{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "adc5eb9b", "metadata": {}, "outputs": [], "source": [ "import matplotlib\n", "import matplotlib.pyplot as plt\n", "import pyerrors as pe" ] }, { "cell_type": "code", "execution_count": 2, "id": "a921a326", "metadata": {}, "outputs": [], "source": [ "plt.style.use('./base_style.mplstyle')\n", "usetex = matplotlib.checkdep_usetex(True)\n", "plt.rc('text', usetex=usetex)" ] }, { "cell_type": "markdown", "id": "dd0fac2c", "metadata": {}, "source": [ "A correlator can not only contain a list of Obs, but also a list of matrices of obs. \n", "This is useful, if there are multiple sources and sinks used. In our example, the sources have a different Gaussian smearing applied. \n", "\n", "We will load such a correlator." ] }, { "cell_type": "code", "execution_count": 3, "id": "c49f7c4a", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Data has been written using pyerrors 2.0.0+dev.\n", "Format version 0.1\n", "Written by jan on 2022-01-27 10:49:51 +0100 on host endwings, Linux-5.13.0-27-generic-x86_64-with-glibc2.10\n" ] } ], "source": [ "matrix_V1V1 = pe.input.json.load_json(\"./data/matrix_correlator_V1V1\")" ] }, { "cell_type": "markdown", "id": "a56dca5f", "metadata": {}, "source": [ "We can print the content at timeslice 0. As we can see, it is a matrix of Obs. " ] }, { "cell_type": "code", "execution_count": 4, "id": "dd28fe5b", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[Obs[0.9521372299563664] Obs[0.012396221358945024]\n", " Obs[0.005964522290444636] Obs[0.00271868582032491]]\n", " [Obs[0.012406080421737313] Obs[0.004389377599144552]\n", " Obs[0.0026720900942348203] Obs[0.0014322792739559524]]\n", " [Obs[0.00597528112202714] Obs[0.0026722311560493962]\n", " Obs[0.0017410144722897988] Obs[0.0009900129922259138]]\n", " [Obs[0.002728787039125839] Obs[0.001432511366233049]\n", " Obs[0.0009901084333529782] Obs[0.0005964594911910594]]]\n" ] } ], "source": [ "print(matrix_V1V1.content[0])" ] }, { "cell_type": "markdown", "id": "b965e080", "metadata": {}, "source": [ "Let us try to get the effective mass. " ] }, { "cell_type": "code", "execution_count": 5, "id": "bd58d1f5", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Something is wrong\n" ] } ], "source": [ "try:\n", " matrix_V1V1.m_eff() # This does not work!\n", "except:\n", " print(\"Something is wrong\")" ] }, { "cell_type": "markdown", "id": "044503dc", "metadata": {}, "source": [ "Many methods we could use for regular correlators do not work with matrix-correlators. \n", "In order to get the effective mass, we need to convert to a regular correlator first. \n", "\n", "One way to do it, is to pick an element out of the matrix:" ] }, { "cell_type": "code", "execution_count": 6, "id": "90e54c2f", "metadata": {}, "outputs": [], "source": [ "single_smearing = matrix_V1V1.item(0,0)" ] }, { "cell_type": "markdown", "id": "5c25a23c", "metadata": {}, "source": [ "**Corr.index(i,j)** picks the element [i,j] from every matrix and returns a correlator containing one Obs per timeslice. \n", "But there is a more usefull way to retrieve a single value per timeslice. \n", "We might want a linear combination of different sources and sinks. \n", "We can formalize this as\n", "\n", "$$C_{\\textrm{projected}}(t)=v_1^T \\underline{C}(t) v_2$$\n", "\n", "If we choose the vectors to be $v_1=v_2=(0,1,0,0)$, we should get the same correlator as in the cell above. \n", "\n", "Thinking about it this way is usefull in the Context of the generalized eigenvalue problem (GEVP), used to find the source-sink combination, which best describes a certain energy eigenstate.\n", "A good introduction is found in https://arxiv.org/abs/0902.1265." ] }, { "cell_type": "code", "execution_count": 7, "id": "1d0e8a06", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ 1.97277730e-01 -8.99401483e+01 2.71416300e+02 -5.20598763e+02]\n" ] } ], "source": [ "vecs = matrix_V1V1.GEVP(t0=3, ts=6, sort=None)\n", "assert len(vecs[0]) == matrix_V1V1.N\n", "print(vecs[0])" ] }, { "cell_type": "markdown", "id": "0d7aeb89", "metadata": {}, "source": [ "As we see, the eigenvector is of length **matrix_V1V1.N** and contains regular floats. \n", "We can use it to project the correlator. " ] }, { "cell_type": "code", "execution_count": 8, "id": "fb0b7b57", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEfCAYAAABrrED8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAhiklEQVR4nO3de3hV5YHv8d+bC0ko6CYShgMYLs6pPBXGCqEVx6F1hPbUtoiw8cJxxrbjBFOllxmlZTrYIm0xyDm1YxHh2HkeR0dBttxq+xwLnrapT2NLiO3BzmB7DCUI44DiLmhCyOU9f6y1w76sDQlr7Wu+n+fhgf3ud6/1vgb3j/ey1jLWWgEAcKFKct0AAEBhI0gAAL4QJAAAXwgSAIAvBAkAwBeCBADgS1muG5DO6NGj7aRJk3LdDACApH379r1lra3xei9vg2TSpElqaWnJdTMAAJKMMYfSvcfUFgDAF4IEAOBLIFNbxpiwpGpJMyVttdbuSVMnKikkqc1a2xrEuQEAueU7SIwxM+QEQ8R9/Y6kUUl1QpLmWWuXuq93S5rn99wAgNwLYmqrWtLSuNcn3HCJd7Ok1+NeRz3qAAAKkO8RiTuNFT+VVe0xbRWSM60Vc0JOACUwxtRLqpek2tpav00DAGRBoIvtxphGSYsHWD2UXGCt3WStrbPW1tXUeG5XBgDkmcCuI3EX07ekWUSPKjE4qiW1BXVuAEDuBDIicdc7Wq21rcaYKcaYKUlVnpV0WdzrELu2AKA4BLVr60U5i+ySs0Yyyn1vn6TrrbVRY8xuY8xc92ONvk66PyI1rZPeek0afbk0515petjXIQEAFyaIxfZWJW33jXtvZtyfI37PJckJkRcfkG78nlQ7W2pvlnbe47xHmABA1hXele0/XumEyOQ5Umm58/uN33PKAQBZV3hB8u6bzkgkXu1spxwAkHWFFySjL3ems+K1NzvlAICsK7wgmXOvsyZysEnq7XZ+33mPUw4AyLq8fR6JJO145YgeeuE1HY12alyoSvd9/HItuMpdUP/R8rO7tq6/n4V2AMgRY63NdRs8/ekHrrTlixrV2d3bX1ZVXqo1C6drwVXjc9gyABh6jDH7rLV1Xu/l7dTWkWhnQohIUmd3r1bufDVHLQIAeMnbIOlLM1J693RPllsCADiXvA2SEucq+RQjKvN6WQcAhpy8DZLxoSpVlZcmlFWVl2r1jdNy1CIAgJe8DZLQ8HKtWThd40NVMnKChYV2AMg/eT1PtOCq8QQHAOS5vB2RAAAKA0ECAPCFIAEA+EKQAAB8IUgAAL4UT5Dsj0jrr5ZWjXJ+3x/MAxkBAOeW19t/B4zH7wJAzhTHiKRpnffjd5vW5bplAFD0iiNIjh/wfvzu8QO5aQ8ADCHFESQ1U70fv1szNTftAYAhpDiChMfvAkDOFMdi+3QevwsAuVIcQSI5oUFwAEDW+Z7aMsaEjDHLjTH156iz0Rgzw/213O85AQD5I4gRiefD4JNMkbRV0h5r7dIAzgkAyBO+g8Rau8cYM+U81RoltUiq9ns+AEB+ydaurSlyQiRkjGlMV8kYU2+MaTHGtBw/fjxLTQMA+JGVILHWbrLWtllrWyXNTTeCcevVWWvrampqstE0AIBPGQ8SY0w4aYH9RKbPCQDInmxs/21zf8VUW2vb0lUGABQW30FijJkraZ6c9Y82a+0et3yfpOutta3uqGSKnLWSxX7PCQDIH4Hs2pK0x6N8Ztyfc/dwkP0R5y7AsSve59zLhYsAEKDiubLdC88pAYCMK46bNqbz45Xezyn58cpctwwAikZxB8m7b3o/p+TdN3PTHgAoQsUdJKMv935OyejLc9MeAChCxR0kPKcEADKuuBfbeU4JAGRccQeJxHNKACDDintqCwCQcUM3SPZHpPVXS6tGOb/vz901kwBQyIp/assLFyoCQGCG5oikaZ33hYpN63LdMgAoOEMzSI4f8L5Q8fiB3LQHAArY0AySmqneFyrWTM1NewCggA3NIOFCRQAIzNBcbE93oaLk7ODilvMAMGBDM0ik1AsV2ckFABdkaE5teeGW8wBwQQiSmHPdcp6LFwEgraE7tZUsdsv5yXPOlrU3SyP+C1NeAHAOjEhi0u3kKi1LM+V1P6MUABAjkrPS7eR67s7UKa+TR6W+bumGtYxSAAx5BEk8r1vON61LnfL66YNS+Ptny2KjlB8tP/sZthADGCIIkvOJTXnFr5G884f0t1jxWk85/Evp4M9Tw2V/hNABUPAKMkh2vHJED73wmo5GOzUuVKX7Pu48gz25bMFV4/2fbHpYe/9wQpdu/oLGdB3SsYqJGlVVowqvhfmKkWfXUyTn9+mLpVeelBY9nhouv3thyIWO188ukJ8TgJwpuCDZ8coRrdi2X53dvZKkI9FO3bf1N5KRunttf9mKbfv7P+P1xTXQMJKkFb+qVWf3t5yDnZbCw17Wt7fdrWEL1/eHQM/2u1XWdSp1pHLgeSdEkqfBNt8u3fpUSujYV56UiQudnu13q+zwL9Vz4H+r7Kak88XOkRwwXmWDDKO9P9ikS199tD88D0/7vGZNqvb8vGfdT9ennG9v7ef00t7D2lKxS+Mq23W0t1YPb58v6S4tKGsecD+CCCMCDQiOsdbmug2e6urqbEtLS0r5nz/4f3Qk2jmgY1SUGZWYkv7QkaSq8lItmjlez+07klBeXmISwihW11qr0z19KceeX/oLLR/+vMZ1t+toea0e7pqvr130Q41a9HDiSGXVKOkfjzk7vmJ6u2VX18isPJ5Yvv7D0g0PJX7+YJN6N/+VSm99MqW869m/VWn5sISA6X32syodVikt2JA40nn/xz3D6NAl1+p9R5sTQkCSph34rqrCZ49xZvMdKimvUtmix1I+P+5YU0LdzkiDjo6Zo4lvv5RwvjOb75DKKjUsvLG/rCPSoJ3vTdNtoX9PHJ1t/axUntqPvZfdoy17D+tLFbsS/tt/aPIozXnzX1LCzCvkjkz4pF7a/ljKMa696S7CBEjDGLPPWlvn+Z7fIDHGhCTVS4paazelqROWFJUUktRmrW0933HTBcmkr/7QR2sz68bSX2hNaIeGx32p9m2+XSXxIw9JOtiknmduV9ltT1146PR2yzZOkrntmcRjfPeD0vx/Sjlf35a/UsktSWH04mr1tT6pkvDjCSFwurtXo27bNKDjevYjXflgjpGm7jtPfU4VlRUJ/427Nt8hkxRQnZEG/brqQ/pg569SQu65d6/QwhG/TThGf6DVHMrICAgodOcKkiCuI/E8cNzJQ5LmWWv3WGsjkhr9nGxkZf7Oxu3svUZfjS7QG08vU9/qMXrj6WV6suNqdUQaEq5P6Yg06F87U8v7ho30vL1977CLvG97f+a91Km06CHPjQDm9B89p91Kwo8nXCNTFd6g0BmPq/zTHLf0zMmBlw/mGGnqhko7nQCIa3PF8IudEEnqx6yTLzohklR+a8XLKccYPuNW3fK+V5wt3f94TLphrXp2r9LeH2zSS9sf05beL+v1ytu1pffLemn7Y9rxyhEBcPgOEmvtHjmjjXRulvR63OuoMWbGhZ5v9Y3TVFVemlBWXmJUXmoSyqrKS1VZ5j8nQ1XlKec7l1291+jaU9/WlNNP6dpT39bXu+9ICZevRhd4lg8mdDoiDXqnfGxqwIQmDjyM3vqd9+6zYe/zd9x05YM5Rpq6gwnPQYWcR6iW3bRef/rrRj0wcpsmLHlEJSuPacKSR/TAyG1q3vmYADiycWV7SIlBc0JStVdFY0y9MabFGNNy/Phxz4MtuGq81iycrvGhKhlJ40NVemjxlXoofGVC2ZqF0/Xgoj9LCYGq8lLdfnXtgMPoG/OvSDmf1+fTHdcoNVx29V6jUFW5dpf8RUL5N3s/o6+dTAyX+08t1O9nrtT9pxamlH+rK5wSMF0df9SZyNKU0Hl6ECOgd3qr1DnA427uujqlbqdbPpC29Wy/27Nt6c7nOzwHGaqh0tOpo5fwBi0r3yUAjkAW240x9ZLktUZijFmuuPUTY8xGSbvdaa600q2RDFa6+W2/W4gHetzrptakLOxXlZdqzcLpnudL14Z07U1eNF7b8SlJStgIsLbjU9rVe43Cw15OqPuTrsu1aGTiWkFnpEGvTv2iJCUsUjeN/Wv96uA7ngvU49/44YAXtG+Zdalmtf9zwjrE9OdG6rruppQ2e/WjqrxE37poR+KmgS2fVV/psJQ1khd7Pqi/LPt1ylrIy6V1mqPWhGOkW8uyT8z3XJ/qWz1GJd94x/ffT6BQZHSx3T3BuYKkXlLIWrvWfb1V0przLbgHFST5IJOLtcnH7jjTo3c6ulPqjXfPm9wOrxCY9en6QPox0PrJW7ql9Lvo1iyc7rlVeO8fTnj2Y6Bbk587MVmfqPy/KaFz+kyvqpdsSgmYY1u+oJv0P1mAx5CR6yAJSWq01i51X++21s473zGLKUiyyetLuf8LOI+/6LJ6kamHpf/SoorXtqeMgP5s/MX6zOknE7cxb7tbW09+QB8ZdoDtwxgyMr39d66kpXLWQhrdxXcZY/ZJut5aG43b/iupf4H+nAiSC8d21QuT9r9b0ujlmeMTdeP7Xk0Zvax6b6Eav7E6190AMiLjI5JMIEiQr9741pWasOSRlOmuN55epglf+03uGgZkUKavIwGGlHHd7Z47vMZ1t+emQUCOESTAIJ0ePs5zW/Hp4eNy0yAgxwgSYJCGf2KVerbfnXI9zPBPrMp104CcyN/7jQD5anrY+R8n7mmaZfO+XpC39QeCQJAAF8LraZrAEMXUFgDAF4IEAOALQQIA8IUgAQD4QpAAAHwhSAAAvhAkAABfCBIAgC8ECQDAF4IEAOALQQIA8IUgAQD4QpAAAHwhSAAAvhAkAABfCBIAgC8ECQDAF4IEAOALQQIA8IUgAQD4UhbEQYwxYUlRSSFJbdbaVo86GyVtdF/OtdauDeLcAIDc8h0kxpiQpHnW2qXu692S5nlUnSJpq6Q9sboAgMIXxIjkZkmvx72OGmNmeIxKGiW1SKoO4JwAgDwRRJCE5ExrxZyQd1hMkdQmKWSMabTWfiW5gjGmXlK9JNXW1gbQNCB7mr9/r8oO/UyXVnRqTPcRHSsfr8NdVeqZ+BHN/pt1uW4ekDGZWmwPJRdYazdZa2PrJ3ONMVPS1Kmz1tbV1NRkqGlAZpSNeb+mjezQ2CWPqmTlMY1d8qimjexQ2Zj357ppQEYFESRRJQZHtZyRRz9jTNgYszyu6EQA5wXyyqWvPqqq8AZp8hyptFyaPEdV4Q269NVHc900IKOCCJJnJV0W9zrksT7SJmlP3Otqa22bgCIypuuQVDs7sbB2tlMOFDHfQWKtjUrabYyZa4yZK2dRXZJkjNlnjIkFy5S4kcliv+cF8s2xiolSe3NiYXuzUw4UsUCuI7HWRtKUzzxfHaBYPH/xEi2JNGh4eIMzMmlvVkekQc9ffIfuzHXjgAwKJEgASHd+frn2/iCkSzd/QWO6DulYxUQdnvZF3fnp+lw3DcgoggQIyk/WaNa+B/tfju06qLH77pNGvC1dtyKHDQMyiyABgnLdCgIDQxI3bQQA+EKQAAB8IUgAAL4QJAAAXwgSAIAvBAkAwBeCBADgC0ECAPCFIAEA+EKQAAB8IUgAAL4QJAAAXwgSAIAvBAkAwBeCBADgC0ECAPCFIAEA+EKQAAB8IUgAAL4QJAAAXwgSAIAvBAkAwBeCBADgS1kQBzHGhCVFJYUktVlrWy+kDgCg8PgOEmNMSNI8a+1S9/VuSfMGWwcAUJiCmNq6WdLrca+jxpgZF1AHAFCAggiSkJwpq5gTkqovoI6MMfXGmBZjTMvx48cDaBoAINMytdgeupA61tpN1to6a21dTU1N4I0CAAQviCCJKjEUqiW1XUAdAEABCiJInpV0WdzrkMeOrIHUAQAUIN+7tqy1UWPMbmPMXLeoMfaeMWafpOvPVQcAUNgCuY7EWhtJUz7zfHUAAIWNK9sBAL4QJAAAXwgSAIAvBAkAwBeCBADgC0ECAPCFIAEA+EKQAAB8IUgAAL4QJAAAXwgSAIAvBAkAwBeCBADgC0ECAPCFIAEA+EKQAAB8IUgAAL4QJAAAXwgSAIAvgTyzHUAaP1kj/ezB1PKPfFW6bkX22wNkAEECZNJ1K6TR/1VqWicdPyDVTJXm3CtND+e6ZUBgCBIgg3709CP66JHHNDy8QaqdLbU3qyPSoJ/u/w/dsGRZrpsHBII1EiCDPvqfTzghMnmOVFouTZ6j4eEN+uh/PpHrpgGBIUiADKr84+vOSCRe7WynHCgSBAmQQUfLa6X25sTC9manHCgSgQSJMSZsjJnr/j4jTZ2NxpgZ7q/lQZwXyHePa6E6Ig3SwSapt1s62KSOSIMe18JcNw0IjO/FdmNMSNI8a+1S9/VuSfM8qk6RtFXSnlhdoNh98IY7df/2Hn3p6WUa192uo+W1erhroa696c5cNw0ITBC7tm6WFD/hGzXGzLDWtibVa5TUIqk6gHMCBeFPWr+ja/t+q1tOfVlHdYnGnX5b95Vt0Z+0fke6al2umwcEIoggCUmKxr0+Ie+wmCKpTVLIGNNorf1KcgVjTL2kekmqrWUOGYVv9t84YbEgofQz2W8IkEGZWmwPJRdYazdZa9vckcpcY8yUNHXqrLV1NTU1GWoaACBI5x2RuKOEkNd71tq1ckYj8e9Xyxl5xB8jLGmKW19yRi0AgCJw3iCx1m46T5Vn5ax/xIQ81kfalBgu1dbaNgEACp7vNRJrbdQYs9sYM9ct6g8VY8w+Sddba1vdrcFT5KyVLPZ7XgBAfgjkXlvW2kia8pnnqwMAKGxc2Q4A8IUgAQD4QpAAAHwhSAAAvhAkAABfCBIAgC8ECQDAF4IEAOALQQIA8IUgAQD4QpAAAHwhSAAAvhAkAABfCBIAgC8ECQDAF4IEAOALQQIA8CWQJyQCGLwdrxzRQy+8pqPRTo0LVem+j1+uBVeNz3WzgEEjSIAc2PHKEb20/TFtqdilcZXtOtpbq4e3z5d0F2GCgsPUFpADzTsf0wMjt2nCkkdUsvKYJix5RA+M3KbmnY/lumnAoBEkQA4sK9+l4eEN0uQ5Umm5NHmOhoc3aFn5rlw3DRg0ggTIgXHd7VLt7MTC2tlOOVBgCBIgB05VjpXamxML25udcqDAECRADlz8ydXq2X63dLBJ6u2WDjapZ/vduviTq3PdNGDQ2LUF5ML0sPM/34+WS2+9Jo2+XGXzvi5ND+e6ZcCgESRArkwPewfH/ojUtK4/YDTn3rQBw7UoyAeBBIkxJiSpXlLUWrspTZ2wpKikkKQ2a21rEOcGisr+iHp2r1LZTeudxfj2ZvVsv1tlh38pHfx5Qrjs6JmtFdv2q7O7V5J0JNqpFdv2q+XQCf3kwPGMhEuxBJdXPyR59q1Y+pxJQY1I6s71phs086y1S93XuyXNC+jcQNHo2POght+03tkWLEmT56jsyptlX3lSZtHjCeHSfHKB5vX1afnI5zWuu11Hy2u1tuNTOrlX2jL8+dQLHcuaU0Y6O3pme35J7v3BJl366qMa03VIxyom6vC0z+vIhE8O6iLKwXxZe0ozMvNq26xP13seIl0bkgP4vq2/kYzU3Wv7y2Kh/Ny+IylhLWnAfR4KYWSstcEcyJh6SfIakbjvhay1a93XWyWtOdeopK6uzra0tATSNqBQ9H1jlEpWHnOuLYlZ/2HphofOhoskHWzS2099TlWVFc71KG7AdG2+Q6asUsPCG/vLOiIN2vneNC2+6N8SRjpntt2trSc/oI8MO9AfRA93zdeHJo/Sp9/6vqrijtsZadBz716hhSN+m3C+jkiDtr17heZW/s4zdL5Usav/2P+j81OSkf6+8vmE8117010a/8YPE8LhvXGzNfHtl1JGZocuuVbjjjWltO3VqV+UpIRjNI39a/3q4DsJbXi4a76e77tGH7MvafnwxACWlFK2q/cazS/9RUr5C+bPNXpE5TkDSpKqyku1aOb4hDCKLx/oyHEwASUNbmQ10JAzxuyz1noOGrIVJMsVN+1ljNkoaau1do/HMeolqba2duahQ4cCaRtQKN741pWasOSRxNBYNUr6x6Rw6e2WbZwkc9sziXW/+0Fp/j+lhE7PM7er7LanEstfXK2+1idVEn48IRhOn+lV9ZJNvo7x3KkrtGjkbwcUctvevUKLRvw2IRz6Nt+uklufGlgbDjbphBuqVQM439aTV2jxRQNrm1fdjkiDvhpdoF291/Q3oaq8VNZane7pG/wPPe4YaxZOl5QYBNdNrUkbRMnl5SUmYWR1rrrnKl+zcHpKmJwrSHK5/TeUXGCt3WStrbPW1tXU1OSgSUBuPdI9Xx2RhoRtwX3DRnpec6Iz76Ve1Bg95HmhY+mZk6nlB553AiDp6vpR3W/6PsZtlS+nXLlfMfxi54s6qe6tFS87ARBXXnLm1MDbUDtbo0o7U46R7nz/vWrgbfOqOzy8QV+v3KKXRv6D2ipv10sj/0Hz+n6u0z19ml/6i4Ty+aW/OP8P3dXZ3auvPPcbrdi2X0einbJyptKeerk94Ys+VtervLvPJoRIrO6/pjnGM7887Fn+0AuvDbjd0gDWSGLTUl7vxaaqBiCadIxqSW0D/CwwZMy+8S7dv1360tPL+qdSXjx9tRZHGlL+Vdw1bKxGtTcn/us8NNEJmfiy9mb1DrtIZcnlb/3O80tZw97n+xieX/iDCbnR7x94G4II1cHUPXlU1ZVGJvyIVDtbE9qb9WCkQTNP/j5h9BIrV9T5mNe0WbKuHiupN6Xcr3TzTr1pZqSORDsHdfzzjkjcUcJar1+DOM+zki6Lex1i1xaQasFV43XtTXfpltLv6LLTT+mW0u/o9zNX6v5TC/XG08vUt3qM3nh6me4/tVD/b/rfSTvvSRi9qOuUerfdlXKh49Yzswc80on2VqXU7Yg0qKnyupSLKNMdo3fYRanlsZAbSN2pn1Jf5M6UNmzuulqdSW3rjDQoOszjTgFpzmcrLx5wXVPh0b+fPigT/v6ARy/fHrFVjaEdCTfofDC0Q6vKn7jg0YskmQzVlaSRlYPbhxXIGokxZq6kpXJGHY2xtQ9jzD5J11tro3HbfyVJyesjyVhsB85KuyDqtbNJ8tydlbz4/bMzU7X4on/TsIVJW43nfV17/3DCe2dU0vleH3GV5+L30TFzUhbLe5/9rFRWodKFj513AT22znJdxWvnXZg/PO3zkqRpB76bcIwzm+9QSXmVyhYlnq9s6n+TfveCdOP3+su19bNSeaW04OzntfMe6f0fT6lrn5gvs/J46prV6hrPcjVOkpLXsjzWljojDXqgY5Ge6fxwys/fKHFUkW9rJIEttgeNIAGC5RlGHluCB3t1fdrtuAMMuXRbeo9M+OSgtsx6tmNStXf/BtG2lLrdHU6wJC34a/PtkscGAT0xX0oOmDQ78Tp2/J1mnvjmgHd4Fd2uraARJADy0v6I9OIDiSOaNKMX7bzH+Uxy8KTZiadvjtHeGY0Dvk4mm84VJNwiBQAGIzZii7tPmq6/3ym/9MOp5ZITKPEBE1t7Sd40UHGxZr3+PelWp+7Y9maN3XmPtL86r+/DxogEADIteXps8l94j166O6TwP6dOj21bKv39v+eu/WJEAgC55XWDTq/Ry7a/9d6Sfeo/pPVX+1rLyiSCBABywStcmtalTnn99EFpxBjphrWpay95EiY82AoA8sWce1OvDdr7v6RFiXcP0I3fk368Mtet7ceIBADyhddC/mnv28Lo3Tez3740CBIAyCfJU17rr/be4TX68uy3LQ2mtgAgn3lNd+28xynfH3GCZtUo5/f9kZw0kREJAOSzdNetSN4XRsZ/JksIEgDId147vNZfnXjFfGwR/kfLsx4kTG0BQCF66zXvRfi3BvcskSAQJABQiEZ43Dq/vdkpzzKCBAAK0cdWey/Cf2x11pvCGgkAFKJz3TwyywgSAChUXovwOcDUFgDAl7y9jbwx5rikQ+7L0ZLeymFzMo3+Fa5i7ptE/wpZ0H2baK2t8Xojb4MknjGmJd198IsB/Stcxdw3if4Vsmz2jaktAIAvBAkAwJdCCZJNuW5AhtG/wlXMfZPoXyHLWt8KYo0EAJC/CmVEAgDIUwQJAMCXvL6y3RgTlhSVFJLUZq1tzWmDfDLGhCTVS4paazfFlRdNP92+VEuaKWmrtXZPXHlUBdxHtw9tkuokKfYzLIa+xYv1p5h+dpJkjNkoaaP7cq61dq1bXhT9kyRjTL2cv6PK6s/PWpuXv9xOb4x7vTvXbQqgT3MlLZdUX4z9lDRD0oy41+8USx/dPuwrxr559HO3nC/aouqf26/Xk/pTTP3bKikU+3M2+5fPU1s3y/mhx0SNMTNy1ZggWOdfCNGk4mLqZ7WkpXGvT7h9Kfg+Wmuj1tqZkmSMmSKpxX2r4PuWpE7OF25MMfWvUc5IuTGurCj6F2uztTZqjJlirV3svpWV/uVzkISU+KV7Qs4XVbEJqUj6aa3dY62ND5Jq6wyjQyqSPhpj5koKS4r9jxpS8fRths4GZExIRdI/SVPktD1kjImFSUjF0b86qX/6POv9y+cg8RLKdQOyJJTrBvjl/kVefI4qoSw1JVDuqLJVzlpXOqHstCZ41troAKqFMtyMjLDWbrLWxtYI5rojSy+hLDYrKCGpf+TcKmlGNvuXz4vtUSV2uFruIlKRiarI+uku7m2xZxf1oiqiPlpr9xhjthpjYlOVobi3C7Jv7iLtCffLZ5akS4wxbSqe/oUlTbHuArucf5lLRdI/OW2+JO51VM4ILKos9C+fRyTPSros7nXIFvBuinMoqn660yOt1tpWY8wU94up4PtojKmPmy6Qzn4RFXzfpP5/rUestRE5XzS7rbVtKpL+yenTnrjX1UXWvz1KDIzYOl5W+pfXV7bHbVuTdHY7W6Fy59eXyvmBN9rU7XmSCrefboi8qLNfstXW2lHuewXdR3fuOXYn1djCZvL2UbnlBdW3eO7PsFHOF2+jtbatWPrn9kNyvmQjbpAUzc8vbuu9JJ1w/1GQlf7ldZAAAPJfPk9tAQAKAEECAPCFIAEA+EKQAAB8IUiALHN3gAFFgyABsm9FrhsABIkgAbLIHY28net2AEEiSIDsullSJNeNAIJEkADZdVnsimqgWOTzTRuBvOPeO2yGnBsbbnT/HH8zwPN99nWP8uU6eyO9pdbaecG1GMg8RiTA4Mx172G0V86T5yKKe5iXe3PHue7ddJOF5dxET3H1G+U8/jQi5/b0hfgsDAxxBAkwOLEgmCXn0aay1l4m9d8c70TczTjnJn32kvjnfbgjlHDs5npyRjcFecNADG0ECTAIcUEQttZukvoDQXLCJfZ+m6T+KSr3rrrxj7CVUoNjnkcdIO8RJMAAGWOWu1NXM+QGhhsisSAJ6ewt9GOvY25Jc/vuaNyfb3YfmhX2qAfkLRbbgYGLPX9ekjbGvvDjpqaiSlzjiJ7rYNbaiDFmVtwU2Br3mIX4YCUMYTyPBAhIfLC4i+1tcSOM2LPCgaLD1BYQEHdkUh0bYcRNZc0iRFDMmNoCAhRbgI/hligYCpjaAgD4wtQWAMAXggQA4AtBAgDwhSABAPhCkAAAfCFIAAC+ECQAAF/+P/SfFH0WnVgqAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "matrix_V1V1.projected(vecs[0]).m_eff().show(comp=single_smearing.m_eff(), auto_gamma=True)" ] }, { "cell_type": "markdown", "id": "f26cdaf2", "metadata": {}, "source": [ "There is a lot going on in this line of code. \n", "We start with our matrix correlator and we project it, using the vector we got from the GEVP routine. \n", "\n", "This gives us a new correlator with one Obs per timeslice. We then calculate its effective mass and plot it. \n", "We tell the **Corr.show** method to show another correlator as a comparison. \n", "\n", "We can see, that the projected correlator (*blue*) converges to a mass plateau much quicker than the single smearing level." ] }, { "cell_type": "markdown", "id": "06c366ed", "metadata": {}, "source": [ "## Example Analysis\n", "\n", "We can use what we learned so far to perform an actually usefull analysis. \n", "The correlator **matrix_V1V1** we looked at corresponds to vector-charmonium. \n", "\n", "We might be interested in the mass of the $J/\\Psi$ state." ] }, { "cell_type": "code", "execution_count": 9, "id": "def98bc0", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "--- The mass was calculated to be 3080.0(7.9) MeV ---\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEfCAYAAABWPiGaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAActUlEQVR4nO3dT4wc53nn8d8jiV4xG2UrQzNWxIXCNGEx2IMQ9jQPsSIjNrvBGAZ2mc2IPliHXDI8GoLAf/DZMMeEoBjIhXPw+iADDjnhcg/EmuiWENiwL5oZBlL2QBls+N9oZTAclmXY1IqSnz10VbN6pqt6ij01XdX8fgACXW+9XfN0s6uffv/UW+buAgBgqx6ZdAAAgGohcQAAciFxAAByIXEAAHIhcQAAciFxAAByeWzSASR98pOf9P379086DAB46K2srPy7u+8dtq9UiWP//v1aXl6edBgA8NAzs5+m7ctMHGYWSJqXFLr7YkqdOUmhpEBS191XE/vmJXUlyd07OeMGAJTQqBZHI2tnlFha7n4i2m5LakWPL0n6e3cPo8ckDgCYApmJw907ZlbLqHJc0s3Edmhm9cTzQzOrufsLY8YJACiJcWdVBep1U8XWJc0oaqlELZLAzBbSDmBm82a2bGbLt27dGjMcAEDRipiOG0T/5O5hNOZRT2u5uPuiuzfcvbF379ABfABAiYw7qypUlCQiM4oGwyXt2VCvltgHAKiocVscFyUdSGwHUQujo8GEUpPEPFsAmAKjpuM21ZslFZhZN55Sa2Yrko5Eg9/tqJ4kLUj9QfF2NB1Xkr7u7mExLwEAsJNGzqrSkGm07j6beLyU8tyh5QCAamOtqimxtPRgeToMQ3U6XGIDYOtKteRI1YRhqMXFRQVBoPn5+aF1lpaWFASBwjBUrVZTvV7vl6+vr2tlZUUvvPCCms1mZv3FxUXNzMxofX1djUajXx7vS/79tGPHdWu13gS3ZrOpIAgkSd1ut18OAJncvTT/ZmdnvUra7bYvLCz4hQsXhu6/c+eOz8/P97ebzaa7u6+srPjKykq/PAiCkfWHlcfPSf79tGO7u8/NzfmdO3f6j5NOnTo14tUCeJhIWvaU7+rKtjhOnDiRuu/FF1/U888/L0n6wQ9+oNdee03f//739dnPfnZT3QsXLvQff+1rX9PPfvazTeVpms2mut30GcYXL17UgQP3J50FQaDV1VWtr6/r0qVL/b8xMzOj1dVVLS8vD63f6XQ2lccthMXFRc3NzfX3pR1743MvXbo0EGsYhiNfLwBID9EYx7CkUbQwDPtdQZL6XU3NZnMgMa2vr6ter6fWr9Vqunnz/sou3W63n7DefPPNgS6mtGPHqw6HYagwDHX69OmBWOMkBQCjVLbFsZUWgSQ9//zz/dbHKF/96lfHCWlLNv6yP3369KZf/xvrz83Nqd1uq9vt5moZJI8dPy8IAtXrdZ0+fXpgXOPw4cPqdrsDYycAMMxD0+KYhHiQOxa3HmJLS0v60pe+1B+8zqofJ8r4i73RyFy4eNOxa7XawN+Ou6w2xgsAo5A4CnT8+PGBLqYwDPtf/Kurq6rX66rX6/2up7T63W5Xp0+fVq1WU7fbVaPR6H/JD2uBDDt2s9kcqBsfJ7k9MzOzvW8AgKlU2a6qMuh0Omq32/2ps/Gv+9nZWb3++usKgkCtVqt/nUQ8rrC6uqojR470v6jX19d1584dSRpav1ar6fDhw+p0OlpdXR3opmu1WgNdTqOOvbjYux/X2bNnB1oYN2/e1KlTp7b/TQIyvNp+R998/cebyr9y5NN6qfXMBCLCVlhv1lU5NBoN59ax+XS7XXU6ndTrSLbq9OnTWlhIXf0eKNz+M1f1k3NfnHQYiJjZirsP7ROnq6riarXa2FNpO51O5vRmAEgicUyBU6dOjbXkiCSuGgewZSSOKZG8CDCPIAgGliQBgFFIHACAXEgcAIBcSBwAgFxIHACAXEgcAIBcSBwAgFxIHACAXDLXqjKzQNK8pNDdF1PqzEkKJQWSuu6+GpVfkBQvqtR0929sT8gAgEkatchh5trdUWJpufuJaLstqRXtrkm6JKkT7wcAVF9m4nD3jpllrUVxXNLNxHZoZvWo1bEgaVkSa3UDwBQZd4wjUK+bKrau+4miFj0OzCx12VUzmzezZTNbvnXr1pjhAACKVsTgeCBJ7r7o7vGYRzOt5RLVa7h7Y+/evQWEAwDYTuMmjlBRoojMSOqa2ZyZJe8KtD7m3wEAlMS4ieOipAOJ7SBqYXQldRLlM+4+eINrAEAljZqO21RvllRgZl1370TlK5KOuHtoZu2ontQbEJe7r0atjpp6Yx0vFPcSAAA7aeSsKg22HOLy2cTjoXcQSisHAFQbV44DAHIhcQAAciFxAAByIXEAAHIhcQAAciFxAAByIXEAAHIhcQAAciFxAAByIXEAAHIhcQAAciFxAAByIXEAmKgr19f03Lk3JEnPnXtDV66vTTgijJK5Oi4AFOnK9TWdvfy27t77WJK0Ft7V2ctvS5KOHdo3ydCQgRYHgIk5f+1GP2nE7t77WOev3ZhQRNgKEgeAiXk3vJurHOVAVxUwRV5tv6Nvvv7jTeVfOfJpvdR6ZgIRZXsq2K21IUniqWD3BKLBVpE4gCnyUuuZfoLYf+aqfnLuixOOKNvJowcHxjgkafeuR3Xy6MEJRoVRSBwAJiYeAD9/7YbWwrvaF+zWyaMHGRgvORIHgIk6dmifjh3ap/1nruqHZz4/6XCwBZmJw8wCSfOSQndfTKkzJymUFEjquvvqsP3u3tmGeAEAEzZqVlUja2eUWFru3nH3JUkLQ/afGCdAAEC5ZLY43L1jZrWMKscl3Uxsh2ZWT7Q6GpLaY8YIAFOvSjPixh3jCNTrpoqtS5qRJDOrS1qWVM86gJnNq9cdpqeffnrMcACgmqo0I66ICwCD+IG7h6Mqu/uiuzfcvbF3794CwgEAbKdxWxyhEolCvdZGN2pFrEfdXIcl7TGzrrt3x/x7AIAJGzdxXNTggHgQjW/0Z1aZ2WFJbZIGAEyHUdNxm5JakoKoxdCJylckHXH30MzaUT1p86yqunpjHAEtDgCYDiNnVUnadP2Fu88mHi9lPH9VvcQDAJgSrI4LAMiFxAEAyIXEAQDIhcQBAMiFxAEAyIXEAQDIpVL346jSImCxKsYMAFkqlTiqtAhYrIoxA0AWuqoAALmQOAAAuZA4AAC5kDgAALmQOAAAuVRqVlVRmDILAFtH4hBTZgEgD7qqAAC5kDgAALnQVVVRjMsAmBQSR0UxLlM8kjMwHIkDSEFyvo8kiqTMxGFmgaR5SaG7L6bUmZMUSgokdd19NVHeldSQpLTnAyg/kiiSRrU4Glk7o8TScvcT0XZbUisqP+vus5JWzeyOJBIHAEyBzMTh7h0zq2VUOS7pZmI7NLN61OqYlaTo+ctjR4rKo7sDG238TOw/c1VSuT8TfI7HH+MI1Oumiq1Lmok3zKwpqS7phbQDmNm8et1hevrpp8cMB2VWVHcHJ3J1JT8TVUG3XTGD40H8IGqxSL3E8I1hlaOxj0VJajQaXkA8mHKcyMDOGvcCwFCJRKFea6ObrODuHUlnzaw+5t8CAJTAuInjoqQDie3A3VfNbN7MFhLl62P+HQBbdOX6mp4794Yk6blzb+jK9bUJR4RpM2o6blNSS1JgZt2o9SAzW5F0xN1DM2tH9SQpThYXJTUSYxwX4mm6AIpz5fqazl5+W3fvfSxJWgvv6uzltyVJxw7tm2RomCIjZ1VJ6gwpn008XhqyP0w8b9PzARTj/LUb/aQRu3vvY52/doPEgW3DIofAFHk3vJurHHgQJA5gijwV7M5VDjwIEgcwRU4ePajdux4dKNu961GdPHpwQhFhGrHIITBF4nGM89duaC28q33Bbp08epDxDWwrEgcwZY4d2qdjh/Zp/5mr+uGZz086HEwhEgeww1giBWmuXF/T+Ws3JPWuwSlra5HEAewwlkjBMFW6BofB8R3AlbwARsm6BqdsKpc4qvYlHP+KWIvm0ce/IsoeN4CdVaVrcCqVOKr4JVylXxEAJqdK1+BUKnEU+SVcVEumSr8iAExOla7BqdTgeFFfwkUOSj0V7O63kDaWA0CsStfgVKrFUVRTrsiWTJV+RQCYrGOH9vWvvfnhmc+XMmlIJWtxvP/++/rud7+buv8v/+AxXf7V47rn1i/bZa6//IP1zOeNshb+viQbUv7bsY4b+69//Jiu/d//oPDeIwp2/U5H//iuPrjxA31324Y5ntiWOHdWUTFz3OKPXcXPW1Eezve4VInjo48+0pNPPpm6/wtPSv8puKd/fueebn/g2vO46W+f+YQ+89Tvj/V39zz+W93+YPNda/c8/khmPFv1hSelL/wX6e++9xv9w5EnJD0x9jEH/WZb4txZRcXMcYs/dhU/b0V5ON/jSnVVSdJnntqlV/7q9yRJr/zV7+kzT+0a+5h/+8wufWLDO/GJR3rlAIBBpWpxTEqcfAZbMru2JSkBwLQhcUQ+81QvUfzd937Tb9EAADarXFcVAGCyStXi+MUvfqFXXnll6L5Wq6Vnn31WkvTWW2/p9vf+t175P8PDf/nll/uPX3vtNf3yl78cWu/ZZ59Vq9WSJL333nv6zne+o9s//2jocb/85S/3B6va7bbeeuutocf81Kc+pRdffLG/nXw9G4+98TW12+2hxxz1mpLHHfaa0mzHa9poq6/p9s8/kv76dOprSsrzmj76z/9d0p9u+2uSDox8TdJ4n700D/r/dPt7/5h6jozz2bu9vDb0uFX57A17TQ/6/5Q897bzNcXHncRrSviTtB2ZicPMAknzkkJ3X0ypMycplBRI6rr7aqJ8RtKspEvu3sn6W5L0+OOPj6oCANgZP03bYe6bp6H2d5o1JdWVkjiixLLg7iei7ba7t8ysLkmJJHLH3f9wVJS1Ws2/9a1vjaomqTe19dt//R+3VDePoo5b5LGLjLkoVXkvfvTuxunf2ztpgs9btU3ze/y5z31uxd0bw/ZljnFErYQwo8pxSTcT22GUNGYknUiUr8fJBKiKH717T9/+tw/71/jc/sD17X/7UD96996EIwMma9zB8UCDiWVd0oy7d+JWSGQmbn1sZGbzZrZsZsu//vWvxwwH2D7//M49ffi7wbIPf9crfxj96N17evlffitJevlffksCfYgVMasqSG6Y2YKkF9Iqu/uiuzfcvfHEE9t9RTXw4IatJpBVPs1ofSFp3MQRajBRzEjqxhvRAPk/bWVgHPnxC/C+It6LPY9vXr8sq3ya0fpC0riJ46LieYo9QWJAvC5p1d1XzaxmZrUx/xYS+AV4X1HvBUvR3EfrC0mjpuM2JbUkBWbWjVsOZrYi6Yi7h2bWjupJ0kK0vy7pdfUGxaXeGMfIWVXYuqxfgGVeKiWepST1WgbbMUupqPeCpWju2/O4pSwE+vC1vqrmf/74Q/2vm5t/RP23A7v0N5/+xAMdMzNxRIliUzeTu88mHi8N2b8qKXeieOyxx/Tee+9tsfYTOermUdRxt/fYtz8YvhT87Q9+V2D847m+/pgu//z+svi3P3D9j7f/n34V/kqHZj564OMW+V7UHpFO/pl05l+f0Mk/e1+StL1vbzU+b80/Gvy/k3q3NGj+0V2999772/I3qqn830N/8YT0F3/ee3zmX5/QuT+/PwnpQf9E5nUcO63RaPjy8vKW6u4/c1U/OffFbY+hqONu97GfO/fG0DsL7gt2928EUzZFxbwT78XD/nmTenfKrMLd6XZS1T4XeY5rZg92HQfKq4p3Fizq1r9VfC+qqCp3p0PxSrVWFbauSvcnjhV1//UqvhdAlZE4KuzYoX06dmif9p+5WtruqaSTRw/q7OW3B+7vvl0tg6q9FyjWq+139M3Xf7yp/CtHPq2XWs9MIKLpQuLAjqFlgJ3yUuuZfoIochzpYUXiwI6iZQBUH4PjAIBcSBwAgFxIHACAXEgcAJDTletreu7cG5J6F6Beub424Yh2FoPjAJDDletrA9PK18K7Onv5bUl6aGYI0uIAgBzOX7sxcC2SJN2997HOX7sxoYh2HokDmICHvaujyopaOqdK6Koq2MYrWPefuSqJK1gfZkV2dfB5K15RS+dUCYlDxZ5syStYASm7q2PcxMHnrXhFLp1TFZVKHEV9wXOyYSfR1VFtLJ1TscTBFzymAV0d1fewL53D4Diww7h/CKquUi0OYBrQ1YGqI3EAE/Cwd3Wg2jITh5kFkuYlhe6+mFJnTlIoKZDUdffVrT4XAFA9o1ocQ29UHouSQ8vdT0TbbUmtrTwXAFBNmYPj7t5RrzWR5rikm4nt0MzqW3wuAKCCxh3jCDSYHNYlzeQ5gJnNq9elpaeffnrMcACgmqp01X8Rg+NBnsrR+MeiJDUaDS8gHgAovSpdpzZu4gg1mChmJHXHPCYmaOOvnlgZf/UAmIxxE8dFSQuJ7SCeVYVqSv7q2X/mqn5y7osTjghA2YyajttUb5ZUYGbdaMBbZrYi6Yi7h2bWjupJiSSS9lwAQLVlJo7oy37TF767zyYeL+V5LgCg2lirCgCQC0uOACmqND0S2EkkDiBFlaZHAjuJxIHKo2UA7CwSByqPlgGws0gcAEaiVVdtV66v6fy1G5Kk5869Mfb9X0gcAEaqYqtuu78sq+rK9TWdvfy27t77WJK0Ft7V2ctvS9IDvx9MxwUwdeIvy/je7vGX5ZXraxOObOedv3ajnzRid+993E+qD4IWB3YM3R3YKVlflg9bq+PdKHlutXwrSBzYMVXs7kA1FfFlWVVPBbv7La+N5Q+KrqqKerX9jvafudr/1R4/frX9zoQjAyYv7UtxnC/Lqjp59KB273p0oGz3rkd18ujBBz4mLY6K4tc7kO7k0YMDA8LS+F+WVRV3zZ2/dkNr4V3tC3YzqwoANiriy7LKjh3ap2OH9mn/mav64ZnPj308EgeAqbTdX5a4jzEOAEAuJA4AQC4kDgBALiQOAEAuJA4AQC6Zs6rMLJA0Lyl098WUOnOSQkmBpK67r2aVAwCqbdR03EbWziixtNz9RLTdltRKKx87WgDAxGV2Vbl7R71WQ5rjkm4mtkMzq2eUAwAqbtwxjkCDiWVd0kxGOQCg4ooYHA/ylJvZvJktm9nyrVu3CggHALCdxk0coQYTwoykbkb5Ju6+6O4Nd2/s3bt3zHAAAEUbd62qi5IWEtuBu6+aWXdY+Zh/C5gK3NAKVTdqOm5TvdlQgZl1o8FymdmKpCPuHppZO6onRckirRzVwL2ai8WS+Ki6zMQRJYrOkPLZxOOllOcOLUe5FXFjewDThSvHMaCIG9sDmC4kDgzgXs0ARiFxYAD3agYwCncAxADu1QxkY1YciQMbcK9mIBuz4kgcGIJ7NQPIwhgHACAXEgcAIBcSBwAgFxIHACAXEgcAIBcSBwAgFxIHACAXEgcAIBcSBwAgFxIHACAXlhwBMHVYiLBYJA4AU4eFCItFVxUAIBdaHAAwxYrothuZOMxsTlIoKZDUdffVIXXmJa1LmpG0HNdJKwcA7Iwiuu0yE4eZBZJa7n4i2m5Lam2oU5c0u7FOWvm2Rg8A2HGjxjiOS7qZ2A6jhJDUHFKnllEOAKiwUYkjUK+bKhZ3OyV1JR1IbNeif2nlAIAKe5BZVUFyw92XJMnMasnWSFr5RmY2b2bLZrZ869atBwgHALCTRiWOUIOJYka9lsSAeBwjMfi9nFW+4bmL7t5w98bevXvzxA4AmIBRieOiBrubgo0zo6IWxYK7d6MxjGV3D9PKtzd8AMBOy5xVFSWAtpk1o6KFeJ+ZrUg6EiWGN6M69UQrY2g5AKDaRl7HEY9VDCmfHVKnk/LcgXIAQHWx5AgAIBcSBwAgFxIHACAXEgcAIBdWx8UAboADYBRz90nH0NdoNHx5edM1ggCAHWZmK+7eGLaPrioAQC4kDgBALiQOAEAuJA4AQC4kDgBALiQOAEAuJA4AQC4kDgBALiQOAEAuJA4AQC4kDgBALiQOAEAuJA4AQC4kDgBALiPvx2Fmc5JCSYGkrruvDqkzL2ld0oyk5biOmTWj50lS6O6dbYkaADAxmYnDzAJJLXc/EW23JbU21KlLmt1YJ3pu4O5LUfmCJBIHAFTcqK6q45JuJrbDKFEkNYfUqUWPzyYeAwCmwKjEEajXTRWLu6OSupIOJLZrkmruHko6LWnFzC65++lhf8DM5s1s2cyWb926lSN0AMAkPMg9x4PkhrsvmVkralkEG+rWJM1KWjCztru3NuyXuy9KWpQkM7tlZj/dYhyflPTvOWOftKrFXLV4perFXLV4perFXLV4pXLE/CdpO0YljlCDyWBGvRbGAHc/YWY1d181M0lajgbVl929K+kFM1sws2bWALm77x0RT5+ZLafdD7esqhZz1eKVqhdz1eKVqhdz1eKVyh/zqK6qixrshgo2zqoys5qZLbh7N2p1LEfdVDMa7OZqa0jSAQBUS2aLw91DM2tH02olaSHeZ2Yrko5ECePNqE49nl3l7otmdsrMwugp3aj1AQCosJFjHPF02iHls0PqdDbU+cZY0WVbLPDYRalazFWLV6pezFWLV6pezFWLVyp5zObuk44BAFAhLDkCAMiFxAEAyOVBruPYUdHSJfPqrXW1mCgfuYbWpIyIeUa9a1sulWXtrrR4E/vnVLK1xrJijtZO60pSWWLO+EyUej23tM9syc+/rJjLeP5lxlXG86/0iUPSprnMW1lDa8KGxVxX7wSL1+66I+kPdzqwFKnzxaP3+oQSM+pKYmjMZnZJ0t9HMwIvqTzro6V9jku7nlvaZ7bM519GzKU8/0bFVdbzr/RdVVGWDTcUb2UNrYlJiXlGvQ9AbL0sMafEG2uodw1OqQyLOX4/o6RRc/cXJhHbMBnvcZnXc0v7zJb5/EuLuazn36i4Snn+VaHFMUyg0WtolUr0xZH8NTlTpub9MNEHeFlSGU6wrWhI93/JRxemDl0jrQyiBBev59YpU6KT0j+zUfdamCgvzfk34jwr3fmXFW+Zz7/StzhyCCYdwFZFXRKl+pJIE60CUBWB1Is5OvnqJf41H4vXc4u7fEppC5/ZYIdC2bK0mMt6/g2Lq6znX1VbHKG2sIZWGUUDXf9Uhl87WeKbc0VfvIcl7TGzsl/935W0J7EdqvfFXMqYH2Q9t0kY8pkNVfLzL+08K+v5tzGusp9/VU0cFzU4WLRpDa0yipqeq4l1vVSWD8JGG2b+HJbULmusCR0NDtLW1Gvql9WMpOTntnTruQ37zKrk51/aeVbW8y8lrlKff6VPHFF/aku9Puuuu3ey1tAqg2ExRx+O19X7FSH1+jInPqtDGh5vYl9dvT7WoEy/eEZ8Luajal8vS1M/Jd5Sr+eW9Zkt6/mXFnNZz79RcZX2/GPJEQBAHtM0OA4A2AEkDgBALiQOAEAuJA4AQC4kDmAHRFezA1OBxAHsjLOTDgDYLiQOoGBRa+P2pOMAtguJAyjecUlLkw4C2C4kDqB4B8pyxS+wHUq/5AgwadH6QXX1Fpu7ED2uufs3tvjcm0PKT+n+ulQn3L0UN0ICtoIWBzBaM7pD25uSLkSP+zffMbN5M2sm1shKmlNvUUAl6i/o/l3fVlWSe1kAW0XiAEaLv/gPS7okSe5+QOovh72euK91c8Nz9yQXWoxaIHPxrULVa72Uahl1YBQSBzBC4ot/Ll7uOrHE+GHdvxteV4ll3aOVTTfenGljomgNqQOUGokDyBAtez4fJYEwKqupd68PqXdDo/XEU4LE4y+l3JQpTDw+Hi27P7ddMQNFY3AcyLaq+8ngQvwFn+hqCjU4RhFmHczdl8zscKJL6+vRMUtzIyRgFO7HAYwhmUiiwfFuogXRLdOd8YDtQlcVMIao5TETtyASXVOHSRqYVnRVAWNK3h9aYokRTD+6qgAAudBVBQDIhcQBAMiFxAEAyIXEAQDIhcQBAMiFxAEAyIXEAQDI5f8DFkYvlNXAd1IAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# We do not just have V1V1, but also the two other spacial directions. We can average over them for better statistics.\n", "matrix_V2V2= pe.input.json.load_json(\"./data/matrix_correlator_V2V2\", verbose=False)\n", "matrix_V3V3= pe.input.json.load_json(\"./data/matrix_correlator_V3V3\", verbose=False)\n", "matrix_VnVn=(matrix_V1V1 + matrix_V2V2 + matrix_V3V3) / 3\n", "\n", "# We then solve the GEVP to get eigenvectors corresponding to the ground state.\n", "\n", "vec_ground = matrix_VnVn.GEVP(t0=3, ts=6, sort=None)[0]\n", "\n", "# Now we project the matrix-correlators to get new correlators belonging to the ground state.\n", "\n", "corr_ground = matrix_VnVn.projected(vec_ground)\n", "\n", "# We get the effective mass using the periodic cosh method.\n", "m_eff_Jpsi = corr_ground.m_eff(variant=\"cosh\")\n", "\n", "# We can now pick a plateau range and get a single value for the mass.\n", "m_eff_Jpsi.gamma_method()\n", "m_Jpsi = m_eff_Jpsi.plateau([5, 24], method=\"avg\")\n", "m_Jpsi.gamma_method()\n", "# We can now visually compare our plateau value to the data\n", "\n", "m_eff_Jpsi.show([10, 25], plateau=m_Jpsi)\n", "\n", "# Since the lattice spacing is known, we can multiply with hbar*c/a to see it in physical units\n", "\n", "m_Jpsi = m_Jpsi * 197 / 0.0653\n", "\n", "# As a last step we call the gamma method to get the error\n", "\n", "m_Jpsi.gamma_method()\n", "\n", "print(\"--- The mass was calculated to be\" , m_Jpsi, \"MeV ---\")" ] }, { "cell_type": "code", "execution_count": null, "id": "f819143b", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 5 }