry in np.ndenumerate(e):\n", " entry.gamma_method()\n", " print('Eigenvalues:')\n", " print(e)\n", " for (i, j), entry in np.ndenumerate(v):\n", " entry.gamma_method()\n", " print('Eigenvectors:')\n", " print(v)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can check that we got the correct result" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Check eigenvector 1\n", "[Obs[-5.551115123125783e-17] Obs[0.0]]\n", "Check eigenvector 2\n", "[Obs[0.0] Obs[-2.220446049250313e-16]]\n" ] } ], "source": [ "if version.parse(np.__version__) < version.parse(\"1.25.0\"):\n", " for i in range(2):\n", " print('Check eigenvector', i + 1)\n", " print(matrix @ v[:, i] - v[:, i] * e[i])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 4 }