mirror of
				https://github.com/fjosw/pyerrors.git
				synced 2025-11-04 09:35:45 +01:00 
			
		
		
		
	Compare commits
	
		
			40 commits
		
	
	
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 
							 | 
						1002dd0e51 | ||
| 
							 | 
						4cdddf0a76 | ||
| 
							 | 
						
							
							
								
							
							
	
	
	da0a4cc40a | 
						
						
							||
| 
							 | 
						
							
							
								
							
							
	
	
	e0076ccea9 | 
						
						
							||
| 
							 | 
						
							
							
								
							
							
	
	
	85ae9d7563 | 
						
						
							||
| 
							 | 
						
							
							
								
							
							
	
	
	a600a69bb9 | 
						
						
							||
| 
							 | 
						4c4173c461 | ||
| 
							 | 
						6c7daac44b | ||
| 
							 | 
						1d031d0eab | ||
| 
							 | 
						
							
							
								
							
							
	
	
	e0bfcabc0c | 
						
						
							||
| 
							 | 
						3e955d4976 | ||
| 
							 | 
						dbe5912ca3 | ||
| 
							 | 
						5bcbe5c2ff | ||
| 
							 | 
						cf36d17a00 | ||
| 
							 | 
						6521e16901 | ||
| 
							 | 
						
							
							
								
							
							
	
	
	68e4633ae0 | 
						
						
							||
| 
							 | 
						
							
							
								
							
							
	
	
	d6e6a435a8 | 
						
						
							||
| 
							 | 
						
							
							
								
							
							
	
	
	8183ee2ef4 | 
						
						
							||
| 
							 | 
						
							
							
								
							
							
	
	
	dcb95265ac | 
						
						
							||
| 
							 | 
						
							
							
								
							
							
	
	
	934a61e124 | 
						
						
							||
| 
							 | 
						3c36ab08c8 | ||
| 
							 | 
						b2847a1f80 | ||
| 
							 | 
						
							
							
								
							
							
	
	
	17792418ed | 
						
						
							||
| 
							 | 
						
							
							
								
							
							
	
	
	dd4f8525f7 | 
						
						
							||
| 
							 | 
						
							
							
								
							
							
	
	
	5f5438b563 | 
						
						
							||
| 
							 | 
						
							
							
								
							
							
	
	
	6ed6ce6113 | 
						
						
							||
| 
							 | 
						
							
							
								
							
							
	
	
	7eabd68c5f | 
						
						
							||
| 
							 | 
						
							
							
								
							
							
	
	
	9ff34c27d7 | 
						
						
							||
| 
							 | 
						
							
							
								
							
							
	
	
	997d360db3 | 
						
						
							||
| 
							 | 
						
							
							
								
							
							
	
	
	3eac9214b4 | 
						
						
							||
| 
							 | 
						d908508120 | ||
| 
							 | 
						
							
							
								
							
							
	
	
	b1448a2703 | 
						
						
							||
| 
							 | 
						
							
							
								
							
							
	
	
	30bfb55981 | 
						
						
							||
| 
							 | 
						0ce765a99d | ||
| 
							 | 
						c057ecffda | ||
| 
							 | 
						
							
							
								
							
							
	
	
	47fd72b814 | 
						
						
							||
| 
							 | 
						
							
							
								
							
							
	
	
	b43a2cbd34 | 
						
						
							||
| 
							 | 
						
							
							
								
							
							
	
	
	4b1bb0872a | 
						
						
							||
| 
							 | 
						
							
							
								
							
							
	
	
	1d6f7f65c0 | 
						
						
							||
| 
							 | 
						3830e3f777 | 
					 35 changed files with 3931 additions and 375 deletions
				
			
		
							
								
								
									
										2
									
								
								.github/workflows/docs.yml
									
										
									
									
										vendored
									
									
								
							
							
						
						
									
										2
									
								
								.github/workflows/docs.yml
									
										
									
									
										vendored
									
									
								
							| 
						 | 
				
			
			@ -13,7 +13,7 @@ jobs:
 | 
			
		|||
      - name: Set up Python environment
 | 
			
		||||
        uses: actions/setup-python@v5
 | 
			
		||||
        with:
 | 
			
		||||
          python-version: "3.10"
 | 
			
		||||
          python-version: "3.12"
 | 
			
		||||
      - uses: actions/checkout@v4
 | 
			
		||||
      - name: Updated documentation
 | 
			
		||||
        run: |
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										12
									
								
								.github/workflows/examples.yml
									
										
									
									
										vendored
									
									
								
							
							
						
						
									
										12
									
								
								.github/workflows/examples.yml
									
										
									
									
										vendored
									
									
								
							| 
						 | 
				
			
			@ -27,17 +27,17 @@ jobs:
 | 
			
		|||
        uses: actions/setup-python@v5
 | 
			
		||||
        with:
 | 
			
		||||
          python-version: ${{ matrix.python-version }}
 | 
			
		||||
      - name: uv
 | 
			
		||||
        uses: astral-sh/setup-uv@v5
 | 
			
		||||
 | 
			
		||||
      - name: Install
 | 
			
		||||
        run: |
 | 
			
		||||
          sudo apt-get update
 | 
			
		||||
          sudo apt-get install dvipng texlive-latex-extra texlive-fonts-recommended cm-super
 | 
			
		||||
          python -m pip install --upgrade pip
 | 
			
		||||
          pip install wheel
 | 
			
		||||
          pip install .
 | 
			
		||||
          pip install pytest
 | 
			
		||||
          pip install nbmake
 | 
			
		||||
          pip install -U matplotlib!=3.7.0 # Exclude version 3.7.0 of matplotlib as this breaks local imports of style files.
 | 
			
		||||
          uv pip install wheel --system
 | 
			
		||||
          uv pip install . --system
 | 
			
		||||
          uv pip install pytest nbmake --system
 | 
			
		||||
          uv pip install -U matplotlib!=3.7.0 --system # Exclude version 3.7.0 of matplotlib as this breaks local imports of style files.
 | 
			
		||||
 | 
			
		||||
      - name: Run tests
 | 
			
		||||
        run: pytest -vv --nbmake examples/*.ipynb
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										2
									
								
								.github/workflows/flake8.yml
									
										
									
									
										vendored
									
									
								
							
							
						
						
									
										2
									
								
								.github/workflows/flake8.yml
									
										
									
									
										vendored
									
									
								
							| 
						 | 
				
			
			@ -17,7 +17,7 @@ jobs:
 | 
			
		|||
      - name: Set up Python environment
 | 
			
		||||
        uses: actions/setup-python@v5
 | 
			
		||||
        with:
 | 
			
		||||
          python-version: "3.10"
 | 
			
		||||
          python-version: "3.12"
 | 
			
		||||
      - name: flake8 Lint
 | 
			
		||||
        uses: py-actions/flake8@v2
 | 
			
		||||
        with:
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										29
									
								
								.github/workflows/pytest.yml
									
										
									
									
										vendored
									
									
								
							
							
						
						
									
										29
									
								
								.github/workflows/pytest.yml
									
										
									
									
										vendored
									
									
								
							| 
						 | 
				
			
			@ -17,10 +17,12 @@ jobs:
 | 
			
		|||
      fail-fast: false
 | 
			
		||||
      matrix:
 | 
			
		||||
        os: [ubuntu-latest]
 | 
			
		||||
        python-version: ["3.9", "3.10", "3.11", "3.12"]
 | 
			
		||||
        python-version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
 | 
			
		||||
        include:
 | 
			
		||||
          - os: macos-latest
 | 
			
		||||
            python-version: "3.10"
 | 
			
		||||
            python-version: "3.12"
 | 
			
		||||
          - os: ubuntu-24.04-arm
 | 
			
		||||
            python-version: "3.12"
 | 
			
		||||
 | 
			
		||||
    steps:
 | 
			
		||||
      - name: Checkout source
 | 
			
		||||
| 
						 | 
				
			
			@ -30,19 +32,20 @@ jobs:
 | 
			
		|||
        uses: actions/setup-python@v5
 | 
			
		||||
        with:
 | 
			
		||||
          python-version: ${{ matrix.python-version }}
 | 
			
		||||
      - name: uv
 | 
			
		||||
        uses: astral-sh/setup-uv@v5
 | 
			
		||||
 | 
			
		||||
      - name: Install
 | 
			
		||||
        run: |
 | 
			
		||||
          python -m pip install --upgrade pip
 | 
			
		||||
          pip install wheel
 | 
			
		||||
          pip install .
 | 
			
		||||
          pip install pytest
 | 
			
		||||
          pip install pytest-cov
 | 
			
		||||
          pip install pytest-benchmark
 | 
			
		||||
          pip install hypothesis
 | 
			
		||||
          pip install py
 | 
			
		||||
          pip install pyarrow
 | 
			
		||||
          pip freeze
 | 
			
		||||
          uv pip install wheel --system
 | 
			
		||||
          uv pip install . --system
 | 
			
		||||
          uv pip install pytest pytest-cov pytest-benchmark hypothesis --system
 | 
			
		||||
          uv pip freeze --system
 | 
			
		||||
 | 
			
		||||
      - name: Run tests
 | 
			
		||||
      - name: Run tests with -Werror
 | 
			
		||||
        if: matrix.python-version != '3.14'
 | 
			
		||||
        run: pytest --cov=pyerrors -vv -Werror
 | 
			
		||||
 | 
			
		||||
      - name: Run tests without -Werror for python 3.14
 | 
			
		||||
        if: matrix.python-version == '3.14'
 | 
			
		||||
        run: pytest --cov=pyerrors -vv
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										58
									
								
								.github/workflows/release.yml
									
										
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										58
									
								
								.github/workflows/release.yml
									
										
									
									
										vendored
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,58 @@
 | 
			
		|||
name: Release
 | 
			
		||||
 | 
			
		||||
on:
 | 
			
		||||
  workflow_dispatch:
 | 
			
		||||
  release:
 | 
			
		||||
    types: [published]
 | 
			
		||||
 | 
			
		||||
jobs:
 | 
			
		||||
  build:
 | 
			
		||||
    name: Build sdist and wheel
 | 
			
		||||
    runs-on: ubuntu-latest
 | 
			
		||||
    steps:
 | 
			
		||||
    - uses: actions/checkout@v4
 | 
			
		||||
      name: Checkout repository
 | 
			
		||||
 | 
			
		||||
    - uses: actions/setup-python@v5
 | 
			
		||||
      with:
 | 
			
		||||
        python-version: "3.12"
 | 
			
		||||
 | 
			
		||||
    - name: Install pypa/build
 | 
			
		||||
      run: >-
 | 
			
		||||
        python3 -m
 | 
			
		||||
        pip install
 | 
			
		||||
        build
 | 
			
		||||
        --user
 | 
			
		||||
 | 
			
		||||
    - name: Build wheel and source tarball
 | 
			
		||||
      run: python3 -m build
 | 
			
		||||
 | 
			
		||||
    - name: Upload artifacts
 | 
			
		||||
      uses: actions/upload-artifact@v4
 | 
			
		||||
      with:
 | 
			
		||||
        name: python-package-distributions
 | 
			
		||||
        path: dist/
 | 
			
		||||
        if-no-files-found: error
 | 
			
		||||
 | 
			
		||||
  publish:
 | 
			
		||||
    needs: [build]
 | 
			
		||||
    name: Upload to PyPI
 | 
			
		||||
    runs-on: ubuntu-latest
 | 
			
		||||
    environment:
 | 
			
		||||
      name: pypi
 | 
			
		||||
      url: https://pypi.org/p/pyerrors
 | 
			
		||||
    permissions:
 | 
			
		||||
      id-token: write
 | 
			
		||||
 | 
			
		||||
    steps:
 | 
			
		||||
      - name: Download artifacts
 | 
			
		||||
        uses: actions/download-artifact@v4
 | 
			
		||||
        with:
 | 
			
		||||
          name: python-package-distributions
 | 
			
		||||
          path: dist/
 | 
			
		||||
 | 
			
		||||
      - name: Sanity check
 | 
			
		||||
        run: ls -la dist/
 | 
			
		||||
 | 
			
		||||
      - name: Publish to PyPI
 | 
			
		||||
        uses: pypa/gh-action-pypi-publish@release/v1
 | 
			
		||||
							
								
								
									
										15
									
								
								.github/workflows/ruff.yml
									
										
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										15
									
								
								.github/workflows/ruff.yml
									
										
									
									
										vendored
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,15 @@
 | 
			
		|||
name: ruff
 | 
			
		||||
on:
 | 
			
		||||
  push:
 | 
			
		||||
    branches:
 | 
			
		||||
      - master
 | 
			
		||||
      - develop
 | 
			
		||||
  pull_request:
 | 
			
		||||
jobs:
 | 
			
		||||
  ruff:
 | 
			
		||||
    runs-on: ubuntu-latest
 | 
			
		||||
    steps:
 | 
			
		||||
      - uses: actions/checkout@v4
 | 
			
		||||
      - uses: astral-sh/ruff-action@v2
 | 
			
		||||
        with:
 | 
			
		||||
          src: "./pyerrors"
 | 
			
		||||
							
								
								
									
										44
									
								
								CHANGELOG.md
									
										
									
									
									
								
							
							
						
						
									
										44
									
								
								CHANGELOG.md
									
										
									
									
									
								
							| 
						 | 
				
			
			@ -2,6 +2,50 @@
 | 
			
		|||
 | 
			
		||||
All notable changes to this project will be documented in this file.
 | 
			
		||||
 | 
			
		||||
## [2.16.0] - 2025-10-30
 | 
			
		||||
 | 
			
		||||
### Added
 | 
			
		||||
- Support for custom configuration number extraction in the sfcf input module.
 | 
			
		||||
 | 
			
		||||
### Fixed
 | 
			
		||||
- Calculation of expected chisquare in connection with priors.
 | 
			
		||||
 | 
			
		||||
### Changed
 | 
			
		||||
- Support for python<3.10 was dropped.
 | 
			
		||||
 | 
			
		||||
## [2.15.1] - 2025-10-19
 | 
			
		||||
 | 
			
		||||
### Fixed
 | 
			
		||||
- Fixed handling of padding in Correlator prune method.
 | 
			
		||||
 | 
			
		||||
## [2.15.0] - 2025-10-10
 | 
			
		||||
 | 
			
		||||
### Added
 | 
			
		||||
- Option to explicitly specify the number of fit parameters added.
 | 
			
		||||
 | 
			
		||||
## [2.14.0] - 2025-03-09
 | 
			
		||||
 | 
			
		||||
### Added
 | 
			
		||||
- Explicit checks of the provided inverse matrix for correlated fits #259
 | 
			
		||||
 | 
			
		||||
### Changed
 | 
			
		||||
- Compute derivative for pow explicitly instead of relying on autograd. This results in a ~4x speedup for pow operations #246
 | 
			
		||||
- More explicit exception types #248
 | 
			
		||||
 | 
			
		||||
### Fixed
 | 
			
		||||
- Removed the possibility to create an Obs from data on several replica #258
 | 
			
		||||
- Fix range in `set_prange` #247
 | 
			
		||||
- Fix ensemble name handling in sfcf input modules #253
 | 
			
		||||
- Correct error message for fit shape mismatch #257
 | 
			
		||||
 | 
			
		||||
## [2.13.0] - 2024-11-03
 | 
			
		||||
 | 
			
		||||
### Added
 | 
			
		||||
- Allow providing lower triangular matrix constructed from a Cholesky decomposition in least squares function for correlated fits.
 | 
			
		||||
 | 
			
		||||
### Fixed
 | 
			
		||||
- Corrected bug that prevented combined fits with multiple x-obs in some cases.
 | 
			
		||||
 | 
			
		||||
## [2.12.0] - 2024-08-22
 | 
			
		||||
 | 
			
		||||
### Changed
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,4 +1,4 @@
 | 
			
		|||
[](https://github.com/fjosw/pyerrors/actions/workflows/pytest.yml) [](https://www.python.org/downloads/) [](https://opensource.org/licenses/MIT) [](https://arxiv.org/abs/2209.14371) [](https://doi.org/10.1016/j.cpc.2023.108750)
 | 
			
		||||
[](https://www.python.org/downloads/) [](https://opensource.org/licenses/MIT) [](https://arxiv.org/abs/2209.14371) [](https://doi.org/10.1016/j.cpc.2023.108750)
 | 
			
		||||
# pyerrors
 | 
			
		||||
`pyerrors` is a python framework for error computation and propagation of Markov chain Monte Carlo data from lattice field theory and statistical mechanics simulations.
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -14,11 +14,6 @@ Install the most recent release using pip and [pypi](https://pypi.org/project/py
 | 
			
		|||
python -m pip install pyerrors     # Fresh install
 | 
			
		||||
python -m pip install -U pyerrors  # Update
 | 
			
		||||
```
 | 
			
		||||
Install the most recent release using conda and [conda-forge](https://anaconda.org/conda-forge/pyerrors):
 | 
			
		||||
```bash
 | 
			
		||||
conda install -c conda-forge pyerrors  # Fresh install
 | 
			
		||||
conda update -c conda-forge pyerrors   # Update
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
## Contributing
 | 
			
		||||
We appreciate all contributions to the code, the documentation and the examples. If you want to get involved please have a look at our [contribution guideline](https://github.com/fjosw/pyerrors/blob/develop/CONTRIBUTING.md).
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							| 
						 | 
				
			
			@ -151,7 +151,7 @@
 | 
			
		|||
    "\n",
 | 
			
		||||
    "$$C_{\\textrm{projected}}(t)=v_1^T \\underline{C}(t) v_2$$\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "If we choose the vectors to be $v_1=v_2=(0,1,0,0)$, we should get the same correlator as in the cell above. \n",
 | 
			
		||||
    "If we choose the vectors to be $v_1=v_2=(1,0,0,0)$, we should get the same correlator as in the cell above. \n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "Thinking about it this way is usefull in the Context of the generalized eigenvalue problem (GEVP), used to find the source-sink combination, which best describes a certain energy eigenstate.\n",
 | 
			
		||||
    "A good introduction is found in https://arxiv.org/abs/0902.1265."
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -481,12 +481,12 @@ from .obs import *
 | 
			
		|||
from .correlators import *
 | 
			
		||||
from .fits import *
 | 
			
		||||
from .misc import *
 | 
			
		||||
from . import dirac
 | 
			
		||||
from . import input
 | 
			
		||||
from . import linalg
 | 
			
		||||
from . import mpm
 | 
			
		||||
from . import roots
 | 
			
		||||
from . import integrate
 | 
			
		||||
from . import special
 | 
			
		||||
from . import dirac as dirac
 | 
			
		||||
from . import input as input
 | 
			
		||||
from . import linalg as linalg
 | 
			
		||||
from . import mpm as mpm
 | 
			
		||||
from . import roots as roots
 | 
			
		||||
from . import integrate as integrate
 | 
			
		||||
from . import special as special
 | 
			
		||||
 | 
			
		||||
from .version import __version__
 | 
			
		||||
from .version import __version__ as __version__
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -101,7 +101,7 @@ class Corr:
 | 
			
		|||
                self.N = 1
 | 
			
		||||
            elif all([isinstance(item, np.ndarray) or item is None for item in data_input]) and any([isinstance(item, np.ndarray) for item in data_input]):
 | 
			
		||||
                self.content = data_input
 | 
			
		||||
                noNull = [a for a in self.content if not (a is None)]  # To check if the matrices are correct for all undefined elements
 | 
			
		||||
                noNull = [a for a in self.content if a is not None]  # To check if the matrices are correct for all undefined elements
 | 
			
		||||
                self.N = noNull[0].shape[0]
 | 
			
		||||
                if self.N > 1 and noNull[0].shape[0] != noNull[0].shape[1]:
 | 
			
		||||
                    raise ValueError("Smearing matrices are not NxN.")
 | 
			
		||||
| 
						 | 
				
			
			@ -141,7 +141,7 @@ class Corr:
 | 
			
		|||
    def gamma_method(self, **kwargs):
 | 
			
		||||
        """Apply the gamma method to the content of the Corr."""
 | 
			
		||||
        for item in self.content:
 | 
			
		||||
            if not (item is None):
 | 
			
		||||
            if item is not None:
 | 
			
		||||
                if self.N == 1:
 | 
			
		||||
                    item[0].gamma_method(**kwargs)
 | 
			
		||||
                else:
 | 
			
		||||
| 
						 | 
				
			
			@ -159,7 +159,7 @@ class Corr:
 | 
			
		|||
        By default it will return the lowest source, which usually means unsmeared-unsmeared (0,0), but it does not have to
 | 
			
		||||
        """
 | 
			
		||||
        if self.N == 1:
 | 
			
		||||
            raise Exception("Trying to project a Corr, that already has N=1.")
 | 
			
		||||
            raise ValueError("Trying to project a Corr, that already has N=1.")
 | 
			
		||||
 | 
			
		||||
        if vector_l is None:
 | 
			
		||||
            vector_l, vector_r = np.asarray([1.] + (self.N - 1) * [0.]), np.asarray([1.] + (self.N - 1) * [0.])
 | 
			
		||||
| 
						 | 
				
			
			@ -167,16 +167,16 @@ class Corr:
 | 
			
		|||
            vector_r = vector_l
 | 
			
		||||
        if isinstance(vector_l, list) and not isinstance(vector_r, list):
 | 
			
		||||
            if len(vector_l) != self.T:
 | 
			
		||||
                raise Exception("Length of vector list must be equal to T")
 | 
			
		||||
                raise ValueError("Length of vector list must be equal to T")
 | 
			
		||||
            vector_r = [vector_r] * self.T
 | 
			
		||||
        if isinstance(vector_r, list) and not isinstance(vector_l, list):
 | 
			
		||||
            if len(vector_r) != self.T:
 | 
			
		||||
                raise Exception("Length of vector list must be equal to T")
 | 
			
		||||
                raise ValueError("Length of vector list must be equal to T")
 | 
			
		||||
            vector_l = [vector_l] * self.T
 | 
			
		||||
 | 
			
		||||
        if not isinstance(vector_l, list):
 | 
			
		||||
            if not vector_l.shape == vector_r.shape == (self.N,):
 | 
			
		||||
                raise Exception("Vectors are of wrong shape!")
 | 
			
		||||
                raise ValueError("Vectors are of wrong shape!")
 | 
			
		||||
            if normalize:
 | 
			
		||||
                vector_l, vector_r = vector_l / np.sqrt((vector_l @ vector_l)), vector_r / np.sqrt(vector_r @ vector_r)
 | 
			
		||||
            newcontent = [None if _check_for_none(self, item) else np.asarray([vector_l.T @ item @ vector_r]) for item in self.content]
 | 
			
		||||
| 
						 | 
				
			
			@ -201,7 +201,7 @@ class Corr:
 | 
			
		|||
            Second index to be picked.
 | 
			
		||||
        """
 | 
			
		||||
        if self.N == 1:
 | 
			
		||||
            raise Exception("Trying to pick item from projected Corr")
 | 
			
		||||
            raise ValueError("Trying to pick item from projected Corr")
 | 
			
		||||
        newcontent = [None if (item is None) else item[i, j] for item in self.content]
 | 
			
		||||
        return Corr(newcontent)
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -212,8 +212,8 @@ class Corr:
 | 
			
		|||
        timeslice and the error on each timeslice.
 | 
			
		||||
        """
 | 
			
		||||
        if self.N != 1:
 | 
			
		||||
            raise Exception("Can only make Corr[N=1] plottable")
 | 
			
		||||
        x_list = [x for x in range(self.T) if not self.content[x] is None]
 | 
			
		||||
            raise ValueError("Can only make Corr[N=1] plottable")
 | 
			
		||||
        x_list = [x for x in range(self.T) if self.content[x] is not None]
 | 
			
		||||
        y_list = [y[0].value for y in self.content if y is not None]
 | 
			
		||||
        y_err_list = [y[0].dvalue for y in self.content if y is not None]
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -222,9 +222,9 @@ class Corr:
 | 
			
		|||
    def symmetric(self):
 | 
			
		||||
        """ Symmetrize the correlator around x0=0."""
 | 
			
		||||
        if self.N != 1:
 | 
			
		||||
            raise Exception('symmetric cannot be safely applied to multi-dimensional correlators.')
 | 
			
		||||
            raise ValueError('symmetric cannot be safely applied to multi-dimensional correlators.')
 | 
			
		||||
        if self.T % 2 != 0:
 | 
			
		||||
            raise Exception("Can not symmetrize odd T")
 | 
			
		||||
            raise ValueError("Can not symmetrize odd T")
 | 
			
		||||
 | 
			
		||||
        if self.content[0] is not None:
 | 
			
		||||
            if np.argmax(np.abs([o[0].value if o is not None else 0 for o in self.content])) != 0:
 | 
			
		||||
| 
						 | 
				
			
			@ -237,7 +237,7 @@ class Corr:
 | 
			
		|||
            else:
 | 
			
		||||
                newcontent.append(0.5 * (self.content[t] + self.content[self.T - t]))
 | 
			
		||||
        if (all([x is None for x in newcontent])):
 | 
			
		||||
            raise Exception("Corr could not be symmetrized: No redundant values")
 | 
			
		||||
            raise ValueError("Corr could not be symmetrized: No redundant values")
 | 
			
		||||
        return Corr(newcontent, prange=self.prange)
 | 
			
		||||
 | 
			
		||||
    def anti_symmetric(self):
 | 
			
		||||
| 
						 | 
				
			
			@ -245,7 +245,7 @@ class Corr:
 | 
			
		|||
        if self.N != 1:
 | 
			
		||||
            raise TypeError('anti_symmetric cannot be safely applied to multi-dimensional correlators.')
 | 
			
		||||
        if self.T % 2 != 0:
 | 
			
		||||
            raise Exception("Can not symmetrize odd T")
 | 
			
		||||
            raise ValueError("Can not symmetrize odd T")
 | 
			
		||||
 | 
			
		||||
        test = 1 * self
 | 
			
		||||
        test.gamma_method()
 | 
			
		||||
| 
						 | 
				
			
			@ -259,7 +259,7 @@ class Corr:
 | 
			
		|||
            else:
 | 
			
		||||
                newcontent.append(0.5 * (self.content[t] - self.content[self.T - t]))
 | 
			
		||||
        if (all([x is None for x in newcontent])):
 | 
			
		||||
            raise Exception("Corr could not be symmetrized: No redundant values")
 | 
			
		||||
            raise ValueError("Corr could not be symmetrized: No redundant values")
 | 
			
		||||
        return Corr(newcontent, prange=self.prange)
 | 
			
		||||
 | 
			
		||||
    def is_matrix_symmetric(self):
 | 
			
		||||
| 
						 | 
				
			
			@ -292,7 +292,7 @@ class Corr:
 | 
			
		|||
    def matrix_symmetric(self):
 | 
			
		||||
        """Symmetrizes the correlator matrices on every timeslice."""
 | 
			
		||||
        if self.N == 1:
 | 
			
		||||
            raise Exception("Trying to symmetrize a correlator matrix, that already has N=1.")
 | 
			
		||||
            raise ValueError("Trying to symmetrize a correlator matrix, that already has N=1.")
 | 
			
		||||
        if self.is_matrix_symmetric():
 | 
			
		||||
            return 1.0 * self
 | 
			
		||||
        else:
 | 
			
		||||
| 
						 | 
				
			
			@ -336,10 +336,10 @@ class Corr:
 | 
			
		|||
        '''
 | 
			
		||||
 | 
			
		||||
        if self.N == 1:
 | 
			
		||||
            raise Exception("GEVP methods only works on correlator matrices and not single correlators.")
 | 
			
		||||
            raise ValueError("GEVP methods only works on correlator matrices and not single correlators.")
 | 
			
		||||
        if ts is not None:
 | 
			
		||||
            if (ts <= t0):
 | 
			
		||||
                raise Exception("ts has to be larger than t0.")
 | 
			
		||||
                raise ValueError("ts has to be larger than t0.")
 | 
			
		||||
 | 
			
		||||
        if "sorted_list" in kwargs:
 | 
			
		||||
            warnings.warn("Argument 'sorted_list' is deprecated, use 'sort' instead.", DeprecationWarning)
 | 
			
		||||
| 
						 | 
				
			
			@ -371,9 +371,9 @@ class Corr:
 | 
			
		|||
 | 
			
		||||
        if sort is None:
 | 
			
		||||
            if (ts is None):
 | 
			
		||||
                raise Exception("ts is required if sort=None.")
 | 
			
		||||
                raise ValueError("ts is required if sort=None.")
 | 
			
		||||
            if (self.content[t0] is None) or (self.content[ts] is None):
 | 
			
		||||
                raise Exception("Corr not defined at t0/ts.")
 | 
			
		||||
                raise ValueError("Corr not defined at t0/ts.")
 | 
			
		||||
            Gt = _get_mat_at_t(ts)
 | 
			
		||||
            reordered_vecs = _GEVP_solver(Gt, G0, method=method, chol_inv=chol_inv)
 | 
			
		||||
            if kwargs.get('auto_gamma', False) and vector_obs:
 | 
			
		||||
| 
						 | 
				
			
			@ -391,14 +391,14 @@ class Corr:
 | 
			
		|||
                    all_vecs.append(None)
 | 
			
		||||
            if sort == "Eigenvector":
 | 
			
		||||
                if ts is None:
 | 
			
		||||
                    raise Exception("ts is required for the Eigenvector sorting method.")
 | 
			
		||||
                    raise ValueError("ts is required for the Eigenvector sorting method.")
 | 
			
		||||
                all_vecs = _sort_vectors(all_vecs, ts)
 | 
			
		||||
 | 
			
		||||
            reordered_vecs = [[v[s] if v is not None else None for v in all_vecs] for s in range(self.N)]
 | 
			
		||||
            if kwargs.get('auto_gamma', False) and vector_obs:
 | 
			
		||||
                [[[o.gm() for o in evn] for evn in ev if evn is not None] for ev in reordered_vecs]
 | 
			
		||||
        else:
 | 
			
		||||
            raise Exception("Unknown value for 'sort'. Choose 'Eigenvalue', 'Eigenvector' or None.")
 | 
			
		||||
            raise ValueError("Unknown value for 'sort'. Choose 'Eigenvalue', 'Eigenvector' or None.")
 | 
			
		||||
 | 
			
		||||
        if "state" in kwargs:
 | 
			
		||||
            return reordered_vecs[kwargs.get("state")]
 | 
			
		||||
| 
						 | 
				
			
			@ -435,7 +435,7 @@ class Corr:
 | 
			
		|||
        """
 | 
			
		||||
 | 
			
		||||
        if self.N != 1:
 | 
			
		||||
            raise Exception("Multi-operator Prony not implemented!")
 | 
			
		||||
            raise NotImplementedError("Multi-operator Prony not implemented!")
 | 
			
		||||
 | 
			
		||||
        array = np.empty([N, N], dtype="object")
 | 
			
		||||
        new_content = []
 | 
			
		||||
| 
						 | 
				
			
			@ -502,7 +502,7 @@ class Corr:
 | 
			
		|||
            correlator or a Corr of same length.
 | 
			
		||||
        """
 | 
			
		||||
        if self.N != 1:
 | 
			
		||||
            raise Exception("Only one-dimensional correlators can be safely correlated.")
 | 
			
		||||
            raise ValueError("Only one-dimensional correlators can be safely correlated.")
 | 
			
		||||
        new_content = []
 | 
			
		||||
        for x0, t_slice in enumerate(self.content):
 | 
			
		||||
            if _check_for_none(self, t_slice):
 | 
			
		||||
| 
						 | 
				
			
			@ -516,7 +516,7 @@ class Corr:
 | 
			
		|||
                elif isinstance(partner, Obs):  # Should this include CObs?
 | 
			
		||||
                    new_content.append(np.array([correlate(o, partner) for o in t_slice]))
 | 
			
		||||
                else:
 | 
			
		||||
                    raise Exception("Can only correlate with an Obs or a Corr.")
 | 
			
		||||
                    raise TypeError("Can only correlate with an Obs or a Corr.")
 | 
			
		||||
 | 
			
		||||
        return Corr(new_content)
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -583,7 +583,7 @@ class Corr:
 | 
			
		|||
            Available choice: symmetric, forward, backward, improved, log, default: symmetric
 | 
			
		||||
        """
 | 
			
		||||
        if self.N != 1:
 | 
			
		||||
            raise Exception("deriv only implemented for one-dimensional correlators.")
 | 
			
		||||
            raise ValueError("deriv only implemented for one-dimensional correlators.")
 | 
			
		||||
        if variant == "symmetric":
 | 
			
		||||
            newcontent = []
 | 
			
		||||
            for t in range(1, self.T - 1):
 | 
			
		||||
| 
						 | 
				
			
			@ -592,7 +592,7 @@ class Corr:
 | 
			
		|||
                else:
 | 
			
		||||
                    newcontent.append(0.5 * (self.content[t + 1] - self.content[t - 1]))
 | 
			
		||||
            if (all([x is None for x in newcontent])):
 | 
			
		||||
                raise Exception('Derivative is undefined at all timeslices')
 | 
			
		||||
                raise ValueError('Derivative is undefined at all timeslices')
 | 
			
		||||
            return Corr(newcontent, padding=[1, 1])
 | 
			
		||||
        elif variant == "forward":
 | 
			
		||||
            newcontent = []
 | 
			
		||||
| 
						 | 
				
			
			@ -602,7 +602,7 @@ class Corr:
 | 
			
		|||
                else:
 | 
			
		||||
                    newcontent.append(self.content[t + 1] - self.content[t])
 | 
			
		||||
            if (all([x is None for x in newcontent])):
 | 
			
		||||
                raise Exception("Derivative is undefined at all timeslices")
 | 
			
		||||
                raise ValueError("Derivative is undefined at all timeslices")
 | 
			
		||||
            return Corr(newcontent, padding=[0, 1])
 | 
			
		||||
        elif variant == "backward":
 | 
			
		||||
            newcontent = []
 | 
			
		||||
| 
						 | 
				
			
			@ -612,7 +612,7 @@ class Corr:
 | 
			
		|||
                else:
 | 
			
		||||
                    newcontent.append(self.content[t] - self.content[t - 1])
 | 
			
		||||
            if (all([x is None for x in newcontent])):
 | 
			
		||||
                raise Exception("Derivative is undefined at all timeslices")
 | 
			
		||||
                raise ValueError("Derivative is undefined at all timeslices")
 | 
			
		||||
            return Corr(newcontent, padding=[1, 0])
 | 
			
		||||
        elif variant == "improved":
 | 
			
		||||
            newcontent = []
 | 
			
		||||
| 
						 | 
				
			
			@ -622,7 +622,7 @@ class Corr:
 | 
			
		|||
                else:
 | 
			
		||||
                    newcontent.append((1 / 12) * (self.content[t - 2] - 8 * self.content[t - 1] + 8 * self.content[t + 1] - self.content[t + 2]))
 | 
			
		||||
            if (all([x is None for x in newcontent])):
 | 
			
		||||
                raise Exception('Derivative is undefined at all timeslices')
 | 
			
		||||
                raise ValueError('Derivative is undefined at all timeslices')
 | 
			
		||||
            return Corr(newcontent, padding=[2, 2])
 | 
			
		||||
        elif variant == 'log':
 | 
			
		||||
            newcontent = []
 | 
			
		||||
| 
						 | 
				
			
			@ -632,11 +632,11 @@ class Corr:
 | 
			
		|||
                else:
 | 
			
		||||
                    newcontent.append(np.log(self.content[t]))
 | 
			
		||||
            if (all([x is None for x in newcontent])):
 | 
			
		||||
                raise Exception("Log is undefined at all timeslices")
 | 
			
		||||
                raise ValueError("Log is undefined at all timeslices")
 | 
			
		||||
            logcorr = Corr(newcontent)
 | 
			
		||||
            return self * logcorr.deriv('symmetric')
 | 
			
		||||
        else:
 | 
			
		||||
            raise Exception("Unknown variant.")
 | 
			
		||||
            raise ValueError("Unknown variant.")
 | 
			
		||||
 | 
			
		||||
    def second_deriv(self, variant="symmetric"):
 | 
			
		||||
        r"""Return the second derivative of the correlator with respect to x0.
 | 
			
		||||
| 
						 | 
				
			
			@ -656,7 +656,7 @@ class Corr:
 | 
			
		|||
                    $$f(x) = \tilde{\partial}^2_0 log(f(x_0))+(\tilde{\partial}_0 log(f(x_0)))^2$$
 | 
			
		||||
        """
 | 
			
		||||
        if self.N != 1:
 | 
			
		||||
            raise Exception("second_deriv only implemented for one-dimensional correlators.")
 | 
			
		||||
            raise ValueError("second_deriv only implemented for one-dimensional correlators.")
 | 
			
		||||
        if variant == "symmetric":
 | 
			
		||||
            newcontent = []
 | 
			
		||||
            for t in range(1, self.T - 1):
 | 
			
		||||
| 
						 | 
				
			
			@ -665,7 +665,7 @@ class Corr:
 | 
			
		|||
                else:
 | 
			
		||||
                    newcontent.append((self.content[t + 1] - 2 * self.content[t] + self.content[t - 1]))
 | 
			
		||||
            if (all([x is None for x in newcontent])):
 | 
			
		||||
                raise Exception("Derivative is undefined at all timeslices")
 | 
			
		||||
                raise ValueError("Derivative is undefined at all timeslices")
 | 
			
		||||
            return Corr(newcontent, padding=[1, 1])
 | 
			
		||||
        elif variant == "big_symmetric":
 | 
			
		||||
            newcontent = []
 | 
			
		||||
| 
						 | 
				
			
			@ -675,7 +675,7 @@ class Corr:
 | 
			
		|||
                else:
 | 
			
		||||
                    newcontent.append((self.content[t + 2] - 2 * self.content[t] + self.content[t - 2]) / 4)
 | 
			
		||||
            if (all([x is None for x in newcontent])):
 | 
			
		||||
                raise Exception("Derivative is undefined at all timeslices")
 | 
			
		||||
                raise ValueError("Derivative is undefined at all timeslices")
 | 
			
		||||
            return Corr(newcontent, padding=[2, 2])
 | 
			
		||||
        elif variant == "improved":
 | 
			
		||||
            newcontent = []
 | 
			
		||||
| 
						 | 
				
			
			@ -685,7 +685,7 @@ class Corr:
 | 
			
		|||
                else:
 | 
			
		||||
                    newcontent.append((1 / 12) * (-self.content[t + 2] + 16 * self.content[t + 1] - 30 * self.content[t] + 16 * self.content[t - 1] - self.content[t - 2]))
 | 
			
		||||
            if (all([x is None for x in newcontent])):
 | 
			
		||||
                raise Exception("Derivative is undefined at all timeslices")
 | 
			
		||||
                raise ValueError("Derivative is undefined at all timeslices")
 | 
			
		||||
            return Corr(newcontent, padding=[2, 2])
 | 
			
		||||
        elif variant == 'log':
 | 
			
		||||
            newcontent = []
 | 
			
		||||
| 
						 | 
				
			
			@ -695,11 +695,11 @@ class Corr:
 | 
			
		|||
                else:
 | 
			
		||||
                    newcontent.append(np.log(self.content[t]))
 | 
			
		||||
            if (all([x is None for x in newcontent])):
 | 
			
		||||
                raise Exception("Log is undefined at all timeslices")
 | 
			
		||||
                raise ValueError("Log is undefined at all timeslices")
 | 
			
		||||
            logcorr = Corr(newcontent)
 | 
			
		||||
            return self * (logcorr.second_deriv('symmetric') + (logcorr.deriv('symmetric'))**2)
 | 
			
		||||
        else:
 | 
			
		||||
            raise Exception("Unknown variant.")
 | 
			
		||||
            raise ValueError("Unknown variant.")
 | 
			
		||||
 | 
			
		||||
    def m_eff(self, variant='log', guess=1.0):
 | 
			
		||||
        """Returns the effective mass of the correlator as correlator object
 | 
			
		||||
| 
						 | 
				
			
			@ -728,7 +728,7 @@ class Corr:
 | 
			
		|||
                else:
 | 
			
		||||
                    newcontent.append(self.content[t] / self.content[t + 1])
 | 
			
		||||
            if (all([x is None for x in newcontent])):
 | 
			
		||||
                raise Exception('m_eff is undefined at all timeslices')
 | 
			
		||||
                raise ValueError('m_eff is undefined at all timeslices')
 | 
			
		||||
 | 
			
		||||
            return np.log(Corr(newcontent, padding=[0, 1]))
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -742,7 +742,7 @@ class Corr:
 | 
			
		|||
                else:
 | 
			
		||||
                    newcontent.append(self.content[t - 1] / self.content[t + 1])
 | 
			
		||||
            if (all([x is None for x in newcontent])):
 | 
			
		||||
                raise Exception('m_eff is undefined at all timeslices')
 | 
			
		||||
                raise ValueError('m_eff is undefined at all timeslices')
 | 
			
		||||
 | 
			
		||||
            return np.log(Corr(newcontent, padding=[1, 1])) / 2
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -767,7 +767,7 @@ class Corr:
 | 
			
		|||
                else:
 | 
			
		||||
                    newcontent.append(np.abs(find_root(self.content[t][0] / self.content[t + 1][0], root_function, guess=guess)))
 | 
			
		||||
            if (all([x is None for x in newcontent])):
 | 
			
		||||
                raise Exception('m_eff is undefined at all timeslices')
 | 
			
		||||
                raise ValueError('m_eff is undefined at all timeslices')
 | 
			
		||||
 | 
			
		||||
            return Corr(newcontent, padding=[0, 1])
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -779,11 +779,11 @@ class Corr:
 | 
			
		|||
                else:
 | 
			
		||||
                    newcontent.append((self.content[t + 1] + self.content[t - 1]) / (2 * self.content[t]))
 | 
			
		||||
            if (all([x is None for x in newcontent])):
 | 
			
		||||
                raise Exception("m_eff is undefined at all timeslices")
 | 
			
		||||
                raise ValueError("m_eff is undefined at all timeslices")
 | 
			
		||||
            return np.arccosh(Corr(newcontent, padding=[1, 1]))
 | 
			
		||||
 | 
			
		||||
        else:
 | 
			
		||||
            raise Exception('Unknown variant.')
 | 
			
		||||
            raise ValueError('Unknown variant.')
 | 
			
		||||
 | 
			
		||||
    def fit(self, function, fitrange=None, silent=False, **kwargs):
 | 
			
		||||
        r'''Fits function to the data
 | 
			
		||||
| 
						 | 
				
			
			@ -801,7 +801,7 @@ class Corr:
 | 
			
		|||
            Decides whether output is printed to the standard output.
 | 
			
		||||
        '''
 | 
			
		||||
        if self.N != 1:
 | 
			
		||||
            raise Exception("Correlator must be projected before fitting")
 | 
			
		||||
            raise ValueError("Correlator must be projected before fitting")
 | 
			
		||||
 | 
			
		||||
        if fitrange is None:
 | 
			
		||||
            if self.prange:
 | 
			
		||||
| 
						 | 
				
			
			@ -810,12 +810,12 @@ class Corr:
 | 
			
		|||
                fitrange = [0, self.T - 1]
 | 
			
		||||
        else:
 | 
			
		||||
            if not isinstance(fitrange, list):
 | 
			
		||||
                raise Exception("fitrange has to be a list with two elements")
 | 
			
		||||
                raise TypeError("fitrange has to be a list with two elements")
 | 
			
		||||
            if len(fitrange) != 2:
 | 
			
		||||
                raise Exception("fitrange has to have exactly two elements [fit_start, fit_stop]")
 | 
			
		||||
                raise ValueError("fitrange has to have exactly two elements [fit_start, fit_stop]")
 | 
			
		||||
 | 
			
		||||
        xs = np.array([x for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None])
 | 
			
		||||
        ys = np.array([self.content[x][0] for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None])
 | 
			
		||||
        xs = np.array([x for x in range(fitrange[0], fitrange[1] + 1) if self.content[x] is not None])
 | 
			
		||||
        ys = np.array([self.content[x][0] for x in range(fitrange[0], fitrange[1] + 1) if self.content[x] is not None])
 | 
			
		||||
        result = least_squares(xs, ys, function, silent=silent, **kwargs)
 | 
			
		||||
        return result
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -840,9 +840,9 @@ class Corr:
 | 
			
		|||
            else:
 | 
			
		||||
                raise Exception("no plateau range provided")
 | 
			
		||||
        if self.N != 1:
 | 
			
		||||
            raise Exception("Correlator must be projected before getting a plateau.")
 | 
			
		||||
            raise ValueError("Correlator must be projected before getting a plateau.")
 | 
			
		||||
        if (all([self.content[t] is None for t in range(plateau_range[0], plateau_range[1] + 1)])):
 | 
			
		||||
            raise Exception("plateau is undefined at all timeslices in plateaurange.")
 | 
			
		||||
            raise ValueError("plateau is undefined at all timeslices in plateaurange.")
 | 
			
		||||
        if auto_gamma:
 | 
			
		||||
            self.gamma_method()
 | 
			
		||||
        if method == "fit":
 | 
			
		||||
| 
						 | 
				
			
			@ -854,16 +854,16 @@ class Corr:
 | 
			
		|||
            return returnvalue
 | 
			
		||||
 | 
			
		||||
        else:
 | 
			
		||||
            raise Exception("Unsupported plateau method: " + method)
 | 
			
		||||
            raise ValueError("Unsupported plateau method: " + method)
 | 
			
		||||
 | 
			
		||||
    def set_prange(self, prange):
 | 
			
		||||
        """Sets the attribute prange of the Corr object."""
 | 
			
		||||
        if not len(prange) == 2:
 | 
			
		||||
            raise Exception("prange must be a list or array with two values")
 | 
			
		||||
            raise ValueError("prange must be a list or array with two values")
 | 
			
		||||
        if not ((isinstance(prange[0], int)) and (isinstance(prange[1], int))):
 | 
			
		||||
            raise Exception("Start and end point must be integers")
 | 
			
		||||
        if not (0 <= prange[0] <= self.T and 0 <= prange[1] <= self.T and prange[0] < prange[1]):
 | 
			
		||||
            raise Exception("Start and end point must define a range in the interval 0,T")
 | 
			
		||||
            raise TypeError("Start and end point must be integers")
 | 
			
		||||
        if not (0 <= prange[0] <= self.T and 0 <= prange[1] <= self.T and prange[0] <= prange[1]):
 | 
			
		||||
            raise ValueError("Start and end point must define a range in the interval 0,T")
 | 
			
		||||
 | 
			
		||||
        self.prange = prange
 | 
			
		||||
        return
 | 
			
		||||
| 
						 | 
				
			
			@ -900,7 +900,7 @@ class Corr:
 | 
			
		|||
            Optional title of the figure.
 | 
			
		||||
        """
 | 
			
		||||
        if self.N != 1:
 | 
			
		||||
            raise Exception("Correlator must be projected before plotting")
 | 
			
		||||
            raise ValueError("Correlator must be projected before plotting")
 | 
			
		||||
 | 
			
		||||
        if auto_gamma:
 | 
			
		||||
            self.gamma_method()
 | 
			
		||||
| 
						 | 
				
			
			@ -941,7 +941,7 @@ class Corr:
 | 
			
		|||
                        hide_from = None
 | 
			
		||||
                    ax1.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=corr.tag, mfc=plt.rcParams['axes.facecolor'])
 | 
			
		||||
            else:
 | 
			
		||||
                raise Exception("'comp' must be a correlator or a list of correlators.")
 | 
			
		||||
                raise TypeError("'comp' must be a correlator or a list of correlators.")
 | 
			
		||||
 | 
			
		||||
        if plateau:
 | 
			
		||||
            if isinstance(plateau, Obs):
 | 
			
		||||
| 
						 | 
				
			
			@ -950,14 +950,14 @@ class Corr:
 | 
			
		|||
                ax1.axhline(y=plateau.value, linewidth=2, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--', label=str(plateau))
 | 
			
		||||
                ax1.axhspan(plateau.value - plateau.dvalue, plateau.value + plateau.dvalue, alpha=0.25, color=plt.rcParams['text.color'], ls='-')
 | 
			
		||||
            else:
 | 
			
		||||
                raise Exception("'plateau' must be an Obs")
 | 
			
		||||
                raise TypeError("'plateau' must be an Obs")
 | 
			
		||||
 | 
			
		||||
        if references:
 | 
			
		||||
            if isinstance(references, list):
 | 
			
		||||
                for ref in references:
 | 
			
		||||
                    ax1.axhline(y=ref, linewidth=1, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--')
 | 
			
		||||
            else:
 | 
			
		||||
                raise Exception("'references' must be a list of floating pint values.")
 | 
			
		||||
                raise TypeError("'references' must be a list of floating pint values.")
 | 
			
		||||
 | 
			
		||||
        if self.prange:
 | 
			
		||||
            ax1.axvline(self.prange[0], 0, 1, ls='-', marker=',', color="black", zorder=0)
 | 
			
		||||
| 
						 | 
				
			
			@ -991,7 +991,7 @@ class Corr:
 | 
			
		|||
            if isinstance(save, str):
 | 
			
		||||
                fig.savefig(save, bbox_inches='tight')
 | 
			
		||||
            else:
 | 
			
		||||
                raise Exception("'save' has to be a string.")
 | 
			
		||||
                raise TypeError("'save' has to be a string.")
 | 
			
		||||
 | 
			
		||||
    def spaghetti_plot(self, logscale=True):
 | 
			
		||||
        """Produces a spaghetti plot of the correlator suited to monitor exceptional configurations.
 | 
			
		||||
| 
						 | 
				
			
			@ -1002,7 +1002,7 @@ class Corr:
 | 
			
		|||
            Determines whether the scale of the y-axis is logarithmic or standard.
 | 
			
		||||
        """
 | 
			
		||||
        if self.N != 1:
 | 
			
		||||
            raise Exception("Correlator needs to be projected first.")
 | 
			
		||||
            raise ValueError("Correlator needs to be projected first.")
 | 
			
		||||
 | 
			
		||||
        mc_names = list(set([item for sublist in [sum(map(o[0].e_content.get, o[0].mc_names), []) for o in self.content if o is not None] for item in sublist]))
 | 
			
		||||
        x0_vals = [n for (n, o) in zip(np.arange(self.T), self.content) if o is not None]
 | 
			
		||||
| 
						 | 
				
			
			@ -1044,7 +1044,7 @@ class Corr:
 | 
			
		|||
        elif datatype == "pickle":
 | 
			
		||||
            dump_object(self, filename, **kwargs)
 | 
			
		||||
        else:
 | 
			
		||||
            raise Exception("Unknown datatype " + str(datatype))
 | 
			
		||||
            raise ValueError("Unknown datatype " + str(datatype))
 | 
			
		||||
 | 
			
		||||
    def print(self, print_range=None):
 | 
			
		||||
        print(self.__repr__(print_range))
 | 
			
		||||
| 
						 | 
				
			
			@ -1094,7 +1094,7 @@ class Corr:
 | 
			
		|||
    def __add__(self, y):
 | 
			
		||||
        if isinstance(y, Corr):
 | 
			
		||||
            if ((self.N != y.N) or (self.T != y.T)):
 | 
			
		||||
                raise Exception("Addition of Corrs with different shape")
 | 
			
		||||
                raise ValueError("Addition of Corrs with different shape")
 | 
			
		||||
            newcontent = []
 | 
			
		||||
            for t in range(self.T):
 | 
			
		||||
                if _check_for_none(self, self.content[t]) or _check_for_none(y, y.content[t]):
 | 
			
		||||
| 
						 | 
				
			
			@ -1122,7 +1122,7 @@ class Corr:
 | 
			
		|||
    def __mul__(self, y):
 | 
			
		||||
        if isinstance(y, Corr):
 | 
			
		||||
            if not ((self.N == 1 or y.N == 1 or self.N == y.N) and self.T == y.T):
 | 
			
		||||
                raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T")
 | 
			
		||||
                raise ValueError("Multiplication of Corr object requires N=N or N=1 and T=T")
 | 
			
		||||
            newcontent = []
 | 
			
		||||
            for t in range(self.T):
 | 
			
		||||
                if _check_for_none(self, self.content[t]) or _check_for_none(y, y.content[t]):
 | 
			
		||||
| 
						 | 
				
			
			@ -1193,7 +1193,7 @@ class Corr:
 | 
			
		|||
    def __truediv__(self, y):
 | 
			
		||||
        if isinstance(y, Corr):
 | 
			
		||||
            if not ((self.N == 1 or y.N == 1 or self.N == y.N) and self.T == y.T):
 | 
			
		||||
                raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T")
 | 
			
		||||
                raise ValueError("Multiplication of Corr object requires N=N or N=1 and T=T")
 | 
			
		||||
            newcontent = []
 | 
			
		||||
            for t in range(self.T):
 | 
			
		||||
                if _check_for_none(self, self.content[t]) or _check_for_none(y, y.content[t]):
 | 
			
		||||
| 
						 | 
				
			
			@ -1207,16 +1207,16 @@ class Corr:
 | 
			
		|||
                    newcontent[t] = None
 | 
			
		||||
 | 
			
		||||
            if all([item is None for item in newcontent]):
 | 
			
		||||
                raise Exception("Division returns completely undefined correlator")
 | 
			
		||||
                raise ValueError("Division returns completely undefined correlator")
 | 
			
		||||
            return Corr(newcontent)
 | 
			
		||||
 | 
			
		||||
        elif isinstance(y, (Obs, CObs)):
 | 
			
		||||
            if isinstance(y, Obs):
 | 
			
		||||
                if y.value == 0:
 | 
			
		||||
                    raise Exception('Division by zero will return undefined correlator')
 | 
			
		||||
                    raise ValueError('Division by zero will return undefined correlator')
 | 
			
		||||
            if isinstance(y, CObs):
 | 
			
		||||
                if y.is_zero():
 | 
			
		||||
                    raise Exception('Division by zero will return undefined correlator')
 | 
			
		||||
                    raise ValueError('Division by zero will return undefined correlator')
 | 
			
		||||
 | 
			
		||||
            newcontent = []
 | 
			
		||||
            for t in range(self.T):
 | 
			
		||||
| 
						 | 
				
			
			@ -1228,7 +1228,7 @@ class Corr:
 | 
			
		|||
 | 
			
		||||
        elif isinstance(y, (int, float)):
 | 
			
		||||
            if y == 0:
 | 
			
		||||
                raise Exception('Division by zero will return undefined correlator')
 | 
			
		||||
                raise ValueError('Division by zero will return undefined correlator')
 | 
			
		||||
            newcontent = []
 | 
			
		||||
            for t in range(self.T):
 | 
			
		||||
                if _check_for_none(self, self.content[t]):
 | 
			
		||||
| 
						 | 
				
			
			@ -1284,7 +1284,7 @@ class Corr:
 | 
			
		|||
                if np.isnan(tmp_sum.value):
 | 
			
		||||
                    newcontent[t] = None
 | 
			
		||||
        if all([item is None for item in newcontent]):
 | 
			
		||||
            raise Exception('Operation returns undefined correlator')
 | 
			
		||||
            raise ValueError('Operation returns undefined correlator')
 | 
			
		||||
        return Corr(newcontent)
 | 
			
		||||
 | 
			
		||||
    def sin(self):
 | 
			
		||||
| 
						 | 
				
			
			@ -1392,26 +1392,28 @@ class Corr:
 | 
			
		|||
        '''
 | 
			
		||||
 | 
			
		||||
        if self.N == 1:
 | 
			
		||||
            raise Exception('Method cannot be applied to one-dimensional correlators.')
 | 
			
		||||
            raise ValueError('Method cannot be applied to one-dimensional correlators.')
 | 
			
		||||
        if basematrix is None:
 | 
			
		||||
            basematrix = self
 | 
			
		||||
        if Ntrunc >= basematrix.N:
 | 
			
		||||
            raise Exception('Cannot truncate using Ntrunc <= %d' % (basematrix.N))
 | 
			
		||||
            raise ValueError('Cannot truncate using Ntrunc <= %d' % (basematrix.N))
 | 
			
		||||
        if basematrix.N != self.N:
 | 
			
		||||
            raise Exception('basematrix and targetmatrix have to be of the same size.')
 | 
			
		||||
            raise ValueError('basematrix and targetmatrix have to be of the same size.')
 | 
			
		||||
 | 
			
		||||
        evecs = basematrix.GEVP(t0proj, tproj, sort=None)[:Ntrunc]
 | 
			
		||||
 | 
			
		||||
        tmpmat = np.empty((Ntrunc, Ntrunc), dtype=object)
 | 
			
		||||
        rmat = []
 | 
			
		||||
        for t in range(basematrix.T):
 | 
			
		||||
            for i in range(Ntrunc):
 | 
			
		||||
                for j in range(Ntrunc):
 | 
			
		||||
                    tmpmat[i][j] = evecs[i].T @ self[t] @ evecs[j]
 | 
			
		||||
            rmat.append(np.copy(tmpmat))
 | 
			
		||||
            if self.content[t] is None:
 | 
			
		||||
                rmat.append(None)
 | 
			
		||||
            else:
 | 
			
		||||
                for i in range(Ntrunc):
 | 
			
		||||
                    for j in range(Ntrunc):
 | 
			
		||||
                        tmpmat[i][j] = evecs[i].T @ self[t] @ evecs[j]
 | 
			
		||||
                rmat.append(np.copy(tmpmat))
 | 
			
		||||
 | 
			
		||||
        newcontent = [None if (self.content[t] is None) else rmat[t] for t in range(self.T)]
 | 
			
		||||
        return Corr(newcontent)
 | 
			
		||||
        return Corr(rmat)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _sort_vectors(vec_set_in, ts):
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -34,7 +34,7 @@ def epsilon_tensor(i, j, k):
 | 
			
		|||
    """
 | 
			
		||||
    test_set = set((i, j, k))
 | 
			
		||||
    if not (test_set <= set((1, 2, 3)) or test_set <= set((0, 1, 2))):
 | 
			
		||||
        raise Exception("Unexpected input", i, j, k)
 | 
			
		||||
        raise ValueError("Unexpected input", i, j, k)
 | 
			
		||||
 | 
			
		||||
    return (i - j) * (j - k) * (k - i) / 2
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -52,7 +52,7 @@ def epsilon_tensor_rank4(i, j, k, o):
 | 
			
		|||
    """
 | 
			
		||||
    test_set = set((i, j, k, o))
 | 
			
		||||
    if not (test_set <= set((1, 2, 3, 4)) or test_set <= set((0, 1, 2, 3))):
 | 
			
		||||
        raise Exception("Unexpected input", i, j, k, o)
 | 
			
		||||
        raise ValueError("Unexpected input", i, j, k, o)
 | 
			
		||||
 | 
			
		||||
    return (i - j) * (j - k) * (k - i) * (i - o) * (j - o) * (o - k) / 12
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -92,5 +92,5 @@ def Grid_gamma(gamma_tag):
 | 
			
		|||
    elif gamma_tag == 'SigmaZT':
 | 
			
		||||
        g = 0.5 * (gamma[2] @ gamma[3] - gamma[3] @ gamma[2])
 | 
			
		||||
    else:
 | 
			
		||||
        raise Exception('Unkown gamma structure', gamma_tag)
 | 
			
		||||
        raise ValueError('Unkown gamma structure', gamma_tag)
 | 
			
		||||
    return g
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										193
									
								
								pyerrors/fits.py
									
										
									
									
									
								
							
							
						
						
									
										193
									
								
								pyerrors/fits.py
									
										
									
									
									
								
							| 
						 | 
				
			
			@ -14,7 +14,7 @@ from autograd import hessian as auto_hessian
 | 
			
		|||
from autograd import elementwise_grad as egrad
 | 
			
		||||
from numdifftools import Jacobian as num_jacobian
 | 
			
		||||
from numdifftools import Hessian as num_hessian
 | 
			
		||||
from .obs import Obs, derived_observable, covariance, cov_Obs
 | 
			
		||||
from .obs import Obs, derived_observable, covariance, cov_Obs, invert_corr_cov_cholesky
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Fit_result(Sequence):
 | 
			
		||||
| 
						 | 
				
			
			@ -131,7 +131,7 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs):
 | 
			
		|||
        Obs (e.g. results from a previous fit) or strings containing a value and an error formatted like
 | 
			
		||||
        0.548(23), 500(40) or 0.5(0.4)
 | 
			
		||||
    silent : bool, optional
 | 
			
		||||
        If true all output to the console is omitted (default False).
 | 
			
		||||
        If True all output to the console is omitted (default False).
 | 
			
		||||
    initial_guess : list
 | 
			
		||||
        can provide an initial guess for the input parameters. Relevant for
 | 
			
		||||
        non-linear fits with many parameters. In case of correlated fits the guess is used to perform
 | 
			
		||||
| 
						 | 
				
			
			@ -139,10 +139,10 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs):
 | 
			
		|||
    method : str, optional
 | 
			
		||||
        can be used to choose an alternative method for the minimization of chisquare.
 | 
			
		||||
        The possible methods are the ones which can be used for scipy.optimize.minimize and
 | 
			
		||||
        migrad of iminuit. If no method is specified, Levenberg-Marquard is used.
 | 
			
		||||
        migrad of iminuit. If no method is specified, Levenberg–Marquardt is used.
 | 
			
		||||
        Reliable alternatives are migrad, Powell and Nelder-Mead.
 | 
			
		||||
    tol: float, optional
 | 
			
		||||
        can be used (only for combined fits and methods other than Levenberg-Marquard) to set the tolerance for convergence
 | 
			
		||||
        can be used (only for combined fits and methods other than Levenberg–Marquardt) to set the tolerance for convergence
 | 
			
		||||
        to a different value to either speed up convergence at the cost of a larger error on the fitted parameters (and possibly
 | 
			
		||||
        invalid estimates for parameter uncertainties) or smaller values to get more accurate parameter values
 | 
			
		||||
        The stopping criterion depends on the method, e.g. migrad: edm_max = 0.002 * tol * errordef (EDM criterion: edm < edm_max)
 | 
			
		||||
| 
						 | 
				
			
			@ -151,6 +151,14 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs):
 | 
			
		|||
        For details about how the covariance matrix is estimated see `pyerrors.obs.covariance`.
 | 
			
		||||
        In practice the correlation matrix is Cholesky decomposed and inverted (instead of the covariance matrix).
 | 
			
		||||
        This procedure should be numerically more stable as the correlation matrix is typically better conditioned (Jacobi preconditioning).
 | 
			
		||||
    inv_chol_cov_matrix [array,list], optional
 | 
			
		||||
        array: shape = (number of y values) X (number of y values)
 | 
			
		||||
        list:   for an uncombined fit: [""]
 | 
			
		||||
                for a combined fit: list of keys belonging to the corr_matrix saved in the array, must be the same as the keys of the y dict in alphabetical order
 | 
			
		||||
        If correlated_fit=True is set as well, can provide an inverse covariance matrix (y errors, dy_f included!) of your own choosing for a correlated fit.
 | 
			
		||||
        The matrix must be a lower triangular matrix constructed from a Cholesky decomposition: The function invert_corr_cov_cholesky(corr, inverrdiag) can be
 | 
			
		||||
        used to construct it from a correlation matrix (corr) and the errors dy_f of the data points (inverrdiag = np.diag(1 / np.asarray(dy_f))). For the correct
 | 
			
		||||
        ordering the correlation matrix (corr) can be sorted via the function sort_corr(corr, kl, yd) where kl is the list of keys and yd the y dict.
 | 
			
		||||
    expected_chisquare : bool
 | 
			
		||||
        If True estimates the expected chisquare which is
 | 
			
		||||
        corrected by effects caused by correlated input data (default False).
 | 
			
		||||
| 
						 | 
				
			
			@ -160,11 +168,65 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs):
 | 
			
		|||
        If True, a quantile-quantile plot of the fit result is generated (default False).
 | 
			
		||||
    num_grad : bool
 | 
			
		||||
        Use numerical differentation instead of automatic differentiation to perform the error propagation (default False).
 | 
			
		||||
    n_parms : int, optional
 | 
			
		||||
        Number of fit parameters. Overrides automatic detection of parameter count.
 | 
			
		||||
        Useful when autodetection fails. Must match the length of initial_guess or priors (if provided).
 | 
			
		||||
 | 
			
		||||
    Returns
 | 
			
		||||
    -------
 | 
			
		||||
    output : Fit_result
 | 
			
		||||
        Parameters and information on the fitted result.
 | 
			
		||||
    Examples
 | 
			
		||||
    ------
 | 
			
		||||
    >>> # Example of a correlated (correlated_fit = True, inv_chol_cov_matrix handed over) combined fit, based on a randomly generated data set
 | 
			
		||||
    >>> import numpy as np
 | 
			
		||||
    >>> from scipy.stats import norm
 | 
			
		||||
    >>> from scipy.linalg import cholesky
 | 
			
		||||
    >>> import pyerrors as pe
 | 
			
		||||
    >>> # generating the random data set
 | 
			
		||||
    >>> num_samples = 400
 | 
			
		||||
    >>> N = 3
 | 
			
		||||
    >>> x = np.arange(N)
 | 
			
		||||
    >>> x1 = norm.rvs(size=(N, num_samples)) # generate random numbers
 | 
			
		||||
    >>> x2 = norm.rvs(size=(N, num_samples)) # generate random numbers
 | 
			
		||||
    >>> r = r1 = r2 = np.zeros((N, N))
 | 
			
		||||
    >>> y = {}
 | 
			
		||||
    >>> for i in range(N):
 | 
			
		||||
    >>>    for j in range(N):
 | 
			
		||||
    >>>        r[i, j] = np.exp(-0.8 * np.fabs(i - j)) # element in correlation matrix
 | 
			
		||||
    >>> errl = np.sqrt([3.4, 2.5, 3.6]) # set y errors
 | 
			
		||||
    >>> for i in range(N):
 | 
			
		||||
    >>>    for j in range(N):
 | 
			
		||||
    >>>        r[i, j] *= errl[i] * errl[j] # element in covariance matrix
 | 
			
		||||
    >>> c = cholesky(r, lower=True)
 | 
			
		||||
    >>> y = {'a': np.dot(c, x1), 'b': np.dot(c, x2)} # generate y data with the covariance matrix defined
 | 
			
		||||
    >>> # random data set has been generated, now the dictionaries and the inverse covariance matrix to be handed over are built
 | 
			
		||||
    >>> x_dict = {}
 | 
			
		||||
    >>> y_dict = {}
 | 
			
		||||
    >>> chol_inv_dict = {}
 | 
			
		||||
    >>> data = []
 | 
			
		||||
    >>> for key in y.keys():
 | 
			
		||||
    >>>    x_dict[key] = x
 | 
			
		||||
    >>>    for i in range(N):
 | 
			
		||||
    >>>        data.append(pe.Obs([[i + 1 + o for o in y[key][i]]], ['ens'])) # generate y Obs from the y data
 | 
			
		||||
    >>>    [o.gamma_method() for o in data]
 | 
			
		||||
    >>>    corr = pe.covariance(data, correlation=True)
 | 
			
		||||
    >>>    inverrdiag = np.diag(1 / np.asarray([o.dvalue for o in data]))
 | 
			
		||||
    >>>    chol_inv = pe.obs.invert_corr_cov_cholesky(corr, inverrdiag) # gives form of the inverse covariance matrix needed for the combined correlated fit below
 | 
			
		||||
    >>> y_dict = {'a': data[:3], 'b': data[3:]}
 | 
			
		||||
    >>> # common fit parameter p[0] in combined fit
 | 
			
		||||
    >>> def fit1(p, x):
 | 
			
		||||
    >>>    return p[0] + p[1] * x
 | 
			
		||||
    >>> def fit2(p, x):
 | 
			
		||||
    >>>    return p[0] + p[2] * x
 | 
			
		||||
    >>> fitf_dict = {'a': fit1, 'b':fit2}
 | 
			
		||||
    >>> fitp_inv_cov_combined_fit = pe.least_squares(x_dict,y_dict, fitf_dict, correlated_fit = True, inv_chol_cov_matrix = [chol_inv,['a','b']])
 | 
			
		||||
    Fit with 3 parameters
 | 
			
		||||
    Method: Levenberg-Marquardt
 | 
			
		||||
    `ftol` termination condition is satisfied.
 | 
			
		||||
    chisquare/d.o.f.: 0.5388013574561786 # random
 | 
			
		||||
    fit parameters [1.11897846 0.96361162 0.92325319] # random
 | 
			
		||||
 | 
			
		||||
    '''
 | 
			
		||||
    output = Fit_result()
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -197,7 +259,7 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs):
 | 
			
		|||
    if sorted(list(funcd.keys())) != key_ls:
 | 
			
		||||
        raise ValueError('x and func dictionaries do not contain the same keys.')
 | 
			
		||||
 | 
			
		||||
    x_all = np.concatenate([np.array(xd[key]) for key in key_ls])
 | 
			
		||||
    x_all = np.concatenate([np.array(xd[key]).transpose() for key in key_ls]).transpose()
 | 
			
		||||
    y_all = np.concatenate([np.array(yd[key]) for key in key_ls])
 | 
			
		||||
 | 
			
		||||
    y_f = [o.value for o in y_all]
 | 
			
		||||
| 
						 | 
				
			
			@ -210,31 +272,43 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs):
 | 
			
		|||
        raise Exception("No y errors available, run the gamma method first.")
 | 
			
		||||
 | 
			
		||||
    # number of fit parameters
 | 
			
		||||
    n_parms_ls = []
 | 
			
		||||
    for key in key_ls:
 | 
			
		||||
        if not callable(funcd[key]):
 | 
			
		||||
            raise TypeError('func (key=' + key + ') is not a function.')
 | 
			
		||||
        if np.asarray(xd[key]).shape[-1] != len(yd[key]):
 | 
			
		||||
            raise ValueError('x and y input (key=' + key + ') do not have the same length')
 | 
			
		||||
        for n_loc in range(100):
 | 
			
		||||
            try:
 | 
			
		||||
                funcd[key](np.arange(n_loc), x_all.T[0])
 | 
			
		||||
            except TypeError:
 | 
			
		||||
                continue
 | 
			
		||||
            except IndexError:
 | 
			
		||||
                continue
 | 
			
		||||
    if 'n_parms' in kwargs:
 | 
			
		||||
        n_parms = kwargs.get('n_parms')
 | 
			
		||||
        if not isinstance(n_parms, int):
 | 
			
		||||
            raise TypeError(
 | 
			
		||||
                f"'n_parms' must be an integer, got {n_parms!r} "
 | 
			
		||||
                f"of type {type(n_parms).__name__}."
 | 
			
		||||
            )
 | 
			
		||||
        if n_parms <= 0:
 | 
			
		||||
            raise ValueError(
 | 
			
		||||
                f"'n_parms' must be a positive integer, got {n_parms}."
 | 
			
		||||
            )
 | 
			
		||||
    else:
 | 
			
		||||
        n_parms_ls = []
 | 
			
		||||
        for key in key_ls:
 | 
			
		||||
            if not callable(funcd[key]):
 | 
			
		||||
                raise TypeError('func (key=' + key + ') is not a function.')
 | 
			
		||||
            if np.asarray(xd[key]).shape[-1] != len(yd[key]):
 | 
			
		||||
                raise ValueError('x and y input (key=' + key + ') do not have the same length')
 | 
			
		||||
            for n_loc in range(100):
 | 
			
		||||
                try:
 | 
			
		||||
                    funcd[key](np.arange(n_loc), x_all.T[0])
 | 
			
		||||
                except TypeError:
 | 
			
		||||
                    continue
 | 
			
		||||
                except IndexError:
 | 
			
		||||
                    continue
 | 
			
		||||
                else:
 | 
			
		||||
                    break
 | 
			
		||||
            else:
 | 
			
		||||
                break
 | 
			
		||||
        else:
 | 
			
		||||
            raise RuntimeError("Fit function (key=" + key + ") is not valid.")
 | 
			
		||||
        n_parms_ls.append(n_loc)
 | 
			
		||||
                raise RuntimeError("Fit function (key=" + key + ") is not valid.")
 | 
			
		||||
            n_parms_ls.append(n_loc)
 | 
			
		||||
 | 
			
		||||
    n_parms = max(n_parms_ls)
 | 
			
		||||
        n_parms = max(n_parms_ls)
 | 
			
		||||
 | 
			
		||||
    if len(key_ls) > 1:
 | 
			
		||||
        for key in key_ls:
 | 
			
		||||
            if np.asarray(yd[key]).shape != funcd[key](np.arange(n_parms), xd[key]).shape:
 | 
			
		||||
                raise ValueError(f"Fit function {key} returns the wrong shape ({funcd[key](np.arange(n_parms), xd[key]).shape} instead of {xd[key].shape})\nIf the fit function is just a constant you could try adding x*0 to get the correct shape.")
 | 
			
		||||
                raise ValueError(f"Fit function {key} returns the wrong shape ({funcd[key](np.arange(n_parms), xd[key]).shape} instead of {np.asarray(yd[key]).shape})\nIf the fit function is just a constant you could try adding x*0 to get the correct shape.")
 | 
			
		||||
 | 
			
		||||
    if not silent:
 | 
			
		||||
        print('Fit with', n_parms, 'parameter' + 's' * (n_parms > 1))
 | 
			
		||||
| 
						 | 
				
			
			@ -297,15 +371,21 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs):
 | 
			
		|||
        return anp.sum(general_chisqfunc_uncorr(p, y_f, p_f) ** 2)
 | 
			
		||||
 | 
			
		||||
    if kwargs.get('correlated_fit') is True:
 | 
			
		||||
        corr = covariance(y_all, correlation=True, **kwargs)
 | 
			
		||||
        covdiag = np.diag(1 / np.asarray(dy_f))
 | 
			
		||||
        condn = np.linalg.cond(corr)
 | 
			
		||||
        if condn > 0.1 / np.finfo(float).eps:
 | 
			
		||||
            raise Exception(f"Cannot invert correlation matrix as its condition number exceeds machine precision ({condn:1.2e})")
 | 
			
		||||
        if condn > 1e13:
 | 
			
		||||
            warnings.warn("Correlation matrix may be ill-conditioned, condition number: {%1.2e}" % (condn), RuntimeWarning)
 | 
			
		||||
        chol = np.linalg.cholesky(corr)
 | 
			
		||||
        chol_inv = scipy.linalg.solve_triangular(chol, covdiag, lower=True)
 | 
			
		||||
        if 'inv_chol_cov_matrix' in kwargs:
 | 
			
		||||
            chol_inv = kwargs.get('inv_chol_cov_matrix')
 | 
			
		||||
            if (chol_inv[0].shape[0] != len(dy_f)):
 | 
			
		||||
                raise TypeError('The number of columns of the inverse covariance matrix handed over needs to be equal to the number of y errors.')
 | 
			
		||||
            if (chol_inv[0].shape[0] != chol_inv[0].shape[1]):
 | 
			
		||||
                raise TypeError('The inverse covariance matrix handed over needs to have the same number of rows as columns.')
 | 
			
		||||
            if (chol_inv[1] != key_ls):
 | 
			
		||||
                raise ValueError('The keys of inverse covariance matrix are not the same or do not appear in the same order as the x and y values.')
 | 
			
		||||
            chol_inv = chol_inv[0]
 | 
			
		||||
            if np.any(np.diag(chol_inv) <= 0) or (not np.all(chol_inv == np.tril(chol_inv))):
 | 
			
		||||
                raise ValueError('The inverse covariance matrix inv_chol_cov_matrix[0] has to be a lower triangular matrix constructed from a Cholesky decomposition.')
 | 
			
		||||
        else:
 | 
			
		||||
            corr = covariance(y_all, correlation=True, **kwargs)
 | 
			
		||||
            inverrdiag = np.diag(1 / np.asarray(dy_f))
 | 
			
		||||
            chol_inv = invert_corr_cov_cholesky(corr, inverrdiag)
 | 
			
		||||
 | 
			
		||||
        def general_chisqfunc(p, ivars, pr):
 | 
			
		||||
            model = anp.concatenate([anp.array(funcd[key](p, xd[key])).reshape(-1) for key in key_ls])
 | 
			
		||||
| 
						 | 
				
			
			@ -350,7 +430,6 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs):
 | 
			
		|||
 | 
			
		||||
        fit_result = scipy.optimize.least_squares(chisqfunc_residuals_uncorr, x0, method='lm', ftol=1e-15, gtol=1e-15, xtol=1e-15)
 | 
			
		||||
        if kwargs.get('correlated_fit') is True:
 | 
			
		||||
 | 
			
		||||
            def chisqfunc_residuals(p):
 | 
			
		||||
                return general_chisqfunc(p, y_f, p_f)
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -393,7 +472,7 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs):
 | 
			
		|||
            hat_vector = prepare_hat_matrix()
 | 
			
		||||
            A = W @ hat_vector
 | 
			
		||||
            P_phi = A @ np.linalg.pinv(A.T @ A) @ A.T
 | 
			
		||||
            expected_chisquare = np.trace((np.identity(y_all.shape[-1]) - P_phi) @ W @ cov @ W)
 | 
			
		||||
            expected_chisquare = np.trace((np.identity(y_all.shape[-1]) - P_phi) @ W @ cov @ W) + len(loc_priors)
 | 
			
		||||
            output.chisquare_by_expected_chisquare = output.chisquare / expected_chisquare
 | 
			
		||||
            if not silent:
 | 
			
		||||
                print('chisquare/expected_chisquare:', output.chisquare_by_expected_chisquare)
 | 
			
		||||
| 
						 | 
				
			
			@ -471,17 +550,20 @@ def total_least_squares(x, y, func, silent=False, **kwargs):
 | 
			
		|||
        It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation
 | 
			
		||||
        will not work.
 | 
			
		||||
    silent : bool, optional
 | 
			
		||||
        If true all output to the console is omitted (default False).
 | 
			
		||||
        If True all output to the console is omitted (default False).
 | 
			
		||||
    initial_guess : list
 | 
			
		||||
        can provide an initial guess for the input parameters. Relevant for non-linear
 | 
			
		||||
        fits with many parameters.
 | 
			
		||||
    expected_chisquare : bool
 | 
			
		||||
        If true prints the expected chisquare which is
 | 
			
		||||
        If True prints the expected chisquare which is
 | 
			
		||||
        corrected by effects caused by correlated input data.
 | 
			
		||||
        This can take a while as the full correlation matrix
 | 
			
		||||
        has to be calculated (default False).
 | 
			
		||||
    num_grad : bool
 | 
			
		||||
        Use numerical differentation instead of automatic differentiation to perform the error propagation (default False).
 | 
			
		||||
        Use numerical differentiation instead of automatic differentiation to perform the error propagation (default False).
 | 
			
		||||
    n_parms : int, optional
 | 
			
		||||
        Number of fit parameters. Overrides automatic detection of parameter count.
 | 
			
		||||
        Useful when autodetection fails. Must match the length of initial_guess (if provided).
 | 
			
		||||
 | 
			
		||||
    Notes
 | 
			
		||||
    -----
 | 
			
		||||
| 
						 | 
				
			
			@ -511,19 +593,32 @@ def total_least_squares(x, y, func, silent=False, **kwargs):
 | 
			
		|||
    if not callable(func):
 | 
			
		||||
        raise TypeError('func has to be a function.')
 | 
			
		||||
 | 
			
		||||
    for i in range(42):
 | 
			
		||||
        try:
 | 
			
		||||
            func(np.arange(i), x.T[0])
 | 
			
		||||
        except TypeError:
 | 
			
		||||
            continue
 | 
			
		||||
        except IndexError:
 | 
			
		||||
            continue
 | 
			
		||||
        else:
 | 
			
		||||
            break
 | 
			
		||||
    if 'n_parms' in kwargs:
 | 
			
		||||
        n_parms = kwargs.get('n_parms')
 | 
			
		||||
        if not isinstance(n_parms, int):
 | 
			
		||||
            raise TypeError(
 | 
			
		||||
                f"'n_parms' must be an integer, got {n_parms!r} "
 | 
			
		||||
                f"of type {type(n_parms).__name__}."
 | 
			
		||||
            )
 | 
			
		||||
        if n_parms <= 0:
 | 
			
		||||
            raise ValueError(
 | 
			
		||||
                f"'n_parms' must be a positive integer, got {n_parms}."
 | 
			
		||||
            )
 | 
			
		||||
    else:
 | 
			
		||||
        raise RuntimeError("Fit function is not valid.")
 | 
			
		||||
        for i in range(100):
 | 
			
		||||
            try:
 | 
			
		||||
                func(np.arange(i), x.T[0])
 | 
			
		||||
            except TypeError:
 | 
			
		||||
                continue
 | 
			
		||||
            except IndexError:
 | 
			
		||||
                continue
 | 
			
		||||
            else:
 | 
			
		||||
                break
 | 
			
		||||
        else:
 | 
			
		||||
            raise RuntimeError("Fit function is not valid.")
 | 
			
		||||
 | 
			
		||||
        n_parms = i
 | 
			
		||||
 | 
			
		||||
    n_parms = i
 | 
			
		||||
    if not silent:
 | 
			
		||||
        print('Fit with', n_parms, 'parameter' + 's' * (n_parms > 1))
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -5,11 +5,11 @@ r'''
 | 
			
		|||
For comparison with other analysis workflows `pyerrors` can also generate jackknife samples from an `Obs` object or import jackknife samples into an `Obs` object.
 | 
			
		||||
See `pyerrors.obs.Obs.export_jackknife` and `pyerrors.obs.import_jackknife` for details.
 | 
			
		||||
'''
 | 
			
		||||
from . import bdio
 | 
			
		||||
from . import dobs
 | 
			
		||||
from . import hadrons
 | 
			
		||||
from . import json
 | 
			
		||||
from . import misc
 | 
			
		||||
from . import openQCD
 | 
			
		||||
from . import pandas
 | 
			
		||||
from . import sfcf
 | 
			
		||||
from . import bdio as bdio
 | 
			
		||||
from . import dobs as dobs
 | 
			
		||||
from . import hadrons as hadrons
 | 
			
		||||
from . import json as json
 | 
			
		||||
from . import misc as misc
 | 
			
		||||
from . import openQCD as openQCD
 | 
			
		||||
from . import pandas as pandas
 | 
			
		||||
from . import sfcf as sfcf
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -79,7 +79,7 @@ def _dict_to_xmlstring_spaces(d, space='  '):
 | 
			
		|||
            o += space
 | 
			
		||||
        o += li + '\n'
 | 
			
		||||
        if li.startswith('<') and not cm:
 | 
			
		||||
            if not '<%s' % ('/') in li:
 | 
			
		||||
            if '<%s' % ('/') not in li:
 | 
			
		||||
                c += 1
 | 
			
		||||
        cm = False
 | 
			
		||||
    return o
 | 
			
		||||
| 
						 | 
				
			
			@ -529,7 +529,8 @@ def import_dobs_string(content, full_output=False, separator_insertion=True):
 | 
			
		|||
                deltas.append(repdeltas)
 | 
			
		||||
                idl.append(repidl)
 | 
			
		||||
 | 
			
		||||
        res.append(Obs(deltas, obs_names, idl=idl))
 | 
			
		||||
        obsmeans = [np.average(deltas[j]) for j in range(len(deltas))]
 | 
			
		||||
        res.append(Obs([np.array(deltas[j]) - obsmeans[j] for j in range(len(obsmeans))], obs_names, idl=idl, means=obsmeans))
 | 
			
		||||
        res[-1]._value = mean[i]
 | 
			
		||||
    _check(len(e_names) == ne)
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -671,7 +672,7 @@ def _dobsdict_to_xmlstring_spaces(d, space='  '):
 | 
			
		|||
            o += space
 | 
			
		||||
        o += li + '\n'
 | 
			
		||||
        if li.startswith('<') and not cm:
 | 
			
		||||
            if not '<%s' % ('/') in li:
 | 
			
		||||
            if '<%s' % ('/') not in li:
 | 
			
		||||
                c += 1
 | 
			
		||||
        cm = False
 | 
			
		||||
    return o
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -113,7 +113,7 @@ def read_hd5(filestem, ens_id, group, attrs=None, idl=None, part="real"):
 | 
			
		|||
    infos = []
 | 
			
		||||
    for hd5_file in files:
 | 
			
		||||
        h5file = h5py.File(path + '/' + hd5_file, "r")
 | 
			
		||||
        if not group + '/' + entry in h5file:
 | 
			
		||||
        if group + '/' + entry not in h5file:
 | 
			
		||||
            raise Exception("Entry '" + entry + "' not contained in the files.")
 | 
			
		||||
        raw_data = h5file[group + '/' + entry + '/corr']
 | 
			
		||||
        real_data = raw_data[:].view("complex")
 | 
			
		||||
| 
						 | 
				
			
			@ -186,7 +186,7 @@ def _extract_real_arrays(path, files, tree, keys):
 | 
			
		|||
    for hd5_file in files:
 | 
			
		||||
        h5file = h5py.File(path + '/' + hd5_file, "r")
 | 
			
		||||
        for key in keys:
 | 
			
		||||
            if not tree + '/' + key in h5file:
 | 
			
		||||
            if tree + '/' + key not in h5file:
 | 
			
		||||
                raise Exception("Entry '" + key + "' not contained in the files.")
 | 
			
		||||
            raw_data = h5file[tree + '/' + key + '/data']
 | 
			
		||||
            real_data = raw_data[:].astype(np.double)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -133,10 +133,11 @@ def create_json_string(ol, description='', indent=1):
 | 
			
		|||
        names = []
 | 
			
		||||
        idl = []
 | 
			
		||||
        for key, value in obs.idl.items():
 | 
			
		||||
            samples.append([np.nan] * len(value))
 | 
			
		||||
            samples.append(np.array([np.nan] * len(value)))
 | 
			
		||||
            names.append(key)
 | 
			
		||||
            idl.append(value)
 | 
			
		||||
        my_obs = Obs(samples, names, idl)
 | 
			
		||||
        my_obs = Obs(samples, names, idl, means=[np.nan for n in names])
 | 
			
		||||
        my_obs._value = np.nan
 | 
			
		||||
        my_obs._covobs = obs._covobs
 | 
			
		||||
        for name in obs._covobs:
 | 
			
		||||
            my_obs.names.append(name)
 | 
			
		||||
| 
						 | 
				
			
			@ -331,7 +332,8 @@ def _parse_json_dict(json_dict, verbose=True, full_output=False):
 | 
			
		|||
        cd = _gen_covobsd_from_cdatad(o.get('cdata', {}))
 | 
			
		||||
 | 
			
		||||
        if od:
 | 
			
		||||
            ret = Obs([[ddi[0] + values[0] for ddi in di] for di in od['deltas']], od['names'], idl=od['idl'])
 | 
			
		||||
            r_offsets = [np.average([ddi[0] for ddi in di]) for di in od['deltas']]
 | 
			
		||||
            ret = Obs([np.array([ddi[0] for ddi in od['deltas'][i]]) - r_offsets[i] for i in range(len(od['deltas']))], od['names'], idl=od['idl'], means=[ro + values[0] for ro in r_offsets])
 | 
			
		||||
            ret._value = values[0]
 | 
			
		||||
        else:
 | 
			
		||||
            ret = Obs([], [], means=[])
 | 
			
		||||
| 
						 | 
				
			
			@ -356,7 +358,8 @@ def _parse_json_dict(json_dict, verbose=True, full_output=False):
 | 
			
		|||
        taglist = o.get('tag', layout * [None])
 | 
			
		||||
        for i in range(layout):
 | 
			
		||||
            if od:
 | 
			
		||||
                ret.append(Obs([list(di[:, i] + values[i]) for di in od['deltas']], od['names'], idl=od['idl']))
 | 
			
		||||
                r_offsets = np.array([np.average(di[:, i]) for di in od['deltas']])
 | 
			
		||||
                ret.append(Obs([od['deltas'][j][:, i] - r_offsets[j] for j in range(len(od['deltas']))], od['names'], idl=od['idl'], means=[ro + values[i] for ro in r_offsets]))
 | 
			
		||||
                ret[-1]._value = values[i]
 | 
			
		||||
            else:
 | 
			
		||||
                ret.append(Obs([], [], means=[]))
 | 
			
		||||
| 
						 | 
				
			
			@ -383,7 +386,8 @@ def _parse_json_dict(json_dict, verbose=True, full_output=False):
 | 
			
		|||
        taglist = o.get('tag', N * [None])
 | 
			
		||||
        for i in range(N):
 | 
			
		||||
            if od:
 | 
			
		||||
                ret.append(Obs([di[:, i] + values[i] for di in od['deltas']], od['names'], idl=od['idl']))
 | 
			
		||||
                r_offsets = np.array([np.average(di[:, i]) for di in od['deltas']])
 | 
			
		||||
                ret.append(Obs([od['deltas'][j][:, i] - r_offsets[j] for j in range(len(od['deltas']))], od['names'], idl=od['idl'], means=[ro + values[i] for ro in r_offsets]))
 | 
			
		||||
                ret[-1]._value = values[i]
 | 
			
		||||
            else:
 | 
			
		||||
                ret.append(Obs([], [], means=[]))
 | 
			
		||||
| 
						 | 
				
			
			@ -567,7 +571,6 @@ def _ol_from_dict(ind, reps='DICTOBS'):
 | 
			
		|||
    counter = 0
 | 
			
		||||
 | 
			
		||||
    def dict_replace_obs(d):
 | 
			
		||||
        nonlocal ol
 | 
			
		||||
        nonlocal counter
 | 
			
		||||
        x = {}
 | 
			
		||||
        for k, v in d.items():
 | 
			
		||||
| 
						 | 
				
			
			@ -588,7 +591,6 @@ def _ol_from_dict(ind, reps='DICTOBS'):
 | 
			
		|||
        return x
 | 
			
		||||
 | 
			
		||||
    def list_replace_obs(li):
 | 
			
		||||
        nonlocal ol
 | 
			
		||||
        nonlocal counter
 | 
			
		||||
        x = []
 | 
			
		||||
        for e in li:
 | 
			
		||||
| 
						 | 
				
			
			@ -609,7 +611,6 @@ def _ol_from_dict(ind, reps='DICTOBS'):
 | 
			
		|||
        return x
 | 
			
		||||
 | 
			
		||||
    def obslist_replace_obs(li):
 | 
			
		||||
        nonlocal ol
 | 
			
		||||
        nonlocal counter
 | 
			
		||||
        il = []
 | 
			
		||||
        for e in li:
 | 
			
		||||
| 
						 | 
				
			
			@ -690,7 +691,6 @@ def _od_from_list_and_dict(ol, ind, reps='DICTOBS'):
 | 
			
		|||
 | 
			
		||||
    def dict_replace_string(d):
 | 
			
		||||
        nonlocal counter
 | 
			
		||||
        nonlocal ol
 | 
			
		||||
        x = {}
 | 
			
		||||
        for k, v in d.items():
 | 
			
		||||
            if isinstance(v, dict):
 | 
			
		||||
| 
						 | 
				
			
			@ -706,7 +706,6 @@ def _od_from_list_and_dict(ol, ind, reps='DICTOBS'):
 | 
			
		|||
 | 
			
		||||
    def list_replace_string(li):
 | 
			
		||||
        nonlocal counter
 | 
			
		||||
        nonlocal ol
 | 
			
		||||
        x = []
 | 
			
		||||
        for e in li:
 | 
			
		||||
            if isinstance(e, list):
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -47,7 +47,7 @@ def read_rwms(path, prefix, version='2.0', names=None, **kwargs):
 | 
			
		|||
        Reweighting factors read
 | 
			
		||||
    """
 | 
			
		||||
    known_oqcd_versions = ['1.4', '1.6', '2.0']
 | 
			
		||||
    if not (version in known_oqcd_versions):
 | 
			
		||||
    if version not in known_oqcd_versions:
 | 
			
		||||
        raise Exception('Unknown openQCD version defined!')
 | 
			
		||||
    print("Working with openQCD version " + version)
 | 
			
		||||
    if 'postfix' in kwargs:
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,6 +1,7 @@
 | 
			
		|||
import warnings
 | 
			
		||||
import gzip
 | 
			
		||||
import sqlite3
 | 
			
		||||
from contextlib import closing
 | 
			
		||||
import pandas as pd
 | 
			
		||||
from ..obs import Obs
 | 
			
		||||
from ..correlators import Corr
 | 
			
		||||
| 
						 | 
				
			
			@ -29,9 +30,8 @@ def to_sql(df, table_name, db, if_exists='fail', gz=True, **kwargs):
 | 
			
		|||
    None
 | 
			
		||||
    """
 | 
			
		||||
    se_df = _serialize_df(df, gz=gz)
 | 
			
		||||
    con = sqlite3.connect(db)
 | 
			
		||||
    se_df.to_sql(table_name, con, if_exists=if_exists, index=False, **kwargs)
 | 
			
		||||
    con.close()
 | 
			
		||||
    with closing(sqlite3.connect(db)) as con:
 | 
			
		||||
        se_df.to_sql(table_name, con=con, if_exists=if_exists, index=False, **kwargs)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def read_sql(sql, db, auto_gamma=False, **kwargs):
 | 
			
		||||
| 
						 | 
				
			
			@ -52,9 +52,8 @@ def read_sql(sql, db, auto_gamma=False, **kwargs):
 | 
			
		|||
    data : pandas.DataFrame
 | 
			
		||||
        Dataframe with the content of the sqlite database.
 | 
			
		||||
    """
 | 
			
		||||
    con = sqlite3.connect(db)
 | 
			
		||||
    extract_df = pd.read_sql(sql, con, **kwargs)
 | 
			
		||||
    con.close()
 | 
			
		||||
    with closing(sqlite3.connect(db)) as con:
 | 
			
		||||
        extract_df = pd.read_sql(sql, con=con, **kwargs)
 | 
			
		||||
    return _deserialize_df(extract_df, auto_gamma=auto_gamma)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -10,7 +10,7 @@ import itertools
 | 
			
		|||
sep = "/"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def read_sfcf(path, prefix, name, quarks='.*', corr_type="bi", noffset=0, wf=0, wf2=0, version="1.0c", cfg_separator="n", silent=False, **kwargs):
 | 
			
		||||
def read_sfcf(path, prefix, name, quarks='.*', corr_type="bi", noffset=0, wf=0, wf2=0, version="1.0c", cfg_separator="n", cfg_func=None, silent=False, **kwargs):
 | 
			
		||||
    """Read sfcf files from given folder structure.
 | 
			
		||||
 | 
			
		||||
    Parameters
 | 
			
		||||
| 
						 | 
				
			
			@ -71,11 +71,11 @@ def read_sfcf(path, prefix, name, quarks='.*', corr_type="bi", noffset=0, wf=0,
 | 
			
		|||
    """
 | 
			
		||||
    ret = read_sfcf_multi(path, prefix, [name], quarks_list=[quarks], corr_type_list=[corr_type],
 | 
			
		||||
                          noffset_list=[noffset], wf_list=[wf], wf2_list=[wf2], version=version,
 | 
			
		||||
                          cfg_separator=cfg_separator, silent=silent, **kwargs)
 | 
			
		||||
                          cfg_separator=cfg_separator, cfg_func=cfg_func, silent=silent, **kwargs)
 | 
			
		||||
    return ret[name][quarks][str(noffset)][str(wf)][str(wf2)]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list=['bi'], noffset_list=[0], wf_list=[0], wf2_list=[0], version="1.0c", cfg_separator="n", silent=False, keyed_out=False, **kwargs):
 | 
			
		||||
def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list=['bi'], noffset_list=[0], wf_list=[0], wf2_list=[0], version="1.0c", cfg_separator="n", cfg_func=None, silent=False, keyed_out=False, **kwargs):
 | 
			
		||||
    """Read sfcf files from given folder structure.
 | 
			
		||||
 | 
			
		||||
    Parameters
 | 
			
		||||
| 
						 | 
				
			
			@ -127,7 +127,8 @@ def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list=
 | 
			
		|||
    check_configs: list[list[int]]
 | 
			
		||||
        list of list of supposed configs, eg. [range(1,1000)]
 | 
			
		||||
        for one replicum with 1000 configs
 | 
			
		||||
 | 
			
		||||
    rep_string: str
 | 
			
		||||
        Separator of ensemble name and replicum. Example: In "ensAr0", "r" would be the separator string.
 | 
			
		||||
    Returns
 | 
			
		||||
    -------
 | 
			
		||||
    result: dict[list[Obs]]
 | 
			
		||||
| 
						 | 
				
			
			@ -199,9 +200,9 @@ def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list=
 | 
			
		|||
    else:
 | 
			
		||||
        ens_name = kwargs.get("ens_name")
 | 
			
		||||
        if not appended:
 | 
			
		||||
            new_names = _get_rep_names(ls, ens_name)
 | 
			
		||||
            new_names = _get_rep_names(ls, ens_name, rep_sep=(kwargs.get('rep_string', 'r')))
 | 
			
		||||
        else:
 | 
			
		||||
            new_names = _get_appended_rep_names(ls, prefix, name_list[0], ens_name)
 | 
			
		||||
            new_names = _get_appended_rep_names(ls, prefix, name_list[0], ens_name, rep_sep=(kwargs.get('rep_string', 'r')))
 | 
			
		||||
        new_names = sort_names(new_names)
 | 
			
		||||
 | 
			
		||||
    idl = []
 | 
			
		||||
| 
						 | 
				
			
			@ -244,6 +245,16 @@ def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list=
 | 
			
		|||
    for key in needed_keys:
 | 
			
		||||
        internal_ret_dict[key] = []
 | 
			
		||||
 | 
			
		||||
    def _default_idl_func(cfg_string, cfg_sep):
 | 
			
		||||
        return int(cfg_string.split(cfg_sep)[-1])
 | 
			
		||||
 | 
			
		||||
    if cfg_func is None:
 | 
			
		||||
        print("Default idl function in use.")
 | 
			
		||||
        cfg_func = _default_idl_func
 | 
			
		||||
        cfg_func_args = [cfg_separator]
 | 
			
		||||
    else:
 | 
			
		||||
        cfg_func_args = kwargs.get("cfg_func_args", [])
 | 
			
		||||
 | 
			
		||||
    if not appended:
 | 
			
		||||
        for i, item in enumerate(ls):
 | 
			
		||||
            rep_path = path + '/' + item
 | 
			
		||||
| 
						 | 
				
			
			@ -267,7 +278,7 @@ def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list=
 | 
			
		|||
            for cfg in sub_ls:
 | 
			
		||||
                try:
 | 
			
		||||
                    if compact:
 | 
			
		||||
                        rep_idl.append(int(cfg.split(cfg_separator)[-1]))
 | 
			
		||||
                        rep_idl.append(cfg_func(cfg, *cfg_func_args))
 | 
			
		||||
                    else:
 | 
			
		||||
                        rep_idl.append(int(cfg[3:]))
 | 
			
		||||
                except Exception:
 | 
			
		||||
| 
						 | 
				
			
			@ -350,7 +361,7 @@ def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list=
 | 
			
		|||
            for rep, file in enumerate(name_ls):
 | 
			
		||||
                rep_idl = []
 | 
			
		||||
                filename = path + '/' + file
 | 
			
		||||
                T, rep_idl, rep_data = _read_append_rep(filename, pattern, intern[name]['b2b'], cfg_separator, im, intern[name]['single'])
 | 
			
		||||
                T, rep_idl, rep_data = _read_append_rep(filename, pattern, intern[name]['b2b'], im, intern[name]['single'], cfg_func, cfg_func_args)
 | 
			
		||||
                if rep == 0:
 | 
			
		||||
                    intern[name]['T'] = T
 | 
			
		||||
                    for t in range(intern[name]['T']):
 | 
			
		||||
| 
						 | 
				
			
			@ -580,12 +591,7 @@ def _read_compact_rep(path, rep, sub_ls, intern, needed_keys, im):
 | 
			
		|||
    return return_vals
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _read_chunk(chunk, gauge_line, cfg_sep, start_read, T, corr_line, b2b, pattern, im, single):
 | 
			
		||||
    try:
 | 
			
		||||
        idl = int(chunk[gauge_line].split(cfg_sep)[-1])
 | 
			
		||||
    except Exception:
 | 
			
		||||
        raise Exception("Couldn't parse idl from directory, problem with chunk around line ", gauge_line)
 | 
			
		||||
 | 
			
		||||
def _read_chunk_data(chunk, start_read, T, corr_line, b2b, pattern, im, single):
 | 
			
		||||
    found_pat = ""
 | 
			
		||||
    data = []
 | 
			
		||||
    for li in chunk[corr_line + 1:corr_line + 6 + b2b]:
 | 
			
		||||
| 
						 | 
				
			
			@ -594,10 +600,10 @@ def _read_chunk(chunk, gauge_line, cfg_sep, start_read, T, corr_line, b2b, patte
 | 
			
		|||
        for t, line in enumerate(chunk[start_read:start_read + T]):
 | 
			
		||||
            floats = list(map(float, line.split()))
 | 
			
		||||
            data.append(floats[im + 1 - single])
 | 
			
		||||
    return idl, data
 | 
			
		||||
    return data
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _read_append_rep(filename, pattern, b2b, cfg_separator, im, single):
 | 
			
		||||
def _read_append_rep(filename, pattern, b2b, im, single, idl_func, cfg_func_args):
 | 
			
		||||
    with open(filename, 'r') as fp:
 | 
			
		||||
        content = fp.readlines()
 | 
			
		||||
        data_starts = []
 | 
			
		||||
| 
						 | 
				
			
			@ -633,7 +639,11 @@ def _read_append_rep(filename, pattern, b2b, cfg_separator, im, single):
 | 
			
		|||
            start = data_starts[cnfg]
 | 
			
		||||
            stop = start + data_starts[1]
 | 
			
		||||
            chunk = content[start:stop]
 | 
			
		||||
            idl, data = _read_chunk(chunk, gauge_line, cfg_separator, start_read, T, corr_line, b2b, pattern, im, single)
 | 
			
		||||
            try:
 | 
			
		||||
                idl = idl_func(chunk[gauge_line], *cfg_func_args)
 | 
			
		||||
            except Exception:
 | 
			
		||||
                raise Exception("Couldn't parse idl from file", filename, ", problem with chunk of lines", start + 1, "to", stop + 1)
 | 
			
		||||
            data = _read_chunk_data(chunk, start_read, T, corr_line, b2b, pattern, im, single)
 | 
			
		||||
            rep_idl.append(idl)
 | 
			
		||||
            rep_data.append(data)
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -646,22 +656,22 @@ def _read_append_rep(filename, pattern, b2b, cfg_separator, im, single):
 | 
			
		|||
        return T, rep_idl, data
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _get_rep_names(ls, ens_name=None):
 | 
			
		||||
def _get_rep_names(ls, ens_name=None, rep_sep='r'):
 | 
			
		||||
    new_names = []
 | 
			
		||||
    for entry in ls:
 | 
			
		||||
        try:
 | 
			
		||||
            idx = entry.index('r')
 | 
			
		||||
            idx = entry.index(rep_sep)
 | 
			
		||||
        except Exception:
 | 
			
		||||
            raise Exception("Automatic recognition of replicum failed, please enter the key word 'names'.")
 | 
			
		||||
 | 
			
		||||
        if ens_name:
 | 
			
		||||
            new_names.append('ens_name' + '|' + entry[idx:])
 | 
			
		||||
            new_names.append(ens_name + '|' + entry[idx:])
 | 
			
		||||
        else:
 | 
			
		||||
            new_names.append(entry[:idx] + '|' + entry[idx:])
 | 
			
		||||
    return new_names
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _get_appended_rep_names(ls, prefix, name, ens_name=None):
 | 
			
		||||
def _get_appended_rep_names(ls, prefix, name, ens_name=None, rep_sep='r'):
 | 
			
		||||
    new_names = []
 | 
			
		||||
    for exc in ls:
 | 
			
		||||
        if not fnmatch.fnmatch(exc, prefix + '*.' + name):
 | 
			
		||||
| 
						 | 
				
			
			@ -670,12 +680,12 @@ def _get_appended_rep_names(ls, prefix, name, ens_name=None):
 | 
			
		|||
    for entry in ls:
 | 
			
		||||
        myentry = entry[:-len(name) - 1]
 | 
			
		||||
        try:
 | 
			
		||||
            idx = myentry.index('r')
 | 
			
		||||
            idx = myentry.index(rep_sep)
 | 
			
		||||
        except Exception:
 | 
			
		||||
            raise Exception("Automatic recognition of replicum failed, please enter the key word 'names'.")
 | 
			
		||||
 | 
			
		||||
        if ens_name:
 | 
			
		||||
            new_names.append('ens_name' + '|' + entry[idx:])
 | 
			
		||||
            new_names.append(ens_name + '|' + entry[idx:])
 | 
			
		||||
        else:
 | 
			
		||||
            new_names.append(myentry[:idx] + '|' + myentry[idx:])
 | 
			
		||||
    return new_names
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										154
									
								
								pyerrors/obs.py
									
										
									
									
									
								
							
							
						
						
									
										154
									
								
								pyerrors/obs.py
									
										
									
									
									
								
							| 
						 | 
				
			
			@ -82,6 +82,8 @@ class Obs:
 | 
			
		|||
                    raise ValueError('Names are not unique.')
 | 
			
		||||
                if not all(isinstance(x, str) for x in names):
 | 
			
		||||
                    raise TypeError('All names have to be strings.')
 | 
			
		||||
                if len(set([o.split('|')[0] for o in names])) > 1:
 | 
			
		||||
                    raise ValueError('Cannot initialize Obs based on multiple ensembles. Please average separate Obs from each ensemble.')
 | 
			
		||||
            else:
 | 
			
		||||
                if not isinstance(names[0], str):
 | 
			
		||||
                    raise TypeError('All names have to be strings.')
 | 
			
		||||
| 
						 | 
				
			
			@ -222,7 +224,7 @@ class Obs:
 | 
			
		|||
                tmp = kwargs.get(kwarg_name)
 | 
			
		||||
                if isinstance(tmp, (int, float)):
 | 
			
		||||
                    if tmp < 0:
 | 
			
		||||
                        raise Exception(kwarg_name + ' has to be larger or equal to 0.')
 | 
			
		||||
                        raise ValueError(kwarg_name + ' has to be larger or equal to 0.')
 | 
			
		||||
                    for e, e_name in enumerate(self.e_names):
 | 
			
		||||
                        getattr(self, kwarg_name)[e_name] = tmp
 | 
			
		||||
                else:
 | 
			
		||||
| 
						 | 
				
			
			@ -291,7 +293,7 @@ class Obs:
 | 
			
		|||
                texp = self.tau_exp[e_name]
 | 
			
		||||
                # Critical slowing down analysis
 | 
			
		||||
                if w_max // 2 <= 1:
 | 
			
		||||
                    raise Exception("Need at least 8 samples for tau_exp error analysis")
 | 
			
		||||
                    raise ValueError("Need at least 8 samples for tau_exp error analysis")
 | 
			
		||||
                for n in range(1, w_max // 2):
 | 
			
		||||
                    _compute_drho(n + 1)
 | 
			
		||||
                    if (self.e_rho[e_name][n] - self.N_sigma[e_name] * self.e_drho[e_name][n]) < 0 or n >= w_max // 2 - 2:
 | 
			
		||||
| 
						 | 
				
			
			@ -620,7 +622,7 @@ class Obs:
 | 
			
		|||
        if not hasattr(self, 'e_dvalue'):
 | 
			
		||||
            raise Exception('Run the gamma method first.')
 | 
			
		||||
        if np.isclose(0.0, self._dvalue, atol=1e-15):
 | 
			
		||||
            raise Exception('Error is 0.0')
 | 
			
		||||
            raise ValueError('Error is 0.0')
 | 
			
		||||
        labels = self.e_names
 | 
			
		||||
        sizes = [self.e_dvalue[name] ** 2 for name in labels] / self._dvalue ** 2
 | 
			
		||||
        fig1, ax1 = plt.subplots()
 | 
			
		||||
| 
						 | 
				
			
			@ -659,7 +661,7 @@ class Obs:
 | 
			
		|||
            with open(file_name + '.p', 'wb') as fb:
 | 
			
		||||
                pickle.dump(self, fb)
 | 
			
		||||
        else:
 | 
			
		||||
            raise Exception("Unknown datatype " + str(datatype))
 | 
			
		||||
            raise TypeError("Unknown datatype " + str(datatype))
 | 
			
		||||
 | 
			
		||||
    def export_jackknife(self):
 | 
			
		||||
        """Export jackknife samples from the Obs
 | 
			
		||||
| 
						 | 
				
			
			@ -676,7 +678,7 @@ class Obs:
 | 
			
		|||
        """
 | 
			
		||||
 | 
			
		||||
        if len(self.names) != 1:
 | 
			
		||||
            raise Exception("'export_jackknife' is only implemented for Obs defined on one ensemble and replicum.")
 | 
			
		||||
            raise ValueError("'export_jackknife' is only implemented for Obs defined on one ensemble and replicum.")
 | 
			
		||||
 | 
			
		||||
        name = self.names[0]
 | 
			
		||||
        full_data = self.deltas[name] + self.r_values[name]
 | 
			
		||||
| 
						 | 
				
			
			@ -711,7 +713,7 @@ class Obs:
 | 
			
		|||
            should agree with samples from a full bootstrap analysis up to O(1/N).
 | 
			
		||||
        """
 | 
			
		||||
        if len(self.names) != 1:
 | 
			
		||||
            raise Exception("'export_boostrap' is only implemented for Obs defined on one ensemble and replicum.")
 | 
			
		||||
            raise ValueError("'export_boostrap' is only implemented for Obs defined on one ensemble and replicum.")
 | 
			
		||||
 | 
			
		||||
        name = self.names[0]
 | 
			
		||||
        length = self.N
 | 
			
		||||
| 
						 | 
				
			
			@ -856,15 +858,12 @@ class Obs:
 | 
			
		|||
 | 
			
		||||
    def __pow__(self, y):
 | 
			
		||||
        if isinstance(y, Obs):
 | 
			
		||||
            return derived_observable(lambda x: x[0] ** x[1], [self, y])
 | 
			
		||||
            return derived_observable(lambda x, **kwargs: x[0] ** x[1], [self, y], man_grad=[y.value * self.value ** (y.value - 1), self.value ** y.value * np.log(self.value)])
 | 
			
		||||
        else:
 | 
			
		||||
            return derived_observable(lambda x: x[0] ** y, [self])
 | 
			
		||||
            return derived_observable(lambda x, **kwargs: x[0] ** y, [self], man_grad=[y * self.value ** (y - 1)])
 | 
			
		||||
 | 
			
		||||
    def __rpow__(self, y):
 | 
			
		||||
        if isinstance(y, Obs):
 | 
			
		||||
            return derived_observable(lambda x: x[0] ** x[1], [y, self])
 | 
			
		||||
        else:
 | 
			
		||||
            return derived_observable(lambda x: y ** x[0], [self])
 | 
			
		||||
        return derived_observable(lambda x, **kwargs: y ** x[0], [self], man_grad=[y ** self.value * np.log(y)])
 | 
			
		||||
 | 
			
		||||
    def __abs__(self):
 | 
			
		||||
        return derived_observable(lambda x: anp.abs(x[0]), [self])
 | 
			
		||||
| 
						 | 
				
			
			@ -1270,7 +1269,7 @@ def derived_observable(func, data, array_mode=False, **kwargs):
 | 
			
		|||
    if 'man_grad' in kwargs:
 | 
			
		||||
        deriv = np.asarray(kwargs.get('man_grad'))
 | 
			
		||||
        if new_values.shape + data.shape != deriv.shape:
 | 
			
		||||
            raise Exception('Manual derivative does not have correct shape.')
 | 
			
		||||
            raise ValueError('Manual derivative does not have correct shape.')
 | 
			
		||||
    elif kwargs.get('num_grad') is True:
 | 
			
		||||
        if multi > 0:
 | 
			
		||||
            raise Exception('Multi mode currently not supported for numerical derivative')
 | 
			
		||||
| 
						 | 
				
			
			@ -1336,7 +1335,7 @@ def derived_observable(func, data, array_mode=False, **kwargs):
 | 
			
		|||
        new_covobs = {name: Covobs(0, allcov[name], name, grad=new_grad[name]) for name in new_grad}
 | 
			
		||||
 | 
			
		||||
        if not set(new_covobs.keys()).isdisjoint(new_deltas.keys()):
 | 
			
		||||
            raise Exception('The same name has been used for deltas and covobs!')
 | 
			
		||||
            raise ValueError('The same name has been used for deltas and covobs!')
 | 
			
		||||
        new_samples = []
 | 
			
		||||
        new_means = []
 | 
			
		||||
        new_idl = []
 | 
			
		||||
| 
						 | 
				
			
			@ -1377,7 +1376,7 @@ def _reduce_deltas(deltas, idx_old, idx_new):
 | 
			
		|||
        Has to be a subset of idx_old.
 | 
			
		||||
    """
 | 
			
		||||
    if not len(deltas) == len(idx_old):
 | 
			
		||||
        raise Exception('Length of deltas and idx_old have to be the same: %d != %d' % (len(deltas), len(idx_old)))
 | 
			
		||||
        raise ValueError('Length of deltas and idx_old have to be the same: %d != %d' % (len(deltas), len(idx_old)))
 | 
			
		||||
    if type(idx_old) is range and type(idx_new) is range:
 | 
			
		||||
        if idx_old == idx_new:
 | 
			
		||||
            return deltas
 | 
			
		||||
| 
						 | 
				
			
			@ -1385,7 +1384,7 @@ def _reduce_deltas(deltas, idx_old, idx_new):
 | 
			
		|||
        return deltas
 | 
			
		||||
    indices = np.intersect1d(idx_old, idx_new, assume_unique=True, return_indices=True)[1]
 | 
			
		||||
    if len(indices) < len(idx_new):
 | 
			
		||||
        raise Exception('Error in _reduce_deltas: Config of idx_new not in idx_old')
 | 
			
		||||
        raise ValueError('Error in _reduce_deltas: Config of idx_new not in idx_old')
 | 
			
		||||
    return np.array(deltas)[indices]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -1407,12 +1406,14 @@ def reweight(weight, obs, **kwargs):
 | 
			
		|||
    result = []
 | 
			
		||||
    for i in range(len(obs)):
 | 
			
		||||
        if len(obs[i].cov_names):
 | 
			
		||||
            raise Exception('Error: Not possible to reweight an Obs that contains covobs!')
 | 
			
		||||
            raise ValueError('Error: Not possible to reweight an Obs that contains covobs!')
 | 
			
		||||
        if not set(obs[i].names).issubset(weight.names):
 | 
			
		||||
            raise Exception('Error: Ensembles do not fit')
 | 
			
		||||
            raise ValueError('Error: Ensembles do not fit')
 | 
			
		||||
        if len(obs[i].mc_names) > 1 or len(weight.mc_names) > 1:
 | 
			
		||||
            raise ValueError('Error: Cannot reweight an Obs that contains multiple ensembles.')
 | 
			
		||||
        for name in obs[i].names:
 | 
			
		||||
            if not set(obs[i].idl[name]).issubset(weight.idl[name]):
 | 
			
		||||
                raise Exception('obs[%d] has to be defined on a subset of the configs in weight.idl[%s]!' % (i, name))
 | 
			
		||||
                raise ValueError('obs[%d] has to be defined on a subset of the configs in weight.idl[%s]!' % (i, name))
 | 
			
		||||
        new_samples = []
 | 
			
		||||
        w_deltas = {}
 | 
			
		||||
        for name in sorted(obs[i].names):
 | 
			
		||||
| 
						 | 
				
			
			@ -1445,18 +1446,21 @@ def correlate(obs_a, obs_b):
 | 
			
		|||
    -----
 | 
			
		||||
    Keep in mind to only correlate primary observables which have not been reweighted
 | 
			
		||||
    yet. The reweighting has to be applied after correlating the observables.
 | 
			
		||||
    Currently only works if ensembles are identical (this is not strictly necessary).
 | 
			
		||||
    Only works if a single ensemble is present in the Obs.
 | 
			
		||||
    Currently only works if ensemble content is identical (this is not strictly necessary).
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    if len(obs_a.mc_names) > 1 or len(obs_b.mc_names) > 1:
 | 
			
		||||
        raise ValueError('Error: Cannot correlate Obs that contain multiple ensembles.')
 | 
			
		||||
    if sorted(obs_a.names) != sorted(obs_b.names):
 | 
			
		||||
        raise Exception(f"Ensembles do not fit {set(sorted(obs_a.names)) ^ set(sorted(obs_b.names))}")
 | 
			
		||||
        raise ValueError(f"Ensembles do not fit {set(sorted(obs_a.names)) ^ set(sorted(obs_b.names))}")
 | 
			
		||||
    if len(obs_a.cov_names) or len(obs_b.cov_names):
 | 
			
		||||
        raise Exception('Error: Not possible to correlate Obs that contain covobs!')
 | 
			
		||||
        raise ValueError('Error: Not possible to correlate Obs that contain covobs!')
 | 
			
		||||
    for name in obs_a.names:
 | 
			
		||||
        if obs_a.shape[name] != obs_b.shape[name]:
 | 
			
		||||
            raise Exception('Shapes of ensemble', name, 'do not fit')
 | 
			
		||||
            raise ValueError('Shapes of ensemble', name, 'do not fit')
 | 
			
		||||
        if obs_a.idl[name] != obs_b.idl[name]:
 | 
			
		||||
            raise Exception('idl of ensemble', name, 'do not fit')
 | 
			
		||||
            raise ValueError('idl of ensemble', name, 'do not fit')
 | 
			
		||||
 | 
			
		||||
    if obs_a.reweighted is True:
 | 
			
		||||
        warnings.warn("The first observable is already reweighted.", RuntimeWarning)
 | 
			
		||||
| 
						 | 
				
			
			@ -1544,6 +1548,92 @@ def covariance(obs, visualize=False, correlation=False, smooth=None, **kwargs):
 | 
			
		|||
    return cov
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def invert_corr_cov_cholesky(corr, inverrdiag):
 | 
			
		||||
    """Constructs a lower triangular matrix `chol` via the Cholesky decomposition of the correlation matrix `corr`
 | 
			
		||||
       and then returns the inverse covariance matrix `chol_inv` as a lower triangular matrix by solving `chol * x = inverrdiag`.
 | 
			
		||||
 | 
			
		||||
    Parameters
 | 
			
		||||
    ----------
 | 
			
		||||
    corr : np.ndarray
 | 
			
		||||
           correlation matrix
 | 
			
		||||
    inverrdiag : np.ndarray
 | 
			
		||||
              diagonal matrix, the entries are the inverse errors of the data points considered
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    condn = np.linalg.cond(corr)
 | 
			
		||||
    if condn > 0.1 / np.finfo(float).eps:
 | 
			
		||||
        raise ValueError(f"Cannot invert correlation matrix as its condition number exceeds machine precision ({condn:1.2e})")
 | 
			
		||||
    if condn > 1e13:
 | 
			
		||||
        warnings.warn("Correlation matrix may be ill-conditioned, condition number: {%1.2e}" % (condn), RuntimeWarning)
 | 
			
		||||
    chol = np.linalg.cholesky(corr)
 | 
			
		||||
    chol_inv = scipy.linalg.solve_triangular(chol, inverrdiag, lower=True)
 | 
			
		||||
 | 
			
		||||
    return chol_inv
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def sort_corr(corr, kl, yd):
 | 
			
		||||
    """ Reorders a correlation matrix to match the alphabetical order of its underlying y data.
 | 
			
		||||
 | 
			
		||||
    The ordering of the input correlation matrix `corr` is given by the list of keys `kl`.
 | 
			
		||||
    The input dictionary `yd` (with the same keys `kl`) must contain the corresponding y data
 | 
			
		||||
    that the correlation matrix is based on.
 | 
			
		||||
    This function sorts the list of keys `kl` alphabetically and sorts the matrix `corr`
 | 
			
		||||
    according to this alphabetical order such that the sorted matrix `corr_sorted` corresponds
 | 
			
		||||
    to the y data `yd` when arranged in an alphabetical order by its keys.
 | 
			
		||||
 | 
			
		||||
    Parameters
 | 
			
		||||
    ----------
 | 
			
		||||
    corr : np.ndarray
 | 
			
		||||
        A square correlation matrix constructed using the order of the y data specified by `kl`.
 | 
			
		||||
        The dimensions of `corr` should match the total number of y data points in `yd` combined.
 | 
			
		||||
    kl : list of str
 | 
			
		||||
        A list of keys that denotes the order in which the y data from `yd` was used to build the
 | 
			
		||||
        input correlation matrix `corr`.
 | 
			
		||||
    yd : dict of list
 | 
			
		||||
        A dictionary where each key corresponds to a unique identifier, and its value is a list of
 | 
			
		||||
        y data points. The total number of y data points across all keys must match the dimensions
 | 
			
		||||
        of `corr`. The lists in the dictionary can be lists of Obs.
 | 
			
		||||
 | 
			
		||||
    Returns
 | 
			
		||||
    -------
 | 
			
		||||
    np.ndarray
 | 
			
		||||
        A new, sorted correlation matrix that corresponds to the y data from `yd` when arranged alphabetically by its keys.
 | 
			
		||||
 | 
			
		||||
    Example
 | 
			
		||||
    -------
 | 
			
		||||
    >>> import numpy as np
 | 
			
		||||
    >>> import pyerrors as pe
 | 
			
		||||
    >>> corr = np.array([[1, 0.2, 0.3], [0.2, 1, 0.4], [0.3, 0.4, 1]])
 | 
			
		||||
    >>> kl = ['b', 'a']
 | 
			
		||||
    >>> yd = {'a': [1, 2], 'b': [3]}
 | 
			
		||||
    >>> sorted_corr = pe.obs.sort_corr(corr, kl, yd)
 | 
			
		||||
    >>> print(sorted_corr)
 | 
			
		||||
    array([[1. , 0.3, 0.4],
 | 
			
		||||
           [0.3, 1. , 0.2],
 | 
			
		||||
           [0.4, 0.2, 1. ]])
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
    kl_sorted = sorted(kl)
 | 
			
		||||
 | 
			
		||||
    posd = {}
 | 
			
		||||
    ofs = 0
 | 
			
		||||
    for ki, k in enumerate(kl):
 | 
			
		||||
        posd[k] = [i + ofs for i in range(len(yd[k]))]
 | 
			
		||||
        ofs += len(posd[k])
 | 
			
		||||
 | 
			
		||||
    mapping = []
 | 
			
		||||
    for k in kl_sorted:
 | 
			
		||||
        for i in range(len(yd[k])):
 | 
			
		||||
            mapping.append(posd[k][i])
 | 
			
		||||
 | 
			
		||||
    corr_sorted = np.zeros_like(corr)
 | 
			
		||||
    for i in range(corr.shape[0]):
 | 
			
		||||
        for j in range(corr.shape[0]):
 | 
			
		||||
            corr_sorted[i][j] = corr[mapping[i]][mapping[j]]
 | 
			
		||||
 | 
			
		||||
    return corr_sorted
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _smooth_eigenvalues(corr, E):
 | 
			
		||||
    """Eigenvalue smoothing as described in hep-lat/9412087
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -1553,7 +1643,7 @@ def _smooth_eigenvalues(corr, E):
 | 
			
		|||
        Number of eigenvalues to be left substantially unchanged
 | 
			
		||||
    """
 | 
			
		||||
    if not (2 < E < corr.shape[0] - 1):
 | 
			
		||||
        raise Exception(f"'E' has to be between 2 and the dimension of the correlation matrix minus 1 ({corr.shape[0] - 1}).")
 | 
			
		||||
        raise ValueError(f"'E' has to be between 2 and the dimension of the correlation matrix minus 1 ({corr.shape[0] - 1}).")
 | 
			
		||||
    vals, vec = np.linalg.eigh(corr)
 | 
			
		||||
    lambda_min = np.mean(vals[:-E])
 | 
			
		||||
    vals[vals < lambda_min] = lambda_min
 | 
			
		||||
| 
						 | 
				
			
			@ -1672,7 +1762,11 @@ def import_bootstrap(boots, name, random_numbers):
 | 
			
		|||
 | 
			
		||||
 | 
			
		||||
def merge_obs(list_of_obs):
 | 
			
		||||
    """Combine all observables in list_of_obs into one new observable
 | 
			
		||||
    """Combine all observables in list_of_obs into one new observable.
 | 
			
		||||
    This allows to merge Obs that have been computed on multiple replica
 | 
			
		||||
    of the same ensemble.
 | 
			
		||||
    If you like to merge Obs that are based on several ensembles, please
 | 
			
		||||
    average them yourself.
 | 
			
		||||
 | 
			
		||||
    Parameters
 | 
			
		||||
    ----------
 | 
			
		||||
| 
						 | 
				
			
			@ -1685,9 +1779,9 @@ def merge_obs(list_of_obs):
 | 
			
		|||
    """
 | 
			
		||||
    replist = [item for obs in list_of_obs for item in obs.names]
 | 
			
		||||
    if (len(replist) == len(set(replist))) is False:
 | 
			
		||||
        raise Exception('list_of_obs contains duplicate replica: %s' % (str(replist)))
 | 
			
		||||
        raise ValueError('list_of_obs contains duplicate replica: %s' % (str(replist)))
 | 
			
		||||
    if any([len(o.cov_names) for o in list_of_obs]):
 | 
			
		||||
        raise Exception('Not possible to merge data that contains covobs!')
 | 
			
		||||
        raise ValueError('Not possible to merge data that contains covobs!')
 | 
			
		||||
    new_dict = {}
 | 
			
		||||
    idl_dict = {}
 | 
			
		||||
    for o in list_of_obs:
 | 
			
		||||
| 
						 | 
				
			
			@ -1738,7 +1832,7 @@ def cov_Obs(means, cov, name, grad=None):
 | 
			
		|||
    for i in range(len(means)):
 | 
			
		||||
        ol.append(covobs_to_obs(Covobs(means[i], cov, name, pos=i, grad=grad)))
 | 
			
		||||
    if ol[0].covobs[name].N != len(means):
 | 
			
		||||
        raise Exception('You have to provide %d mean values!' % (ol[0].N))
 | 
			
		||||
        raise ValueError('You have to provide %d mean values!' % (ol[0].N))
 | 
			
		||||
    if len(ol) == 1:
 | 
			
		||||
        return ol[0]
 | 
			
		||||
    return ol
 | 
			
		||||
| 
						 | 
				
			
			@ -1754,7 +1848,7 @@ def _determine_gap(o, e_content, e_name):
 | 
			
		|||
 | 
			
		||||
    gap = min(gaps)
 | 
			
		||||
    if not np.all([gi % gap == 0 for gi in gaps]):
 | 
			
		||||
        raise Exception(f"Replica for ensemble {e_name} do not have a common spacing.", gaps)
 | 
			
		||||
        raise ValueError(f"Replica for ensemble {e_name} do not have a common spacing.", gaps)
 | 
			
		||||
 | 
			
		||||
    return gap
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1 +1 @@
 | 
			
		|||
__version__ = "2.12.0"
 | 
			
		||||
__version__ = "2.17.0-dev"
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,3 +1,6 @@
 | 
			
		|||
[build-system]
 | 
			
		||||
requires = ["setuptools >= 63.0.0", "wheel"]
 | 
			
		||||
build-backend = "setuptools.build_meta"
 | 
			
		||||
 | 
			
		||||
[tool.ruff.lint]
 | 
			
		||||
ignore = ["F403"]
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										6
									
								
								setup.py
									
										
									
									
									
								
							
							
						
						
									
										6
									
								
								setup.py
									
										
									
									
									
								
							| 
						 | 
				
			
			@ -24,18 +24,18 @@ setup(name='pyerrors',
 | 
			
		|||
      author_email='fabian.joswig@ed.ac.uk',
 | 
			
		||||
      license="MIT",
 | 
			
		||||
      packages=find_packages(),
 | 
			
		||||
      python_requires='>=3.9.0',
 | 
			
		||||
      python_requires='>=3.10.0',
 | 
			
		||||
      install_requires=['numpy>=2.0', 'autograd>=1.7.0', 'numdifftools>=0.9.41', 'matplotlib>=3.9', 'scipy>=1.13', 'iminuit>=2.28', 'h5py>=3.11', 'lxml>=5.0', 'python-rapidjson>=1.20', 'pandas>=2.2'],
 | 
			
		||||
      extras_require={'test': ['pytest', 'pytest-cov', 'pytest-benchmark', 'hypothesis', 'nbmake', 'flake8']},
 | 
			
		||||
      classifiers=[
 | 
			
		||||
          'Development Status :: 5 - Production/Stable',
 | 
			
		||||
          'Intended Audience :: Science/Research',
 | 
			
		||||
          'License :: OSI Approved :: MIT License',
 | 
			
		||||
          'Programming Language :: Python :: 3',
 | 
			
		||||
          'Programming Language :: Python :: 3.9',
 | 
			
		||||
          'Programming Language :: Python :: 3.10',
 | 
			
		||||
          'Programming Language :: Python :: 3.11',
 | 
			
		||||
          'Programming Language :: Python :: 3.12',
 | 
			
		||||
          'Programming Language :: Python :: 3.13',
 | 
			
		||||
          'Programming Language :: Python :: 3.14',
 | 
			
		||||
          'Topic :: Scientific/Engineering :: Physics'
 | 
			
		||||
      ],
 | 
			
		||||
     )
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -129,7 +129,7 @@ def test_m_eff():
 | 
			
		|||
    with pytest.warns(RuntimeWarning):
 | 
			
		||||
        my_corr.m_eff('sinh')
 | 
			
		||||
 | 
			
		||||
    with pytest.raises(Exception):
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        my_corr.m_eff('unkown_variant')
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -140,7 +140,7 @@ def test_m_eff_negative_values():
 | 
			
		|||
        assert m_eff_log[padding + 1] is None
 | 
			
		||||
        m_eff_cosh = my_corr.m_eff('cosh')
 | 
			
		||||
        assert m_eff_cosh[padding + 1] is None
 | 
			
		||||
        with pytest.raises(Exception):
 | 
			
		||||
        with pytest.raises(ValueError):
 | 
			
		||||
            my_corr.m_eff('logsym')
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -155,7 +155,7 @@ def test_correlate():
 | 
			
		|||
    my_corr = pe.correlators.Corr([pe.pseudo_Obs(10, 0.1, 't'), pe.pseudo_Obs(0, 0.05, 't')])
 | 
			
		||||
    corr1 = my_corr.correlate(my_corr)
 | 
			
		||||
    corr2 = my_corr.correlate(my_corr[0])
 | 
			
		||||
    with pytest.raises(Exception):
 | 
			
		||||
    with pytest.raises(TypeError):
 | 
			
		||||
        corr3 = my_corr.correlate(7.3)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -176,9 +176,9 @@ def test_fit_correlator():
 | 
			
		|||
    assert fit_res[0] == my_corr[0]
 | 
			
		||||
    assert fit_res[1] == my_corr[1] - my_corr[0]
 | 
			
		||||
 | 
			
		||||
    with pytest.raises(Exception):
 | 
			
		||||
    with pytest.raises(TypeError):
 | 
			
		||||
        my_corr.fit(f, "from 0 to 3")
 | 
			
		||||
    with pytest.raises(Exception):
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        my_corr.fit(f, [0, 2, 3])
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -256,11 +256,11 @@ def test_prange():
 | 
			
		|||
    corr = pe.correlators.Corr(corr_content)
 | 
			
		||||
 | 
			
		||||
    corr.set_prange([2, 4])
 | 
			
		||||
    with pytest.raises(Exception):
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        corr.set_prange([2])
 | 
			
		||||
    with pytest.raises(Exception):
 | 
			
		||||
    with pytest.raises(TypeError):
 | 
			
		||||
        corr.set_prange([2, 2.3])
 | 
			
		||||
    with pytest.raises(Exception):
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        corr.set_prange([4, 1])
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -781,3 +781,26 @@ def test_complex_add_and_mul():
 | 
			
		|||
        cc += 2j
 | 
			
		||||
        cc = cc * 4j
 | 
			
		||||
        cc.real + cc.imag
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_prune_with_Nones():
 | 
			
		||||
    N = 3
 | 
			
		||||
    T = 10
 | 
			
		||||
 | 
			
		||||
    front_padding = 1
 | 
			
		||||
    back_padding = T // 2
 | 
			
		||||
 | 
			
		||||
    Ntrunc = N - 1
 | 
			
		||||
    t0proj = 2
 | 
			
		||||
    tproj = 3
 | 
			
		||||
 | 
			
		||||
    corr_content = np.array([[[pe.pseudo_Obs((i+j+1)**(-t), .01, "None_prune_test") for i in range(N)] for j in range(N)] for t in range(T // 2 - front_padding)])
 | 
			
		||||
    unpadded_corr = pe.Corr(corr_content)
 | 
			
		||||
    padded_corr = pe.Corr(corr_content, padding=[front_padding, back_padding])
 | 
			
		||||
 | 
			
		||||
    tmp_corr = unpadded_corr.prune(Ntrunc, t0proj=t0proj-front_padding, tproj=tproj-front_padding)
 | 
			
		||||
    pruned_then_padded = pe.Corr(tmp_corr.content, padding=[front_padding, back_padding])
 | 
			
		||||
    padded_then_pruned = padded_corr.prune(Ntrunc, t0proj=t0proj, tproj=tproj)
 | 
			
		||||
 | 
			
		||||
    for t in range(T):
 | 
			
		||||
        assert np.all(pruned_then_padded.content[t] == padded_then_pruned.content[t])
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										1150
									
								
								tests/data/sfcf_test/data_apf/data_apf_r0.F_V0
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										1150
									
								
								tests/data/sfcf_test/data_apf/data_apf_r0.F_V0
									
										
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							
							
								
								
									
										970
									
								
								tests/data/sfcf_test/data_apf/data_apf_r0.f_1
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										970
									
								
								tests/data/sfcf_test/data_apf/data_apf_r0.f_1
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,970 @@
 | 
			
		|||
[run]
 | 
			
		||||
 | 
			
		||||
version     2.1
 | 
			
		||||
date        2022-01-19 11:04:03 +0100
 | 
			
		||||
host        r04n07.palma.wwu
 | 
			
		||||
dir         /scratch/tmp/j_kuhl19
 | 
			
		||||
user        j_kuhl19
 | 
			
		||||
gauge_name  /data_a_r0_n1.lex
 | 
			
		||||
gauge_md5   1ea28326e4090996111a320b8372811d
 | 
			
		||||
param_name  sfcf_unity_test.in
 | 
			
		||||
param_md5   d881e90d41188a33b8b0f1bd0bc53ea5
 | 
			
		||||
param_hash  686af5e712ee2902180f5428af94c6e7
 | 
			
		||||
data_name   ./output_10519905/data_af_1
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        0
 | 
			
		||||
wf_2      0
 | 
			
		||||
corr
 | 
			
		||||
+3.5119415254545021e+02 +6.7620978057264750e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        0
 | 
			
		||||
wf_2      1
 | 
			
		||||
corr
 | 
			
		||||
+3.5120703575855339e+02 +6.5026340956203663e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        0
 | 
			
		||||
wf_2      2
 | 
			
		||||
corr
 | 
			
		||||
+3.5120808902177868e+02 +6.5443496235264788e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        1
 | 
			
		||||
wf_2      0
 | 
			
		||||
corr
 | 
			
		||||
+3.5120703575855515e+02 +6.9706500417651470e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        1
 | 
			
		||||
wf_2      1
 | 
			
		||||
corr
 | 
			
		||||
+3.5122001235609065e+02 +6.9516150897757419e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        1
 | 
			
		||||
wf_2      2
 | 
			
		||||
corr
 | 
			
		||||
+3.5122104108046199e+02 +6.9232860455434941e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        2
 | 
			
		||||
wf_2      0
 | 
			
		||||
corr
 | 
			
		||||
+3.5120808902177447e+02 +1.0849949614595719e-14
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        2
 | 
			
		||||
wf_2      1
 | 
			
		||||
corr
 | 
			
		||||
+3.5122104108046182e+02 +1.0866063643253473e-14
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        2
 | 
			
		||||
wf_2      2
 | 
			
		||||
corr
 | 
			
		||||
+3.5122207631098047e+02 +1.0827277318679030e-14
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        0
 | 
			
		||||
wf_2      0
 | 
			
		||||
corr
 | 
			
		||||
+3.5119415254545038e+02 +3.0143306723935508e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        0
 | 
			
		||||
wf_2      1
 | 
			
		||||
corr
 | 
			
		||||
+3.5120703575855367e+02 +4.3340379505972648e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        0
 | 
			
		||||
wf_2      2
 | 
			
		||||
corr
 | 
			
		||||
+3.5120808902177902e+02 +3.9652247575094006e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        1
 | 
			
		||||
wf_2      0
 | 
			
		||||
corr
 | 
			
		||||
+3.5120703575855526e+02 -8.2540994138261318e-16
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        1
 | 
			
		||||
wf_2      1
 | 
			
		||||
corr
 | 
			
		||||
+3.5122001235609082e+02 -9.7121215247039609e-16
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        1
 | 
			
		||||
wf_2      2
 | 
			
		||||
corr
 | 
			
		||||
+3.5122104108046227e+02 -9.0872484903683497e-16
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        2
 | 
			
		||||
wf_2      0
 | 
			
		||||
corr
 | 
			
		||||
+3.5120808902177453e+02 +5.1331372776616026e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        2
 | 
			
		||||
wf_2      1
 | 
			
		||||
corr
 | 
			
		||||
+3.5122104108046193e+02 +5.0816653044831932e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        2
 | 
			
		||||
wf_2      2
 | 
			
		||||
corr
 | 
			
		||||
+3.5122207631098064e+02 +5.1165649253001659e-15
 | 
			
		||||
 | 
			
		||||
[run]
 | 
			
		||||
 | 
			
		||||
version     2.1
 | 
			
		||||
date        2022-01-19 11:04:05 +0100
 | 
			
		||||
host        r04n07.palma.wwu
 | 
			
		||||
dir         /scratch/tmp/j_kuhl19
 | 
			
		||||
user        j_kuhl19
 | 
			
		||||
gauge_name  /data_a_r0_n2.lex
 | 
			
		||||
gauge_md5   1ea28326e4090996111a320b8372811d
 | 
			
		||||
param_name  sfcf_unity_test.in
 | 
			
		||||
param_md5   d881e90d41188a33b8b0f1bd0bc53ea5
 | 
			
		||||
param_hash  686af5e712ee2902180f5428af94c6e7
 | 
			
		||||
data_name   ./output_10519905/data_af_1
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        0
 | 
			
		||||
wf_2      0
 | 
			
		||||
corr
 | 
			
		||||
+3.5119415254545021e+02 +6.7620978057264750e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        0
 | 
			
		||||
wf_2      1
 | 
			
		||||
corr
 | 
			
		||||
+3.5120703575855339e+02 +6.5026340956203663e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        0
 | 
			
		||||
wf_2      2
 | 
			
		||||
corr
 | 
			
		||||
+3.5120808902177868e+02 +6.5443496235264788e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        1
 | 
			
		||||
wf_2      0
 | 
			
		||||
corr
 | 
			
		||||
+3.5120703575855515e+02 +6.9706500417651470e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        1
 | 
			
		||||
wf_2      1
 | 
			
		||||
corr
 | 
			
		||||
+3.5122001235609065e+02 +6.9516150897757419e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        1
 | 
			
		||||
wf_2      2
 | 
			
		||||
corr
 | 
			
		||||
+3.5122104108046199e+02 +6.9232860455434941e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        2
 | 
			
		||||
wf_2      0
 | 
			
		||||
corr
 | 
			
		||||
+3.5120808902177447e+02 +1.0849949614595719e-14
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        2
 | 
			
		||||
wf_2      1
 | 
			
		||||
corr
 | 
			
		||||
+3.5122104108046182e+02 +1.0866063643253473e-14
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        2
 | 
			
		||||
wf_2      2
 | 
			
		||||
corr
 | 
			
		||||
+3.5122207631098047e+02 +1.0827277318679030e-14
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        0
 | 
			
		||||
wf_2      0
 | 
			
		||||
corr
 | 
			
		||||
+3.5119415254545038e+02 +3.0143306723935508e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        0
 | 
			
		||||
wf_2      1
 | 
			
		||||
corr
 | 
			
		||||
+3.5120703575855367e+02 +4.3340379505972648e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        0
 | 
			
		||||
wf_2      2
 | 
			
		||||
corr
 | 
			
		||||
+3.5120808902177902e+02 +3.9652247575094006e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        1
 | 
			
		||||
wf_2      0
 | 
			
		||||
corr
 | 
			
		||||
+3.5120703575855526e+02 -8.2540994138261318e-16
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        1
 | 
			
		||||
wf_2      1
 | 
			
		||||
corr
 | 
			
		||||
+3.5122001235609082e+02 -9.7121215247039609e-16
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        1
 | 
			
		||||
wf_2      2
 | 
			
		||||
corr
 | 
			
		||||
+3.5122104108046227e+02 -9.0872484903683497e-16
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        2
 | 
			
		||||
wf_2      0
 | 
			
		||||
corr
 | 
			
		||||
+3.5120808902177453e+02 +5.1331372776616026e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        2
 | 
			
		||||
wf_2      1
 | 
			
		||||
corr
 | 
			
		||||
+3.5122104108046193e+02 +5.0816653044831932e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        2
 | 
			
		||||
wf_2      2
 | 
			
		||||
corr
 | 
			
		||||
+3.5122207631098064e+02 +5.1165649253001659e-15
 | 
			
		||||
 | 
			
		||||
[run]
 | 
			
		||||
 | 
			
		||||
version     2.1
 | 
			
		||||
date        2022-01-19 11:04:07 +0100
 | 
			
		||||
host        r04n07.palma.wwu
 | 
			
		||||
dir         /scratch/tmp/j_kuhl19
 | 
			
		||||
user        j_kuhl19
 | 
			
		||||
gauge_name  /data_a_r0_n3.lex
 | 
			
		||||
gauge_md5   1ea28326e4090996111a320b8372811d
 | 
			
		||||
param_name  sfcf_unity_test.in
 | 
			
		||||
param_md5   d881e90d41188a33b8b0f1bd0bc53ea5
 | 
			
		||||
param_hash  686af5e712ee2902180f5428af94c6e7
 | 
			
		||||
data_name   ./output_10519905/data_af_1
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        0
 | 
			
		||||
wf_2      0
 | 
			
		||||
corr
 | 
			
		||||
+3.5119415254545021e+02 +6.7620978057264750e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        0
 | 
			
		||||
wf_2      1
 | 
			
		||||
corr
 | 
			
		||||
+3.5120703575855339e+02 +6.5026340956203663e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        0
 | 
			
		||||
wf_2      2
 | 
			
		||||
corr
 | 
			
		||||
+3.5120808902177868e+02 +6.5443496235264788e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        1
 | 
			
		||||
wf_2      0
 | 
			
		||||
corr
 | 
			
		||||
+3.5120703575855515e+02 +6.9706500417651470e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        1
 | 
			
		||||
wf_2      1
 | 
			
		||||
corr
 | 
			
		||||
+3.5122001235609065e+02 +6.9516150897757419e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        1
 | 
			
		||||
wf_2      2
 | 
			
		||||
corr
 | 
			
		||||
+3.5122104108046199e+02 +6.9232860455434941e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        2
 | 
			
		||||
wf_2      0
 | 
			
		||||
corr
 | 
			
		||||
+3.5120808902177447e+02 +1.0849949614595719e-14
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        2
 | 
			
		||||
wf_2      1
 | 
			
		||||
corr
 | 
			
		||||
+3.5122104108046182e+02 +1.0866063643253473e-14
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        2
 | 
			
		||||
wf_2      2
 | 
			
		||||
corr
 | 
			
		||||
+3.5122207631098047e+02 +1.0827277318679030e-14
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        0
 | 
			
		||||
wf_2      0
 | 
			
		||||
corr
 | 
			
		||||
+3.5119415254545038e+02 +3.0143306723935508e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        0
 | 
			
		||||
wf_2      1
 | 
			
		||||
corr
 | 
			
		||||
+3.5120703575855367e+02 +4.3340379505972648e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        0
 | 
			
		||||
wf_2      2
 | 
			
		||||
corr
 | 
			
		||||
+3.5120808902177902e+02 +3.9652247575094006e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        1
 | 
			
		||||
wf_2      0
 | 
			
		||||
corr
 | 
			
		||||
+3.5120703575855526e+02 -8.2540994138261318e-16
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        1
 | 
			
		||||
wf_2      1
 | 
			
		||||
corr
 | 
			
		||||
+3.5122001235609082e+02 -9.7121215247039609e-16
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        1
 | 
			
		||||
wf_2      2
 | 
			
		||||
corr
 | 
			
		||||
+3.5122104108046227e+02 -9.0872484903683497e-16
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        2
 | 
			
		||||
wf_2      0
 | 
			
		||||
corr
 | 
			
		||||
+3.5120808902177453e+02 +5.1331372776616026e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        2
 | 
			
		||||
wf_2      1
 | 
			
		||||
corr
 | 
			
		||||
+3.5122104108046193e+02 +5.0816653044831932e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        2
 | 
			
		||||
wf_2      2
 | 
			
		||||
corr
 | 
			
		||||
+3.5122207631098064e+02 +5.1165649253001659e-15
 | 
			
		||||
 | 
			
		||||
[run]
 | 
			
		||||
 | 
			
		||||
version     2.1
 | 
			
		||||
date        2022-01-19 11:04:09 +0100
 | 
			
		||||
host        r04n07.palma.wwu
 | 
			
		||||
dir         /scratch/tmp/j_kuhl19
 | 
			
		||||
user        j_kuhl19
 | 
			
		||||
gauge_name  /data_a_r0_n4.lex
 | 
			
		||||
gauge_md5   1ea28326e4090996111a320b8372811d
 | 
			
		||||
param_name  sfcf_unity_test.in
 | 
			
		||||
param_md5   d881e90d41188a33b8b0f1bd0bc53ea5
 | 
			
		||||
param_hash  686af5e712ee2902180f5428af94c6e7
 | 
			
		||||
data_name   ./output_10519905/data_af_1
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        0
 | 
			
		||||
wf_2      0
 | 
			
		||||
corr
 | 
			
		||||
+3.5119415254545021e+02 +6.7620978057264750e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        0
 | 
			
		||||
wf_2      1
 | 
			
		||||
corr
 | 
			
		||||
+3.5120703575855339e+02 +6.5026340956203663e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        0
 | 
			
		||||
wf_2      2
 | 
			
		||||
corr
 | 
			
		||||
+3.5120808902177868e+02 +6.5443496235264788e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        1
 | 
			
		||||
wf_2      0
 | 
			
		||||
corr
 | 
			
		||||
+3.5120703575855515e+02 +6.9706500417651470e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        1
 | 
			
		||||
wf_2      1
 | 
			
		||||
corr
 | 
			
		||||
+3.5122001235609065e+02 +6.9516150897757419e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        1
 | 
			
		||||
wf_2      2
 | 
			
		||||
corr
 | 
			
		||||
+3.5122104108046199e+02 +6.9232860455434941e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        2
 | 
			
		||||
wf_2      0
 | 
			
		||||
corr
 | 
			
		||||
+3.5120808902177447e+02 +1.0849949614595719e-14
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        2
 | 
			
		||||
wf_2      1
 | 
			
		||||
corr
 | 
			
		||||
+3.5122104108046182e+02 +1.0866063643253473e-14
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        2
 | 
			
		||||
wf_2      2
 | 
			
		||||
corr
 | 
			
		||||
+3.5122207631098047e+02 +1.0827277318679030e-14
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        0
 | 
			
		||||
wf_2      0
 | 
			
		||||
corr
 | 
			
		||||
+3.5119415254545038e+02 +3.0143306723935508e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        0
 | 
			
		||||
wf_2      1
 | 
			
		||||
corr
 | 
			
		||||
+3.5120703575855367e+02 +4.3340379505972648e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        0
 | 
			
		||||
wf_2      2
 | 
			
		||||
corr
 | 
			
		||||
+3.5120808902177902e+02 +3.9652247575094006e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        1
 | 
			
		||||
wf_2      0
 | 
			
		||||
corr
 | 
			
		||||
+3.5120703575855526e+02 -8.2540994138261318e-16
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        1
 | 
			
		||||
wf_2      1
 | 
			
		||||
corr
 | 
			
		||||
+3.5122001235609082e+02 -9.7121215247039609e-16
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        1
 | 
			
		||||
wf_2      2
 | 
			
		||||
corr
 | 
			
		||||
+3.5122104108046227e+02 -9.0872484903683497e-16
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        2
 | 
			
		||||
wf_2      0
 | 
			
		||||
corr
 | 
			
		||||
+3.5120808902177453e+02 +5.1331372776616026e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        2
 | 
			
		||||
wf_2      1
 | 
			
		||||
corr
 | 
			
		||||
+3.5122104108046193e+02 +5.0816653044831932e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        2
 | 
			
		||||
wf_2      2
 | 
			
		||||
corr
 | 
			
		||||
+3.5122207631098064e+02 +5.1165649253001659e-15
 | 
			
		||||
 | 
			
		||||
[run]
 | 
			
		||||
 | 
			
		||||
version     2.1
 | 
			
		||||
date        2022-01-19 11:04:11 +0100
 | 
			
		||||
host        r04n07.palma.wwu
 | 
			
		||||
dir         /scratch/tmp/j_kuhl19
 | 
			
		||||
user        j_kuhl19
 | 
			
		||||
gauge_name  /data_a_r0_n5.lex
 | 
			
		||||
gauge_md5   1ea28326e4090996111a320b8372811d
 | 
			
		||||
param_name  sfcf_unity_test.in
 | 
			
		||||
param_md5   d881e90d41188a33b8b0f1bd0bc53ea5
 | 
			
		||||
param_hash  686af5e712ee2902180f5428af94c6e7
 | 
			
		||||
data_name   ./output_10519905/data_af_1
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        0
 | 
			
		||||
wf_2      0
 | 
			
		||||
corr
 | 
			
		||||
+3.5119415254545021e+02 +6.7620978057264750e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        0
 | 
			
		||||
wf_2      1
 | 
			
		||||
corr
 | 
			
		||||
+3.5120703575855339e+02 +6.5026340956203663e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        0
 | 
			
		||||
wf_2      2
 | 
			
		||||
corr
 | 
			
		||||
+3.5120808902177868e+02 +6.5443496235264788e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        1
 | 
			
		||||
wf_2      0
 | 
			
		||||
corr
 | 
			
		||||
+3.5120703575855515e+02 +6.9706500417651470e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        1
 | 
			
		||||
wf_2      1
 | 
			
		||||
corr
 | 
			
		||||
+3.5122001235609065e+02 +6.9516150897757419e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        1
 | 
			
		||||
wf_2      2
 | 
			
		||||
corr
 | 
			
		||||
+3.5122104108046199e+02 +6.9232860455434941e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        2
 | 
			
		||||
wf_2      0
 | 
			
		||||
corr
 | 
			
		||||
+3.5120808902177447e+02 +1.0849949614595719e-14
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        2
 | 
			
		||||
wf_2      1
 | 
			
		||||
corr
 | 
			
		||||
+3.5122104108046182e+02 +1.0866063643253473e-14
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        2
 | 
			
		||||
wf_2      2
 | 
			
		||||
corr
 | 
			
		||||
+3.5122207631098047e+02 +1.0827277318679030e-14
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        0
 | 
			
		||||
wf_2      0
 | 
			
		||||
corr
 | 
			
		||||
+3.5119415254545038e+02 +3.0143306723935508e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        0
 | 
			
		||||
wf_2      1
 | 
			
		||||
corr
 | 
			
		||||
+3.5120703575855367e+02 +4.3340379505972648e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        0
 | 
			
		||||
wf_2      2
 | 
			
		||||
corr
 | 
			
		||||
+3.5120808902177902e+02 +3.9652247575094006e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        1
 | 
			
		||||
wf_2      0
 | 
			
		||||
corr
 | 
			
		||||
+3.5120703575855526e+02 -8.2540994138261318e-16
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        1
 | 
			
		||||
wf_2      1
 | 
			
		||||
corr
 | 
			
		||||
+3.5122001235609082e+02 -9.7121215247039609e-16
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        1
 | 
			
		||||
wf_2      2
 | 
			
		||||
corr
 | 
			
		||||
+3.5122104108046227e+02 -9.0872484903683497e-16
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        2
 | 
			
		||||
wf_2      0
 | 
			
		||||
corr
 | 
			
		||||
+3.5120808902177453e+02 +5.1331372776616026e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        2
 | 
			
		||||
wf_2      1
 | 
			
		||||
corr
 | 
			
		||||
+3.5122104108046193e+02 +5.0816653044831932e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_1
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        2
 | 
			
		||||
wf_2      2
 | 
			
		||||
corr
 | 
			
		||||
+3.5122207631098064e+02 +5.1165649253001659e-15
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										400
									
								
								tests/data/sfcf_test/data_apf/data_apf_r0.f_A
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										400
									
								
								tests/data/sfcf_test/data_apf/data_apf_r0.f_A
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,400 @@
 | 
			
		|||
[run]
 | 
			
		||||
 | 
			
		||||
version     2.1
 | 
			
		||||
date        2022-01-19 11:04:03 +0100
 | 
			
		||||
host        r04n07.palma.wwu
 | 
			
		||||
dir         /scratch/tmp/j_kuhl19
 | 
			
		||||
user        j_kuhl19
 | 
			
		||||
gauge_name  /data_a_r0_n1.lex
 | 
			
		||||
gauge_md5   1ea28326e4090996111a320b8372811d
 | 
			
		||||
param_name  sfcf_unity_test.in
 | 
			
		||||
param_md5   d881e90d41188a33b8b0f1bd0bc53ea5
 | 
			
		||||
param_hash  686af5e712ee2902180f5428af94c6e7
 | 
			
		||||
data_name   ./output_10519905/data_af_A
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_A
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        0
 | 
			
		||||
corr_t
 | 
			
		||||
  1 +6.5471188727972304e+01 -6.1214214711790100e-12
 | 
			
		||||
  2 +1.0447210336915187e+00 +8.9219487930753188e-13
 | 
			
		||||
  3 -4.1025094911185178e+01 -4.8315634170546161e-14
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_A
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        1
 | 
			
		||||
corr_t
 | 
			
		||||
  1 +6.5551520722862705e+01 +2.0963356863957609e-13
 | 
			
		||||
  2 +1.0542820240851569e+00 +2.3989756974599379e-15
 | 
			
		||||
  3 -4.1024441815729936e+01 -5.7107484666182308e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_A
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        2
 | 
			
		||||
corr_t
 | 
			
		||||
  1 +6.5529951269442847e+01 -6.6512260271334321e-14
 | 
			
		||||
  2 +1.0516822345055969e+00 -2.2935262162529075e-15
 | 
			
		||||
  3 -4.1025142768037746e+01 +3.7566377680004518e-16
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_A
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        0
 | 
			
		||||
corr_t
 | 
			
		||||
  1 +6.5471188727965909e+01 -1.6112786177915427e-11
 | 
			
		||||
  2 +1.0447210337411881e+00 -7.0387528705692678e-13
 | 
			
		||||
  3 -4.1025094911167137e+01 +4.6509152745618223e-13
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_A
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        1
 | 
			
		||||
corr_t
 | 
			
		||||
  1 +6.5551520722842213e+01 -8.1976426690345305e-13
 | 
			
		||||
  2 +1.0542820240843382e+00 +2.1626370477046812e-13
 | 
			
		||||
  3 -4.1024441815730086e+01 -2.4147931196409923e-14
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_A
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        2
 | 
			
		||||
corr_t
 | 
			
		||||
  1 +6.5529951269443117e+01 +7.9192560386479701e-14
 | 
			
		||||
  2 +1.0516822345055870e+00 -1.2443038782429568e-14
 | 
			
		||||
  3 -4.1025142768037739e+01 +5.9315333178954509e-17
 | 
			
		||||
 | 
			
		||||
[run]
 | 
			
		||||
 | 
			
		||||
version     2.1
 | 
			
		||||
date        2022-01-19 11:04:05 +0100
 | 
			
		||||
host        r04n07.palma.wwu
 | 
			
		||||
dir         /scratch/tmp/j_kuhl19
 | 
			
		||||
user        j_kuhl19
 | 
			
		||||
gauge_name  /data_a_r0_n2.lex
 | 
			
		||||
gauge_md5   1ea28326e4090996111a320b8372811d
 | 
			
		||||
param_name  sfcf_unity_test.in
 | 
			
		||||
param_md5   d881e90d41188a33b8b0f1bd0bc53ea5
 | 
			
		||||
param_hash  686af5e712ee2902180f5428af94c6e7
 | 
			
		||||
data_name   ./output_10519905/data_af_A
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_A
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        0
 | 
			
		||||
corr_t
 | 
			
		||||
  1 +6.5471188727972304e+01 -6.1214214711790100e-12
 | 
			
		||||
  2 +1.0447210336915187e+00 +8.9219487930753188e-13
 | 
			
		||||
  3 -4.1025094911185178e+01 -4.8315634170546161e-14
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_A
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        1
 | 
			
		||||
corr_t
 | 
			
		||||
  1 +6.5551520722862705e+01 +2.0963356863957609e-13
 | 
			
		||||
  2 +1.0542820240851569e+00 +2.3989756974599379e-15
 | 
			
		||||
  3 -4.1024441815729936e+01 -5.7107484666182308e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_A
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        2
 | 
			
		||||
corr_t
 | 
			
		||||
  1 +6.5529951269442847e+01 -6.6512260271334321e-14
 | 
			
		||||
  2 +1.0516822345055969e+00 -2.2935262162529075e-15
 | 
			
		||||
  3 -4.1025142768037746e+01 +3.7566377680004518e-16
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_A
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        0
 | 
			
		||||
corr_t
 | 
			
		||||
  1 +6.5471188727965909e+01 -1.6112786177915427e-11
 | 
			
		||||
  2 +1.0447210337411881e+00 -7.0387528705692678e-13
 | 
			
		||||
  3 -4.1025094911167137e+01 +4.6509152745618223e-13
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_A
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        1
 | 
			
		||||
corr_t
 | 
			
		||||
  1 +6.5551520722842213e+01 -8.1976426690345305e-13
 | 
			
		||||
  2 +1.0542820240843382e+00 +2.1626370477046812e-13
 | 
			
		||||
  3 -4.1024441815730086e+01 -2.4147931196409923e-14
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_A
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        2
 | 
			
		||||
corr_t
 | 
			
		||||
  1 +6.5529951269443117e+01 +7.9192560386479701e-14
 | 
			
		||||
  2 +1.0516822345055870e+00 -1.2443038782429568e-14
 | 
			
		||||
  3 -4.1025142768037739e+01 +5.9315333178954509e-17
 | 
			
		||||
 | 
			
		||||
[run]
 | 
			
		||||
 | 
			
		||||
version     2.1
 | 
			
		||||
date        2022-01-19 11:04:07 +0100
 | 
			
		||||
host        r04n07.palma.wwu
 | 
			
		||||
dir         /scratch/tmp/j_kuhl19
 | 
			
		||||
user        j_kuhl19
 | 
			
		||||
gauge_name  /data_a_r0_n3.lex
 | 
			
		||||
gauge_md5   1ea28326e4090996111a320b8372811d
 | 
			
		||||
param_name  sfcf_unity_test.in
 | 
			
		||||
param_md5   d881e90d41188a33b8b0f1bd0bc53ea5
 | 
			
		||||
param_hash  686af5e712ee2902180f5428af94c6e7
 | 
			
		||||
data_name   ./output_10519905/data_af_A
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_A
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        0
 | 
			
		||||
corr_t
 | 
			
		||||
  1 +6.5471188727972304e+01 -6.1214214711790100e-12
 | 
			
		||||
  2 +1.0447210336915187e+00 +8.9219487930753188e-13
 | 
			
		||||
  3 -4.1025094911185178e+01 -4.8315634170546161e-14
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_A
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        1
 | 
			
		||||
corr_t
 | 
			
		||||
  1 +6.5551520722862705e+01 +2.0963356863957609e-13
 | 
			
		||||
  2 +1.0542820240851569e+00 +2.3989756974599379e-15
 | 
			
		||||
  3 -4.1024441815729936e+01 -5.7107484666182308e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_A
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        2
 | 
			
		||||
corr_t
 | 
			
		||||
  1 +6.5529951269442847e+01 -6.6512260271334321e-14
 | 
			
		||||
  2 +1.0516822345055969e+00 -2.2935262162529075e-15
 | 
			
		||||
  3 -4.1025142768037746e+01 +3.7566377680004518e-16
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_A
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        0
 | 
			
		||||
corr_t
 | 
			
		||||
  1 +6.5471188727965909e+01 -1.6112786177915427e-11
 | 
			
		||||
  2 +1.0447210337411881e+00 -7.0387528705692678e-13
 | 
			
		||||
  3 -4.1025094911167137e+01 +4.6509152745618223e-13
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_A
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        1
 | 
			
		||||
corr_t
 | 
			
		||||
  1 +6.5551520722842213e+01 -8.1976426690345305e-13
 | 
			
		||||
  2 +1.0542820240843382e+00 +2.1626370477046812e-13
 | 
			
		||||
  3 -4.1024441815730086e+01 -2.4147931196409923e-14
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_A
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        2
 | 
			
		||||
corr_t
 | 
			
		||||
  1 +6.5529951269443117e+01 +7.9192560386479701e-14
 | 
			
		||||
  2 +1.0516822345055870e+00 -1.2443038782429568e-14
 | 
			
		||||
  3 -4.1025142768037739e+01 +5.9315333178954509e-17
 | 
			
		||||
 | 
			
		||||
[run]
 | 
			
		||||
 | 
			
		||||
version     2.1
 | 
			
		||||
date        2022-01-19 11:04:09 +0100
 | 
			
		||||
host        r04n07.palma.wwu
 | 
			
		||||
dir         /scratch/tmp/j_kuhl19
 | 
			
		||||
user        j_kuhl19
 | 
			
		||||
gauge_name  /data_a_r0_n4.lex
 | 
			
		||||
gauge_md5   1ea28326e4090996111a320b8372811d
 | 
			
		||||
param_name  sfcf_unity_test.in
 | 
			
		||||
param_md5   d881e90d41188a33b8b0f1bd0bc53ea5
 | 
			
		||||
param_hash  686af5e712ee2902180f5428af94c6e7
 | 
			
		||||
data_name   ./output_10519905/data_af_A
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_A
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        0
 | 
			
		||||
corr_t
 | 
			
		||||
  1 +6.5471188727972304e+01 -6.1214214711790100e-12
 | 
			
		||||
  2 +1.0447210336915187e+00 +8.9219487930753188e-13
 | 
			
		||||
  3 -4.1025094911185178e+01 -4.8315634170546161e-14
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_A
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        1
 | 
			
		||||
corr_t
 | 
			
		||||
  1 +6.5551520722862705e+01 +2.0963356863957609e-13
 | 
			
		||||
  2 +1.0542820240851569e+00 +2.3989756974599379e-15
 | 
			
		||||
  3 -4.1024441815729936e+01 -5.7107484666182308e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_A
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        2
 | 
			
		||||
corr_t
 | 
			
		||||
  1 +6.5529951269442847e+01 -6.6512260271334321e-14
 | 
			
		||||
  2 +1.0516822345055969e+00 -2.2935262162529075e-15
 | 
			
		||||
  3 -4.1025142768037746e+01 +3.7566377680004518e-16
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_A
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        0
 | 
			
		||||
corr_t
 | 
			
		||||
  1 +6.5471188727965909e+01 -1.6112786177915427e-11
 | 
			
		||||
  2 +1.0447210337411881e+00 -7.0387528705692678e-13
 | 
			
		||||
  3 -4.1025094911167137e+01 +4.6509152745618223e-13
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_A
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        1
 | 
			
		||||
corr_t
 | 
			
		||||
  1 +6.5551520722842213e+01 -8.1976426690345305e-13
 | 
			
		||||
  2 +1.0542820240843382e+00 +2.1626370477046812e-13
 | 
			
		||||
  3 -4.1024441815730086e+01 -2.4147931196409923e-14
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_A
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        2
 | 
			
		||||
corr_t
 | 
			
		||||
  1 +6.5529951269443117e+01 +7.9192560386479701e-14
 | 
			
		||||
  2 +1.0516822345055870e+00 -1.2443038782429568e-14
 | 
			
		||||
  3 -4.1025142768037739e+01 +5.9315333178954509e-17
 | 
			
		||||
 | 
			
		||||
[run]
 | 
			
		||||
 | 
			
		||||
version     2.1
 | 
			
		||||
date        2022-01-19 11:04:11 +0100
 | 
			
		||||
host        r04n07.palma.wwu
 | 
			
		||||
dir         /scratch/tmp/j_kuhl19
 | 
			
		||||
user        j_kuhl19
 | 
			
		||||
gauge_name  /data_a_r0_n5.lex
 | 
			
		||||
gauge_md5   1ea28326e4090996111a320b8372811d
 | 
			
		||||
param_name  sfcf_unity_test.in
 | 
			
		||||
param_md5   d881e90d41188a33b8b0f1bd0bc53ea5
 | 
			
		||||
param_hash  686af5e712ee2902180f5428af94c6e7
 | 
			
		||||
data_name   ./output_10519905/data_af_A
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_A
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        0
 | 
			
		||||
corr_t
 | 
			
		||||
  1 +6.5471188727972304e+01 -6.1214214711790100e-12
 | 
			
		||||
  2 +1.0447210336915187e+00 +8.9219487930753188e-13
 | 
			
		||||
  3 -4.1025094911185178e+01 -4.8315634170546161e-14
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_A
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        1
 | 
			
		||||
corr_t
 | 
			
		||||
  1 +6.5551520722862705e+01 +2.0963356863957609e-13
 | 
			
		||||
  2 +1.0542820240851569e+00 +2.3989756974599379e-15
 | 
			
		||||
  3 -4.1024441815729936e+01 -5.7107484666182308e-15
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_A
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    0
 | 
			
		||||
wf        2
 | 
			
		||||
corr_t
 | 
			
		||||
  1 +6.5529951269442847e+01 -6.6512260271334321e-14
 | 
			
		||||
  2 +1.0516822345055969e+00 -2.2935262162529075e-15
 | 
			
		||||
  3 -4.1025142768037746e+01 +3.7566377680004518e-16
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_A
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        0
 | 
			
		||||
corr_t
 | 
			
		||||
  1 +6.5471188727965909e+01 -1.6112786177915427e-11
 | 
			
		||||
  2 +1.0447210337411881e+00 -7.0387528705692678e-13
 | 
			
		||||
  3 -4.1025094911167137e+01 +4.6509152745618223e-13
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_A
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        1
 | 
			
		||||
corr_t
 | 
			
		||||
  1 +6.5551520722842213e+01 -8.1976426690345305e-13
 | 
			
		||||
  2 +1.0542820240843382e+00 +2.1626370477046812e-13
 | 
			
		||||
  3 -4.1024441815730086e+01 -2.4147931196409923e-14
 | 
			
		||||
 | 
			
		||||
[correlator]
 | 
			
		||||
 | 
			
		||||
name      f_A
 | 
			
		||||
quarks    lquark lquark
 | 
			
		||||
offset    1
 | 
			
		||||
wf        2
 | 
			
		||||
corr_t
 | 
			
		||||
  1 +6.5529951269443117e+01 +7.9192560386479701e-14
 | 
			
		||||
  2 +1.0516822345055870e+00 -1.2443038782429568e-14
 | 
			
		||||
  3 -4.1025142768037739e+01 +5.9315333178954509e-17
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -30,7 +30,7 @@ def test_grid_dirac():
 | 
			
		|||
                  'SigmaYZ',
 | 
			
		||||
                  'SigmaZT']:
 | 
			
		||||
        pe.dirac.Grid_gamma(gamma)
 | 
			
		||||
    with pytest.raises(Exception):
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        pe.dirac.Grid_gamma('Not a gamma matrix')
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -44,7 +44,7 @@ def test_epsilon_tensor():
 | 
			
		|||
             (1, 1, 3) : 0.0}
 | 
			
		||||
    for key, value in check.items():
 | 
			
		||||
        assert pe.dirac.epsilon_tensor(*key) == value
 | 
			
		||||
    with pytest.raises(Exception):
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        pe.dirac.epsilon_tensor(0, 1, 3)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -59,5 +59,5 @@ def test_epsilon_tensor_rank4():
 | 
			
		|||
             (1, 2, 3, 1) : 0.0}
 | 
			
		||||
    for key, value in check.items():
 | 
			
		||||
        assert pe.dirac.epsilon_tensor_rank4(*key) == value
 | 
			
		||||
    with pytest.raises(Exception):
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        pe.dirac.epsilon_tensor_rank4(0, 1, 3, 4)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -152,6 +152,127 @@ def test_alternative_solvers():
 | 
			
		|||
    chisquare_values = np.array(chisquare_values)
 | 
			
		||||
    assert np.all(np.isclose(chisquare_values, chisquare_values[0]))
 | 
			
		||||
 | 
			
		||||
def test_inv_cov_matrix_input_least_squares():
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    num_samples = 400
 | 
			
		||||
    N = 10
 | 
			
		||||
 | 
			
		||||
    x = norm.rvs(size=(N, num_samples)) # generate random numbers
 | 
			
		||||
 | 
			
		||||
    r = np.zeros((N, N))
 | 
			
		||||
    for i in range(N):
 | 
			
		||||
        for j in range(N):
 | 
			
		||||
            r[i, j] = np.exp(-0.8 * np.fabs(i - j)) # element in correlation matrix
 | 
			
		||||
 | 
			
		||||
    errl = np.sqrt([3.4, 2.5, 3.6, 2.8, 4.2, 4.7, 4.9, 5.1, 3.2, 4.2]) # set y errors
 | 
			
		||||
    for i in range(N):
 | 
			
		||||
        for j in range(N):
 | 
			
		||||
            r[i, j] *= errl[i] * errl[j] # element in covariance matrix
 | 
			
		||||
    
 | 
			
		||||
    c = cholesky(r, lower=True)
 | 
			
		||||
    y = np.dot(c, x)
 | 
			
		||||
    x = np.arange(N)
 | 
			
		||||
    x_dict = {}
 | 
			
		||||
    y_dict = {}
 | 
			
		||||
    for i,item in enumerate(x):
 | 
			
		||||
        x_dict[str(item)] = [x[i]]
 | 
			
		||||
 | 
			
		||||
    for linear in [True, False]:
 | 
			
		||||
        data = []
 | 
			
		||||
        for i in range(N):
 | 
			
		||||
            if linear:
 | 
			
		||||
                data.append(pe.Obs([[i + 1 + o for o in y[i]]], ['ens']))
 | 
			
		||||
            else:
 | 
			
		||||
                data.append(pe.Obs([[np.exp(-(i + 1)) + np.exp(-(i + 1)) * o for o in y[i]]], ['ens']))
 | 
			
		||||
 | 
			
		||||
        [o.gamma_method() for o in data]
 | 
			
		||||
 | 
			
		||||
        data_dict = {}
 | 
			
		||||
        for i,item in enumerate(x):
 | 
			
		||||
            data_dict[str(item)] = [data[i]]
 | 
			
		||||
 | 
			
		||||
        corr = pe.covariance(data, correlation=True)
 | 
			
		||||
        chol = np.linalg.cholesky(corr)
 | 
			
		||||
        covdiag = np.diag(1 / np.asarray([o.dvalue for o in data]))
 | 
			
		||||
        chol_inv = scipy.linalg.solve_triangular(chol, covdiag, lower=True)
 | 
			
		||||
        chol_inv_keys = [""]
 | 
			
		||||
        chol_inv_keys_combined_fit = [str(item) for i,item in enumerate(x)]
 | 
			
		||||
 | 
			
		||||
        if linear:
 | 
			
		||||
            def fitf(p, x):
 | 
			
		||||
                return p[1] + p[0] * x
 | 
			
		||||
            fitf_dict = {}
 | 
			
		||||
            for i,item in enumerate(x):
 | 
			
		||||
                fitf_dict[str(item)] = fitf
 | 
			
		||||
        else:
 | 
			
		||||
            def fitf(p, x):
 | 
			
		||||
                return p[1] * anp.exp(-p[0] * x)
 | 
			
		||||
            fitf_dict = {}
 | 
			
		||||
            for i,item in enumerate(x):
 | 
			
		||||
                fitf_dict[str(item)] = fitf
 | 
			
		||||
 | 
			
		||||
        fitpc = pe.least_squares(x, data, fitf, correlated_fit=True)
 | 
			
		||||
        fitp_inv_cov = pe.least_squares(x, data, fitf,  correlated_fit = True, inv_chol_cov_matrix = [chol_inv,chol_inv_keys])
 | 
			
		||||
        fitp_inv_cov_combined_fit = pe.least_squares(x_dict, data_dict, fitf_dict,  correlated_fit = True, inv_chol_cov_matrix = [chol_inv,chol_inv_keys_combined_fit])
 | 
			
		||||
        for i in range(2):
 | 
			
		||||
            diff_inv_cov = fitp_inv_cov[i] - fitpc[i]
 | 
			
		||||
            diff_inv_cov.gamma_method()
 | 
			
		||||
            assert(diff_inv_cov.is_zero(atol=0.0))
 | 
			
		||||
            diff_inv_cov_combined_fit = fitp_inv_cov_combined_fit[i] - fitpc[i]
 | 
			
		||||
            diff_inv_cov_combined_fit.gamma_method()
 | 
			
		||||
            assert(diff_inv_cov_combined_fit.is_zero(atol=1e-12))
 | 
			
		||||
 | 
			
		||||
        with pytest.raises(ValueError):
 | 
			
		||||
            pe.least_squares(x_dict, data_dict, fitf_dict,  correlated_fit = True, inv_chol_cov_matrix = [corr,chol_inv_keys_combined_fit])
 | 
			
		||||
 | 
			
		||||
def test_least_squares_invalid_inv_cov_matrix_input():
 | 
			
		||||
    xvals = []
 | 
			
		||||
    yvals = []
 | 
			
		||||
    err = 0.1
 | 
			
		||||
    def func_valid(a,x):
 | 
			
		||||
        return a[0] + a[1] * x
 | 
			
		||||
    for x in range(1, 8, 2):
 | 
			
		||||
        xvals.append(x)
 | 
			
		||||
        yvals.append(pe.pseudo_Obs(x + np.random.normal(0.0, err), err, 'test1') + pe.pseudo_Obs(0, err / 100, 'test2', samples=87))
 | 
			
		||||
 | 
			
		||||
    [o.gamma_method() for o in yvals]
 | 
			
		||||
    
 | 
			
		||||
    #dictionaries for a combined fit
 | 
			
		||||
    xvals_dict = { }
 | 
			
		||||
    yvals_dict = { }
 | 
			
		||||
    for i,item in enumerate(np.arange(1, 8, 2)):
 | 
			
		||||
        xvals_dict[str(item)] = [xvals[i]]
 | 
			
		||||
        yvals_dict[str(item)] = [yvals[i]]
 | 
			
		||||
    chol_inv_keys_combined_fit = ['1', '3', '5', '7']
 | 
			
		||||
    chol_inv_keys_combined_fit_invalid = ['2', '7', '100', '8']
 | 
			
		||||
    func_dict_valid = {"1": func_valid,"3": func_valid,"5": func_valid,"7": func_valid}
 | 
			
		||||
 | 
			
		||||
    corr_valid = pe.covariance(yvals, correlation = True)
 | 
			
		||||
    chol = np.linalg.cholesky(corr_valid)
 | 
			
		||||
    covdiag = np.diag(1 / np.asarray([o.dvalue for o in yvals]))
 | 
			
		||||
    chol_inv_valid = scipy.linalg.solve_triangular(chol, covdiag, lower=True)
 | 
			
		||||
    chol_inv_keys = [""]
 | 
			
		||||
    pe.least_squares(xvals, yvals,func_valid, correlated_fit = True, inv_chol_cov_matrix = [chol_inv_valid,chol_inv_keys])
 | 
			
		||||
    pe.least_squares(xvals_dict, yvals_dict,func_dict_valid, correlated_fit = True, inv_chol_cov_matrix = [chol_inv_valid,chol_inv_keys_combined_fit])
 | 
			
		||||
    chol_inv_invalid_shape1 = np.zeros((len(yvals),len(yvals)-1))
 | 
			
		||||
    chol_inv_invalid_shape2 = np.zeros((len(yvals)+2,len(yvals)))
 | 
			
		||||
 | 
			
		||||
    # for an uncombined fit
 | 
			
		||||
    with pytest.raises(TypeError):
 | 
			
		||||
        pe.least_squares(xvals, yvals, func_valid, correlated_fit = True, inv_chol_cov_matrix = [chol_inv_invalid_shape1,chol_inv_keys])
 | 
			
		||||
    with pytest.raises(TypeError):
 | 
			
		||||
        pe.least_squares(xvals, yvals, func_valid,correlated_fit = True, inv_chol_cov_matrix = [chol_inv_invalid_shape2,chol_inv_keys])
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        pe.least_squares(xvals, yvals, func_valid,correlated_fit = True, inv_chol_cov_matrix = [chol_inv_valid,chol_inv_keys_combined_fit_invalid])
 | 
			
		||||
 | 
			
		||||
    #repeat for a combined fit
 | 
			
		||||
    with pytest.raises(TypeError):
 | 
			
		||||
        pe.least_squares(xvals_dict, yvals_dict,func_dict_valid, correlated_fit = True, inv_chol_cov_matrix = [chol_inv_invalid_shape1,chol_inv_keys_combined_fit])
 | 
			
		||||
    with pytest.raises(TypeError):
 | 
			
		||||
        pe.least_squares(xvals_dict, yvals_dict,func_dict_valid, correlated_fit = True, inv_chol_cov_matrix = [chol_inv_invalid_shape2,chol_inv_keys_combined_fit])
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        pe.least_squares(xvals_dict, yvals_dict,func_dict_valid, correlated_fit = True, inv_chol_cov_matrix = [chol_inv_valid,chol_inv_keys_combined_fit_invalid])
 | 
			
		||||
 | 
			
		||||
def test_correlated_fit():
 | 
			
		||||
    num_samples = 400
 | 
			
		||||
| 
						 | 
				
			
			@ -964,6 +1085,21 @@ def test_combined_resplot_qqplot():
 | 
			
		|||
    fr = pe.least_squares(xd, yd, fd, resplot=True, qqplot=True)
 | 
			
		||||
    plt.close('all')
 | 
			
		||||
 | 
			
		||||
def test_combined_fit_xerr():
 | 
			
		||||
    fitd = {
 | 
			
		||||
        'a' : lambda p, x: p[0] * x[0] + p[1] * x[1],
 | 
			
		||||
        'b' : lambda p, x: p[0] * x[0] + p[2] * x[1],
 | 
			
		||||
        'c' : lambda p, x: p[0] * x[0] + p[3] * x[1],
 | 
			
		||||
    }
 | 
			
		||||
    yd = {
 | 
			
		||||
        'a': [pe.cov_Obs(3 + .1 * np.random.uniform(), .1**2, 'a' + str(i)) for i in range(5)],
 | 
			
		||||
        'b': [pe.cov_Obs(1 + .1 * np.random.uniform(), .1**2, 'b' + str(i)) for i in range(6)],
 | 
			
		||||
        'c': [pe.cov_Obs(3 + .1 * np.random.uniform(), .1**2, 'c' + str(i)) for i in range(3)],
 | 
			
		||||
    }
 | 
			
		||||
    xd = {k: np.transpose([[1 + .01 * np.random.uniform(), 2] for i in range(len(yd[k]))]) for k in fitd}
 | 
			
		||||
    pe.fits.least_squares(xd, yd, fitd)
 | 
			
		||||
    pe.fits.least_squares(xd, yd, fitd, n_parms=4)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_x_multidim_fit():
 | 
			
		||||
    x1 = np.arange(1, 10)
 | 
			
		||||
| 
						 | 
				
			
			@ -1205,6 +1341,54 @@ def test_combined_fit_constant_shape():
 | 
			
		|||
    funcs = {"a": lambda a, x: a[0] + a[1] * x,
 | 
			
		||||
             "": lambda a, x: a[1] + x * 0}
 | 
			
		||||
    pe.fits.least_squares(x, y, funcs, method='migrad')
 | 
			
		||||
    pe.fits.least_squares(x, y, funcs, method='migrad', n_parms=2)
 | 
			
		||||
 | 
			
		||||
def test_fit_n_parms():
 | 
			
		||||
    # Function that fails if the number of parameters is not specified:
 | 
			
		||||
    def fcn(p, x):                                                          
 | 
			
		||||
        # Assumes first half of terms are A second half are E 
 | 
			
		||||
        NTerms = int(len(p)/2)
 | 
			
		||||
        A = anp.array(p[0:NTerms])[:, np.newaxis]   # shape (n, 1)                                                  
 | 
			
		||||
        E_P = anp.array(p[NTerms:])[:, np.newaxis]    # shape (n, 1)
 | 
			
		||||
        # This if statement handles the case where x is a single value rather than an array                                        
 | 
			
		||||
        if isinstance(x, anp.float64) or isinstance(x, anp.int64) or isinstance(x, float)  or isinstance(x, int):
 | 
			
		||||
            x = anp.array([x])[np.newaxis, :]             # shape (1, m)                                            
 | 
			
		||||
        else:
 | 
			
		||||
            x = anp.array(x)[np.newaxis, :]             # shape (1, m)                                              
 | 
			
		||||
        exp_term = anp.exp(-E_P * x)                      
 | 
			
		||||
        weighted_sum = A * exp_term                            # shape (n, m)                                      
 | 
			
		||||
        return anp.mean(weighted_sum, axis=0)       # shape(m)
 | 
			
		||||
 | 
			
		||||
    c = pe.Corr([pe.pseudo_Obs(2. * np.exp(-.2 * t) + .4 * np.exp(+.4 * t) + .4 * np.exp(-.6 * t), .1, 'corr') for t in range(12)])
 | 
			
		||||
 | 
			
		||||
    c.fit(fcn, n_parms=2)
 | 
			
		||||
    c.fit(fcn, n_parms=4)
 | 
			
		||||
 | 
			
		||||
    xf = [pe.pseudo_Obs(t, .05, 'corr') for t in range(c.T)]
 | 
			
		||||
    yf = [c[t] for t in range(c.T)]
 | 
			
		||||
    pe.fits.total_least_squares(xf, yf, fcn, n_parms=2)
 | 
			
		||||
    pe.fits.total_least_squares(xf, yf, fcn, n_parms=4)
 | 
			
		||||
 | 
			
		||||
    # Is expected to fail, this is what is fixed with n_parms
 | 
			
		||||
    with pytest.raises(RuntimeError):
 | 
			
		||||
        c.fit(fcn, )
 | 
			
		||||
    with pytest.raises(RuntimeError):
 | 
			
		||||
        pe.fits.total_least_squares(xf, yf, fcn, )
 | 
			
		||||
    # Test for positivity
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        c.fit(fcn, n_parms=-2)
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        pe.fits.total_least_squares(xf, yf, fcn, n_parms=-4)
 | 
			
		||||
    # Have to pass an interger
 | 
			
		||||
    with pytest.raises(TypeError):
 | 
			
		||||
        c.fit(fcn, n_parms=2.)
 | 
			
		||||
    with pytest.raises(TypeError):
 | 
			
		||||
        pe.fits.total_least_squares(xf, yf, fcn, n_parms=1.2343)
 | 
			
		||||
    # Improper number of parameters (function should fail)
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        c.fit(fcn, n_parms=7)
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        pe.fits.total_least_squares(xf, yf, fcn, n_parms=5)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def fit_general(x, y, func, silent=False, **kwargs):
 | 
			
		||||
| 
						 | 
				
			
			@ -1427,3 +1611,81 @@ def old_prior_fit(x, y, func, priors, silent=False, **kwargs):
 | 
			
		|||
        qqplot(x, y, func, result)
 | 
			
		||||
 | 
			
		||||
    return output
 | 
			
		||||
 | 
			
		||||
def test_dof_prior_fit():
 | 
			
		||||
    """Performs an uncorrelated fit with a prior to uncorrelated data then
 | 
			
		||||
    the expected chisquare and the usual dof need to agree"""
 | 
			
		||||
    N = 5
 | 
			
		||||
 | 
			
		||||
    def fitf(a, x):
 | 
			
		||||
        return a[0] + 0 * x
 | 
			
		||||
 | 
			
		||||
    x = [1. for i in range(N)]
 | 
			
		||||
    y = [pe.cov_Obs(i, .1, '%d' % (i)) for i in range(N)]
 | 
			
		||||
    [o.gm() for o in y]
 | 
			
		||||
    res = pe.fits.least_squares(x, y, fitf, expected_chisquare=True, priors=[pe.cov_Obs(3, 1, 'p')])
 | 
			
		||||
    assert res.chisquare_by_expected_chisquare == res.chisquare_by_dof
 | 
			
		||||
    
 | 
			
		||||
    num_samples = 400
 | 
			
		||||
    N = 10
 | 
			
		||||
 | 
			
		||||
    x = norm.rvs(size=(N, num_samples)) # generate random numbers
 | 
			
		||||
 | 
			
		||||
    r = np.zeros((N, N))
 | 
			
		||||
    for i in range(N):
 | 
			
		||||
        for j in range(N):
 | 
			
		||||
            if(i==j):
 | 
			
		||||
                r[i, j] = 1.0 # element in correlation matrix
 | 
			
		||||
 | 
			
		||||
    errl = np.sqrt([3.4, 2.5, 3.6, 2.8, 4.2, 4.7, 4.9, 5.1, 3.2, 4.2]) # set y errors
 | 
			
		||||
    for i in range(N):
 | 
			
		||||
        for j in range(N):
 | 
			
		||||
            if(i==j):
 | 
			
		||||
                r[i, j] *= errl[i] * errl[j] # element in covariance matrix
 | 
			
		||||
 | 
			
		||||
    c = cholesky(r, lower=True)
 | 
			
		||||
    y = np.dot(c, x)
 | 
			
		||||
    x = np.arange(N)
 | 
			
		||||
    x_dict = {}
 | 
			
		||||
    y_dict = {}
 | 
			
		||||
    for i,item in enumerate(x):
 | 
			
		||||
        x_dict[str(item)] = [x[i]]
 | 
			
		||||
 | 
			
		||||
    for linear in [True, False]:
 | 
			
		||||
        data = []
 | 
			
		||||
        for i in range(N):
 | 
			
		||||
            if linear:
 | 
			
		||||
                data.append(pe.Obs([[i + 1 + o for o in y[i]]], ['ens'+str(i)]))
 | 
			
		||||
            else:
 | 
			
		||||
                data.append(pe.Obs([[np.exp(-(i + 1)) + np.exp(-(i + 1)) * o for o in y[i]]], ['ens'+str(i)]))
 | 
			
		||||
 | 
			
		||||
        [o.gamma_method() for o in data]
 | 
			
		||||
 | 
			
		||||
        data_dict = {}
 | 
			
		||||
        for i,item in enumerate(x):
 | 
			
		||||
            data_dict[str(item)] = [data[i]]
 | 
			
		||||
 | 
			
		||||
        corr = pe.covariance(data, correlation=True)
 | 
			
		||||
        chol = np.linalg.cholesky(corr)
 | 
			
		||||
        covdiag = np.diag(1 / np.asarray([o.dvalue for o in data]))
 | 
			
		||||
        chol_inv = scipy.linalg.solve_triangular(chol, covdiag, lower=True)
 | 
			
		||||
        chol_inv_keys = [""]
 | 
			
		||||
        chol_inv_keys_combined_fit = [str(item) for i,item in enumerate(x)]
 | 
			
		||||
 | 
			
		||||
        if linear:
 | 
			
		||||
            def fitf(p, x):
 | 
			
		||||
                return p[1] + p[0] * x
 | 
			
		||||
            fitf_dict = {}
 | 
			
		||||
            for i,item in enumerate(x):
 | 
			
		||||
                fitf_dict[str(item)] = fitf
 | 
			
		||||
        else:
 | 
			
		||||
            def fitf(p, x):
 | 
			
		||||
                return p[1] * anp.exp(-p[0] * x)
 | 
			
		||||
            fitf_dict = {}
 | 
			
		||||
            for i,item in enumerate(x):
 | 
			
		||||
                fitf_dict[str(item)] = fitf
 | 
			
		||||
 | 
			
		||||
        fit_exp = pe.least_squares(x, data, fitf, expected_chisquare=True, priors = {0:pe.cov_Obs(1.0, 1, 'p')})
 | 
			
		||||
        fit_cov = pe.least_squares(x, data, fitf,  correlated_fit = True, inv_chol_cov_matrix = [chol_inv,chol_inv_keys],  priors = {0:pe.cov_Obs(1.0, 1, 'p')})
 | 
			
		||||
        assert np.isclose(fit_exp.chisquare_by_expected_chisquare,fit_exp.chisquare_by_dof,atol=1e-8)
 | 
			
		||||
        assert np.isclose(fit_exp.chisquare_by_expected_chisquare,fit_cov.chisquare_by_dof,atol=1e-8)
 | 
			
		||||
| 
						 | 
				
			
			@ -12,7 +12,7 @@ def test_jsonio():
 | 
			
		|||
    o = pe.pseudo_Obs(1.0, .2, 'one')
 | 
			
		||||
    o2 = pe.pseudo_Obs(0.5, .1, 'two|r1')
 | 
			
		||||
    o3 = pe.pseudo_Obs(0.5, .1, 'two|r2')
 | 
			
		||||
    o4 = pe.merge_obs([o2, o3])
 | 
			
		||||
    o4 = pe.merge_obs([o2, o3, pe.pseudo_Obs(0.5, .1, 'two|r3', samples=3221)])
 | 
			
		||||
    otag = 'This has been merged!'
 | 
			
		||||
    o4.tag = otag
 | 
			
		||||
    do = o - .2 * o4
 | 
			
		||||
| 
						 | 
				
			
			@ -101,8 +101,8 @@ def test_json_string_reconstruction():
 | 
			
		|||
 | 
			
		||||
 | 
			
		||||
def test_json_corr_io():
 | 
			
		||||
    my_list = [pe.Obs([np.random.normal(1.0, 0.1, 100)], ['ens1']) for o in range(8)]
 | 
			
		||||
    rw_list = pe.reweight(pe.Obs([np.random.normal(1.0, 0.1, 100)], ['ens1']), my_list)
 | 
			
		||||
    my_list = [pe.Obs([np.random.normal(1.0, 0.1, 100), np.random.normal(1.0, 0.1, 321)], ['ens1|r1', 'ens1|r2'], idl=[range(1, 201, 2), range(321)]) for o in range(8)]
 | 
			
		||||
    rw_list = pe.reweight(pe.Obs([np.random.normal(1.0, 0.1, 100), np.random.normal(1.0, 0.1, 321)], ['ens1|r1', 'ens1|r2'], idl=[range(1, 201, 2), range(321)]), my_list)
 | 
			
		||||
 | 
			
		||||
    for obs_list in [my_list, rw_list]:
 | 
			
		||||
        for tag in [None, "test"]:
 | 
			
		||||
| 
						 | 
				
			
			@ -111,40 +111,51 @@ def test_json_corr_io():
 | 
			
		|||
                for corr_tag in [None, 'my_Corr_tag']:
 | 
			
		||||
                    for prange in [None, [3, 6]]:
 | 
			
		||||
                        for gap in [False, True]:
 | 
			
		||||
                            my_corr = pe.Corr(obs_list, padding=[pad, pad], prange=prange)
 | 
			
		||||
                            my_corr.tag = corr_tag
 | 
			
		||||
                            if gap:
 | 
			
		||||
                                my_corr.content[4] = None
 | 
			
		||||
                            pe.input.json.dump_to_json(my_corr, 'corr')
 | 
			
		||||
                            recover = pe.input.json.load_json('corr')
 | 
			
		||||
                            os.remove('corr.json.gz')
 | 
			
		||||
                            assert np.all([o.is_zero() for o in [x for x in (my_corr - recover) if x is not None]])
 | 
			
		||||
                            for index, entry in enumerate(my_corr):
 | 
			
		||||
                                if entry is None:
 | 
			
		||||
                                    assert recover[index] is None
 | 
			
		||||
                            assert my_corr.tag == recover.tag
 | 
			
		||||
                            assert my_corr.prange == recover.prange
 | 
			
		||||
                            assert my_corr.reweighted == recover.reweighted
 | 
			
		||||
                            for mult in [1., pe.cov_Obs([12.22, 1.21], [.212**2, .11**2], 'renorm')[0]]:
 | 
			
		||||
                                my_corr = mult * pe.Corr(obs_list, padding=[pad, pad], prange=prange)
 | 
			
		||||
                                my_corr.tag = corr_tag
 | 
			
		||||
                                if gap:
 | 
			
		||||
                                    my_corr.content[4] = None
 | 
			
		||||
                                pe.input.json.dump_to_json(my_corr, 'corr')
 | 
			
		||||
                                recover = pe.input.json.load_json('corr')
 | 
			
		||||
                                os.remove('corr.json.gz')
 | 
			
		||||
                                assert np.all([o.is_zero() for o in [x for x in (my_corr - recover) if x is not None]])
 | 
			
		||||
                                for index, entry in enumerate(my_corr):
 | 
			
		||||
                                    if entry is None:
 | 
			
		||||
                                        assert recover[index] is None
 | 
			
		||||
                                assert my_corr.tag == recover.tag
 | 
			
		||||
                                assert my_corr.prange == recover.prange
 | 
			
		||||
                                assert my_corr.reweighted == recover.reweighted
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_json_corr_2d_io():
 | 
			
		||||
    obs_list = [np.array([[pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test'), pe.pseudo_Obs(0.0, 0.1 * i, 'test')], [pe.pseudo_Obs(0.0, 0.1 * i, 'test'), pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test')]]) for i in range(4)]
 | 
			
		||||
    obs_list = [np.array([
 | 
			
		||||
        [
 | 
			
		||||
         pe.merge_obs([pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test|r2'), pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test|r1', samples=321)]), 
 | 
			
		||||
         pe.merge_obs([pe.pseudo_Obs(0.0, 0.1 * i, 'test|r2'), pe.pseudo_Obs(0.0, 0.1 * i, 'test|r1', samples=321)]),
 | 
			
		||||
        ], 
 | 
			
		||||
        [
 | 
			
		||||
         pe.merge_obs([pe.pseudo_Obs(0.0, 0.1 * i, 'test|r2'), pe.pseudo_Obs(0.0, 0.1 * i, 'test|r1', samples=321),]),
 | 
			
		||||
         pe.merge_obs([pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test|r2'), pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test|r1', samples=321)]),
 | 
			
		||||
        ],
 | 
			
		||||
        ]) for i in range(4)]
 | 
			
		||||
 | 
			
		||||
    for tag in [None, "test"]:
 | 
			
		||||
        obs_list[3][0, 1].tag = tag
 | 
			
		||||
        for padding in [0, 1]:
 | 
			
		||||
            for prange in [None, [3, 6]]:
 | 
			
		||||
                my_corr = pe.Corr(obs_list, padding=[padding, padding], prange=prange)
 | 
			
		||||
                my_corr.tag = tag
 | 
			
		||||
                pe.input.json.dump_to_json(my_corr, 'corr')
 | 
			
		||||
                recover = pe.input.json.load_json('corr')
 | 
			
		||||
                os.remove('corr.json.gz')
 | 
			
		||||
                assert np.all([np.all([o.is_zero() for o in q]) for q in [x.ravel() for x in (my_corr - recover) if x is not None]])
 | 
			
		||||
                for index, entry in enumerate(my_corr):
 | 
			
		||||
                    if entry is None:
 | 
			
		||||
                        assert recover[index] is None
 | 
			
		||||
                assert my_corr.tag == recover.tag
 | 
			
		||||
                assert my_corr.prange == recover.prange
 | 
			
		||||
                for mult in [1., pe.cov_Obs([12.22, 1.21], [.212**2, .11**2], 'renorm')[0]]:
 | 
			
		||||
                    my_corr = mult * pe.Corr(obs_list, padding=[padding, padding], prange=prange)
 | 
			
		||||
                    my_corr.tag = tag
 | 
			
		||||
                    pe.input.json.dump_to_json(my_corr, 'corr')
 | 
			
		||||
                    recover = pe.input.json.load_json('corr')
 | 
			
		||||
                    os.remove('corr.json.gz')
 | 
			
		||||
                    assert np.all([np.all([o.is_zero() for o in q]) for q in [x.ravel() for x in (my_corr - recover) if x is not None]])
 | 
			
		||||
                    for index, entry in enumerate(my_corr):
 | 
			
		||||
                        if entry is None:
 | 
			
		||||
                            assert recover[index] is None
 | 
			
		||||
                    assert my_corr.tag == recover.tag
 | 
			
		||||
                    assert my_corr.prange == recover.prange
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_json_dict_io():
 | 
			
		||||
| 
						 | 
				
			
			@ -211,6 +222,7 @@ def test_json_dict_io():
 | 
			
		|||
            'd': pe.pseudo_Obs(.01, .001, 'testd', samples=10) * pe.cov_Obs(1, .01, 'cov1'),
 | 
			
		||||
            'se': None,
 | 
			
		||||
            'sf': 1.2,
 | 
			
		||||
            'k': pe.cov_Obs(.1, .001**2, 'cov') * pe.merge_obs([pe.pseudo_Obs(1.0, 0.1, 'test|r2'), pe.pseudo_Obs(1.0, 0.1, 'test|r1', samples=321)]),
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -314,7 +326,7 @@ def test_dobsio():
 | 
			
		|||
 | 
			
		||||
    o2 = pe.pseudo_Obs(0.5, .1, 'two|r1')
 | 
			
		||||
    o3 = pe.pseudo_Obs(0.5, .1, 'two|r2')
 | 
			
		||||
    o4 = pe.merge_obs([o2, o3])
 | 
			
		||||
    o4 = pe.merge_obs([o2, o3, pe.pseudo_Obs(0.5, .1, 'two|r3', samples=3221)])
 | 
			
		||||
    otag = 'This has been merged!'
 | 
			
		||||
    o4.tag = otag
 | 
			
		||||
    do = o - .2 * o4
 | 
			
		||||
| 
						 | 
				
			
			@ -328,7 +340,7 @@ def test_dobsio():
 | 
			
		|||
    o5 /= co2[0]
 | 
			
		||||
    o5.tag = 2 * otag
 | 
			
		||||
 | 
			
		||||
    tt1 = pe.Obs([np.random.rand(100), np.random.rand(100)], ['t|r1', 't|r2'], idl=[range(2, 202, 2), range(22, 222, 2)])
 | 
			
		||||
    tt1 = pe.Obs([np.random.rand(100), np.random.rand(102)], ['t|r1', 't|r2'], idl=[range(2, 202, 2), range(22, 226, 2)])
 | 
			
		||||
    tt3 = pe.Obs([np.random.rand(102)], ['qe|r1'])
 | 
			
		||||
 | 
			
		||||
    tt = tt1 + tt3
 | 
			
		||||
| 
						 | 
				
			
			@ -337,7 +349,7 @@ def test_dobsio():
 | 
			
		|||
 | 
			
		||||
    tt4 = pe.Obs([np.random.rand(100), np.random.rand(100)], ['t|r1', 't|r2'], idl=[range(1, 101, 1), range(2, 202, 2)])
 | 
			
		||||
 | 
			
		||||
    ol = [o2, o3, o4, do, o5, tt, tt4, np.log(tt4 / o5**2), np.exp(o5 + np.log(co3 / tt3 + o4) / tt)]
 | 
			
		||||
    ol = [o2, o3, o4, do, o5, tt, tt4, np.log(tt4 / o5**2), np.exp(o5 + np.log(co3 / tt3 + o4) / tt), o4.reweight(o4)]
 | 
			
		||||
    print(ol)
 | 
			
		||||
    fname = 'test_rw'
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -362,9 +374,12 @@ def test_dobsio():
 | 
			
		|||
 | 
			
		||||
 | 
			
		||||
def test_reconstruct_non_linear_r_obs(tmp_path):
 | 
			
		||||
    to = pe.Obs([np.random.rand(500), np.random.rand(500), np.random.rand(111)],
 | 
			
		||||
                ["e|r1", "e|r2", "my_new_ensemble_54^£$|8'[@124435%6^7&()~#"],
 | 
			
		||||
                idl=[range(1, 501), range(0, 500), range(1, 999, 9)])
 | 
			
		||||
    to = (
 | 
			
		||||
        pe.Obs([np.random.rand(500), np.random.rand(1200)],
 | 
			
		||||
                ["e|r1", "e|r2", ],
 | 
			
		||||
                idl=[range(1, 501), range(0, 1200)])
 | 
			
		||||
        + pe.Obs([np.random.rand(111)], ["my_new_ensemble_54^£$|8'[@124435%6^7&()~#"], idl=[range(1, 999, 9)])
 | 
			
		||||
        )
 | 
			
		||||
    to = np.log(to ** 2) / to
 | 
			
		||||
    to.dump((tmp_path / "test_equality").as_posix())
 | 
			
		||||
    ro = pe.input.json.load_json((tmp_path / "test_equality").as_posix())
 | 
			
		||||
| 
						 | 
				
			
			@ -372,9 +387,12 @@ def test_reconstruct_non_linear_r_obs(tmp_path):
 | 
			
		|||
 | 
			
		||||
 | 
			
		||||
def test_reconstruct_non_linear_r_obs_list(tmp_path):
 | 
			
		||||
    to = pe.Obs([np.random.rand(500), np.random.rand(500), np.random.rand(111)],
 | 
			
		||||
                ["e|r1", "e|r2", "my_new_ensemble_54^£$|8'[@124435%6^7&()~#"],
 | 
			
		||||
                idl=[range(1, 501), range(0, 500), range(1, 999, 9)])
 | 
			
		||||
    to = (
 | 
			
		||||
        pe.Obs([np.random.rand(500), np.random.rand(1200)],
 | 
			
		||||
                ["e|r1", "e|r2", ],
 | 
			
		||||
                idl=[range(1, 501), range(0, 1200)])
 | 
			
		||||
        + pe.Obs([np.random.rand(111)], ["my_new_ensemble_54^£$|8'[@124435%6^7&()~#"], idl=[range(1, 999, 9)])
 | 
			
		||||
        )
 | 
			
		||||
    to = np.log(to ** 2) / to
 | 
			
		||||
    for to_list in [[to, to, to], np.array([to, to, to])]:
 | 
			
		||||
        pe.input.json.dump_to_json(to_list, (tmp_path / "test_equality_list").as_posix())
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -34,7 +34,7 @@ def test_matmul():
 | 
			
		|||
            my_list = []
 | 
			
		||||
            length = 100 + np.random.randint(200)
 | 
			
		||||
            for i in range(dim ** 2):
 | 
			
		||||
                my_list.append(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']))
 | 
			
		||||
                my_list.append(pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2']))
 | 
			
		||||
            my_array = const * np.array(my_list).reshape((dim, dim))
 | 
			
		||||
            tt = pe.linalg.matmul(my_array, my_array) - my_array @ my_array
 | 
			
		||||
            for t, e in np.ndenumerate(tt):
 | 
			
		||||
| 
						 | 
				
			
			@ -43,8 +43,8 @@ def test_matmul():
 | 
			
		|||
            my_list = []
 | 
			
		||||
            length = 100 + np.random.randint(200)
 | 
			
		||||
            for i in range(dim ** 2):
 | 
			
		||||
                my_list.append(pe.CObs(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']),
 | 
			
		||||
                                       pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2'])))
 | 
			
		||||
                my_list.append(pe.CObs(pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2']),
 | 
			
		||||
                                       pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2'])))
 | 
			
		||||
            my_array = np.array(my_list).reshape((dim, dim)) * const
 | 
			
		||||
            tt = pe.linalg.matmul(my_array, my_array) - my_array @ my_array
 | 
			
		||||
            for t, e in np.ndenumerate(tt):
 | 
			
		||||
| 
						 | 
				
			
			@ -151,7 +151,7 @@ def test_multi_dot():
 | 
			
		|||
        my_list = []
 | 
			
		||||
        length = 1000 + np.random.randint(200)
 | 
			
		||||
        for i in range(dim ** 2):
 | 
			
		||||
            my_list.append(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']))
 | 
			
		||||
            my_list.append(pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2']))
 | 
			
		||||
        my_array = pe.cov_Obs(1.0, 0.002, 'cov') * np.array(my_list).reshape((dim, dim))
 | 
			
		||||
        tt = pe.linalg.matmul(my_array, my_array, my_array, my_array) - my_array @ my_array @ my_array @ my_array
 | 
			
		||||
        for t, e in np.ndenumerate(tt):
 | 
			
		||||
| 
						 | 
				
			
			@ -160,8 +160,8 @@ def test_multi_dot():
 | 
			
		|||
        my_list = []
 | 
			
		||||
        length = 1000 + np.random.randint(200)
 | 
			
		||||
        for i in range(dim ** 2):
 | 
			
		||||
            my_list.append(pe.CObs(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']),
 | 
			
		||||
                                   pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2'])))
 | 
			
		||||
            my_list.append(pe.CObs(pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2']),
 | 
			
		||||
                                   pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2'])))
 | 
			
		||||
        my_array = np.array(my_list).reshape((dim, dim)) * pe.cov_Obs(1.0, 0.002, 'cov')
 | 
			
		||||
        tt = pe.linalg.matmul(my_array, my_array, my_array, my_array) - my_array @ my_array @ my_array @ my_array
 | 
			
		||||
        for t, e in np.ndenumerate(tt):
 | 
			
		||||
| 
						 | 
				
			
			@ -209,7 +209,7 @@ def test_irregular_matrix_inverse():
 | 
			
		|||
    for idl in [range(8, 508, 10), range(250, 273), [2, 8, 19, 20, 78, 99, 828, 10548979]]:
 | 
			
		||||
        irregular_array = []
 | 
			
		||||
        for i in range(dim ** 2):
 | 
			
		||||
            irregular_array.append(pe.Obs([np.random.normal(1.1, 0.2, len(idl)), np.random.normal(0.25, 0.1, 10)], ['ens1', 'ens2'], idl=[idl, range(1, 11)]))
 | 
			
		||||
            irregular_array.append(pe.Obs([np.random.normal(1.1, 0.2, len(idl))], ['ens1'], idl=[idl]) + pe.Obs([np.random.normal(0.25, 0.1, 10)], ['ens2'], idl=[range(1, 11)]))
 | 
			
		||||
        irregular_matrix = np.array(irregular_array).reshape((dim, dim)) * pe.cov_Obs(1.0, 0.002, 'cov') * pe.pseudo_Obs(1.0, 0.002, 'ens2|r23')
 | 
			
		||||
 | 
			
		||||
        invertible_irregular_matrix = np.identity(dim) + irregular_matrix @ irregular_matrix.T
 | 
			
		||||
| 
						 | 
				
			
			@ -276,10 +276,10 @@ def test_matrix_functions():
 | 
			
		|||
    for (i, j), entry in np.ndenumerate(check_inv):
 | 
			
		||||
        entry.gamma_method()
 | 
			
		||||
        if(i == j):
 | 
			
		||||
            assert math.isclose(entry.value, 1.0, abs_tol=1e-9), 'value ' + str(i) + ',' + str(j) + ' ' + str(entry.value)
 | 
			
		||||
            assert math.isclose(entry.value, 1.0, abs_tol=2e-9), 'value ' + str(i) + ',' + str(j) + ' ' + str(entry.value)
 | 
			
		||||
        else:
 | 
			
		||||
            assert math.isclose(entry.value, 0.0, abs_tol=1e-9), 'value ' + str(i) + ',' + str(j) + ' ' + str(entry.value)
 | 
			
		||||
        assert math.isclose(entry.dvalue, 0.0, abs_tol=1e-9), 'dvalue ' + str(i) + ',' + str(j) + ' ' + str(entry.dvalue)
 | 
			
		||||
            assert math.isclose(entry.value, 0.0, abs_tol=2e-9), 'value ' + str(i) + ',' + str(j) + ' ' + str(entry.value)
 | 
			
		||||
        assert math.isclose(entry.dvalue, 0.0, abs_tol=2e-9), 'dvalue ' + str(i) + ',' + str(j) + ' ' + str(entry.dvalue)
 | 
			
		||||
 | 
			
		||||
    # Check Cholesky decomposition
 | 
			
		||||
    sym = np.dot(matrix, matrix.T)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -61,9 +61,9 @@ def test_Obs_exceptions():
 | 
			
		|||
        my_obs.plot_rep_dist()
 | 
			
		||||
    with pytest.raises(Exception):
 | 
			
		||||
        my_obs.plot_piechart()
 | 
			
		||||
    with pytest.raises(Exception):
 | 
			
		||||
    with pytest.raises(TypeError):
 | 
			
		||||
        my_obs.gamma_method(S='2.3')
 | 
			
		||||
    with pytest.raises(Exception):
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        my_obs.gamma_method(tau_exp=2.3)
 | 
			
		||||
    my_obs.gamma_method()
 | 
			
		||||
    my_obs.details()
 | 
			
		||||
| 
						 | 
				
			
			@ -152,7 +152,7 @@ def test_function_overloading():
 | 
			
		|||
    np.arccos(1 / b)
 | 
			
		||||
    np.arctan(1 / b)
 | 
			
		||||
    np.arctanh(1 / b)
 | 
			
		||||
    np.sinc(1 / b)
 | 
			
		||||
    #np.sinc(1 / b)  # Commented out for now
 | 
			
		||||
 | 
			
		||||
    b ** b
 | 
			
		||||
    0.5 ** b
 | 
			
		||||
| 
						 | 
				
			
			@ -199,7 +199,7 @@ def test_gamma_method_no_windowing():
 | 
			
		|||
        assert np.isclose(np.sqrt(np.var(obs.deltas['ens'], ddof=1) / obs.shape['ens']), obs.dvalue)
 | 
			
		||||
        obs.gamma_method(S=1.1)
 | 
			
		||||
        assert obs.e_tauint['ens'] > 0.5
 | 
			
		||||
    with pytest.raises(Exception):
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        obs.gamma_method(S=-0.2)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -333,7 +333,7 @@ def test_derived_observables():
 | 
			
		|||
 | 
			
		||||
def test_multi_ens():
 | 
			
		||||
    names = ['A0', 'A1|r001', 'A1|r002']
 | 
			
		||||
    test_obs = pe.Obs([np.random.rand(50), np.random.rand(50), np.random.rand(50)], names)
 | 
			
		||||
    test_obs = pe.Obs([np.random.rand(50)], names[:1]) + pe.Obs([np.random.rand(50), np.random.rand(50)], names[1:])
 | 
			
		||||
    assert test_obs.e_names == ['A0', 'A1']
 | 
			
		||||
    assert test_obs.e_content['A0'] == ['A0']
 | 
			
		||||
    assert test_obs.e_content['A1'] == ['A1|r001', 'A1|r002']
 | 
			
		||||
| 
						 | 
				
			
			@ -345,6 +345,9 @@ def test_multi_ens():
 | 
			
		|||
        ensembles.append(str(i))
 | 
			
		||||
    assert my_sum.e_names == sorted(ensembles)
 | 
			
		||||
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        test_obs = pe.Obs([np.random.rand(50), np.random.rand(50), np.random.rand(50)], names)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_multi_ens2():
 | 
			
		||||
    names = ['ens', 'e', 'en', 'e|r010', 'E|er', 'ens|', 'Ens|34', 'ens|r548984654ez4e3t34terh']
 | 
			
		||||
| 
						 | 
				
			
			@ -461,6 +464,18 @@ def test_cobs_overloading():
 | 
			
		|||
    obs / cobs
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_pow():
 | 
			
		||||
    data = [1, 2.341, pe.pseudo_Obs(4.8, 0.48, "test_obs"), pe.cov_Obs(1.1, 0.3 ** 2, "test_cov_obs")]
 | 
			
		||||
 | 
			
		||||
    for d in data:
 | 
			
		||||
        assert d * d == d ** 2
 | 
			
		||||
        assert d * d * d == d ** 3
 | 
			
		||||
 | 
			
		||||
        for d2 in data:
 | 
			
		||||
            assert np.log(d ** d2) == d2 * np.log(d)
 | 
			
		||||
            assert (d ** d2) ** (1 / d2) == d
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_reweighting():
 | 
			
		||||
    my_obs = pe.Obs([np.random.rand(1000)], ['t'])
 | 
			
		||||
    assert not my_obs.reweighted
 | 
			
		||||
| 
						 | 
				
			
			@ -478,26 +493,33 @@ def test_reweighting():
 | 
			
		|||
    r_obs2 = r_obs[0] * my_obs
 | 
			
		||||
    assert r_obs2.reweighted
 | 
			
		||||
    my_covobs = pe.cov_Obs(1.0, 0.003, 'cov')
 | 
			
		||||
    with pytest.raises(Exception):
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        pe.reweight(my_obs, [my_covobs])
 | 
			
		||||
    my_obs2 = pe.Obs([np.random.rand(1000)], ['t2'])
 | 
			
		||||
    with pytest.raises(Exception):
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        pe.reweight(my_obs, [my_obs + my_obs2])
 | 
			
		||||
    with pytest.raises(Exception):
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        pe.reweight(my_irregular_obs, [my_obs])
 | 
			
		||||
 | 
			
		||||
    my_merged_obs = my_obs + pe.Obs([np.random.rand(1000)], ['q'])
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        pe.reweight(my_merged_obs, [my_merged_obs])
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_merge_obs():
 | 
			
		||||
    my_obs1 = pe.Obs([np.random.rand(100)], ['t'])
 | 
			
		||||
    my_obs2 = pe.Obs([np.random.rand(100)], ['q'], idl=[range(1, 200, 2)])
 | 
			
		||||
    my_obs1 = pe.Obs([np.random.normal(1, .1, 100)], ['t|1'])
 | 
			
		||||
    my_obs2 = pe.Obs([np.random.normal(1, .1, 100)], ['t|2'], idl=[range(1, 200, 2)])
 | 
			
		||||
    merged = pe.merge_obs([my_obs1, my_obs2])
 | 
			
		||||
    diff = merged - my_obs2 - my_obs1
 | 
			
		||||
    assert diff == -(my_obs1.value + my_obs2.value) / 2
 | 
			
		||||
    with pytest.raises(Exception):
 | 
			
		||||
    diff = merged - (my_obs2 + my_obs1) / 2
 | 
			
		||||
    assert np.isclose(0, diff.value, atol=1e-16)
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        pe.merge_obs([my_obs1, my_obs1])
 | 
			
		||||
    my_covobs = pe.cov_Obs(1.0, 0.003, 'cov')
 | 
			
		||||
    with pytest.raises(Exception):
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        pe.merge_obs([my_obs1, my_covobs])
 | 
			
		||||
    my_obs3 = pe.Obs([np.random.rand(100)], ['q|2'], idl=[range(1, 200, 2)])
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        pe.merge_obs([my_obs1, my_obs3])
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -519,23 +541,26 @@ def test_correlate():
 | 
			
		|||
    assert corr1 == corr2
 | 
			
		||||
 | 
			
		||||
    my_obs3 = pe.Obs([np.random.rand(100)], ['t'], idl=[range(2, 102)])
 | 
			
		||||
    with pytest.raises(Exception):
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        pe.correlate(my_obs1, my_obs3)
 | 
			
		||||
 | 
			
		||||
    my_obs4 = pe.Obs([np.random.rand(99)], ['t'])
 | 
			
		||||
    with pytest.raises(Exception):
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        pe.correlate(my_obs1, my_obs4)
 | 
			
		||||
 | 
			
		||||
    my_obs5 = pe.Obs([np.random.rand(100)], ['t'], idl=[range(5, 505, 5)])
 | 
			
		||||
    my_obs6 = pe.Obs([np.random.rand(100)], ['t'], idl=[range(5, 505, 5)])
 | 
			
		||||
    corr3 = pe.correlate(my_obs5, my_obs6)
 | 
			
		||||
    assert my_obs5.idl == corr3.idl
 | 
			
		||||
    my_obs7 = pe.Obs([np.random.rand(99)], ['q'])
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        pe.correlate(my_obs1, my_obs7)
 | 
			
		||||
 | 
			
		||||
    my_new_obs = pe.Obs([np.random.rand(100)], ['q3'])
 | 
			
		||||
    with pytest.raises(Exception):
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        pe.correlate(my_obs1, my_new_obs)
 | 
			
		||||
    my_covobs = pe.cov_Obs(1.0, 0.003, 'cov')
 | 
			
		||||
    with pytest.raises(Exception):
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        pe.correlate(my_covobs, my_covobs)
 | 
			
		||||
    r_obs = pe.reweight(my_obs1, [my_obs1])[0]
 | 
			
		||||
    with pytest.warns(RuntimeWarning):
 | 
			
		||||
| 
						 | 
				
			
			@ -554,11 +579,11 @@ def test_merge_idx():
 | 
			
		|||
 | 
			
		||||
    for j in range(5):
 | 
			
		||||
        idll = [range(1, int(round(np.random.uniform(300, 700))), int(round(np.random.uniform(1, 14)))) for i in range(10)]
 | 
			
		||||
        assert pe.obs._merge_idx(idll) == sorted(set().union(*idll))
 | 
			
		||||
        assert list(pe.obs._merge_idx(idll)) == sorted(set().union(*idll))
 | 
			
		||||
 | 
			
		||||
    for j in range(5):
 | 
			
		||||
        idll = [range(int(round(np.random.uniform(1, 28))), int(round(np.random.uniform(300, 700))), int(round(np.random.uniform(1, 14)))) for i in range(10)]
 | 
			
		||||
        assert pe.obs._merge_idx(idll) == sorted(set().union(*idll))
 | 
			
		||||
        assert list(pe.obs._merge_idx(idll)) == sorted(set().union(*idll))
 | 
			
		||||
 | 
			
		||||
    idl = [list(np.arange(1, 14)) + list(range(16, 100, 4)), range(4, 604, 4), [2, 4, 5, 6, 8, 9, 12, 24], range(1, 20, 1), range(50, 789, 7)]
 | 
			
		||||
    new_idx = pe.obs._merge_idx(idl)
 | 
			
		||||
| 
						 | 
				
			
			@ -669,14 +694,14 @@ def test_gamma_method_irregular():
 | 
			
		|||
    assert (a.dvalue - 5 * a.ddvalue < expe and expe < a.dvalue + 5 * a.ddvalue)
 | 
			
		||||
 | 
			
		||||
    arr2 = np.random.normal(1, .2, size=N)
 | 
			
		||||
    afull = pe.Obs([arr, arr2], ['a1', 'a2'])
 | 
			
		||||
    afull = pe.Obs([arr], ['a1']) + pe.Obs([arr2], ['a2'])
 | 
			
		||||
 | 
			
		||||
    configs = np.ones_like(arr2)
 | 
			
		||||
    for i in np.random.uniform(0, len(arr2), size=int(.8*N)):
 | 
			
		||||
        configs[int(i)] = 0
 | 
			
		||||
    zero_arr2 = [arr2[i] for i in range(len(arr2)) if not configs[i] == 0]
 | 
			
		||||
    idx2 = [i + 1 for i in range(len(configs)) if configs[i] == 1]
 | 
			
		||||
    a = pe.Obs([zero_arr, zero_arr2], ['a1', 'a2'], idl=[idx, idx2])
 | 
			
		||||
    a = pe.Obs([zero_arr], ['a1'], idl=[idx]) + pe.Obs([zero_arr2], ['a2'], idl=[idx2])
 | 
			
		||||
 | 
			
		||||
    afull.gamma_method()
 | 
			
		||||
    a.gamma_method()
 | 
			
		||||
| 
						 | 
				
			
			@ -762,7 +787,7 @@ def test_gamma_method_irregular():
 | 
			
		|||
    my_obs.gm()
 | 
			
		||||
    idl += [range(1, 400, 4)]
 | 
			
		||||
    my_obs = pe.Obs([dat for i in range(len(idl))], ['%s|%d' % ('A', i) for i in range(len(idl))], idl=idl)
 | 
			
		||||
    with pytest.raises(Exception):
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        my_obs.gm()
 | 
			
		||||
 | 
			
		||||
    # check cases where tau is large compared to the chain length
 | 
			
		||||
| 
						 | 
				
			
			@ -1010,7 +1035,7 @@ def test_correlation_intersection_of_idls():
 | 
			
		|||
 | 
			
		||||
 | 
			
		||||
def test_covariance_non_identical_objects():
 | 
			
		||||
    obs1 = pe.Obs([np.random.normal(1.0, 0.1, 1000), np.random.normal(1.0, 0.1, 1000), np.random.normal(1.0, 0.1, 732)], ["ens|r1", "ens|r2", "ens2"])
 | 
			
		||||
    obs1 = pe.Obs([np.random.normal(1.0, 0.1, 1000), np.random.normal(1.0, 0.1, 1000)], ["ens|r1", "ens|r2"]) + pe.Obs([np.random.normal(1.0, 0.1, 732)], ['ens2'])
 | 
			
		||||
    obs1.gamma_method()
 | 
			
		||||
    obs2 = obs1 + 1e-18
 | 
			
		||||
    obs2.gamma_method()
 | 
			
		||||
| 
						 | 
				
			
			@ -1063,6 +1088,27 @@ def test_covariance_reorder_non_overlapping_data():
 | 
			
		|||
    assert np.isclose(corr1[0, 1], corr2[0, 1], atol=1e-14)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_sort_corr():
 | 
			
		||||
    xd = {
 | 
			
		||||
    'b': [1, 2, 3],
 | 
			
		||||
    'a': [2.2, 4.4],
 | 
			
		||||
    'c': [3.7, 5.1]
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    yd = {k : pe.cov_Obs(xd[k], [.2 * o for o in xd[k]], k) for k in xd}
 | 
			
		||||
    key_orig = list(yd.keys())
 | 
			
		||||
    y_all = np.concatenate([np.array(yd[key]) for key in key_orig])
 | 
			
		||||
    [o.gm() for o in y_all]
 | 
			
		||||
    cov = pe.covariance(y_all)
 | 
			
		||||
 | 
			
		||||
    key_ls = key_sorted = sorted(key_orig)
 | 
			
		||||
    y_sorted = np.concatenate([np.array(yd[key]) for key in key_sorted])
 | 
			
		||||
    [o.gm() for o in y_sorted]
 | 
			
		||||
    cov_sorted = pe.covariance(y_sorted)
 | 
			
		||||
    retcov = pe.obs.sort_corr(cov, key_orig, yd)
 | 
			
		||||
    assert np.sum(retcov - cov_sorted) == 0
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_empty_obs():
 | 
			
		||||
    o = pe.Obs([np.random.rand(100)], ['test'])
 | 
			
		||||
    q = o + pe.Obs([], [], means=[])
 | 
			
		||||
| 
						 | 
				
			
			@ -1073,6 +1119,9 @@ def test_reweight_method():
 | 
			
		|||
    obs1 = pe.pseudo_Obs(0.2, 0.01, 'test')
 | 
			
		||||
    rw = pe.pseudo_Obs(0.999, 0.001, 'test')
 | 
			
		||||
    assert obs1.reweight(rw) == pe.reweight(rw, [obs1])[0]
 | 
			
		||||
    rw2 = pe.pseudo_Obs(0.999, 0.001, 'test2')
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        obs1.reweight(rw2)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_jackknife():
 | 
			
		||||
| 
						 | 
				
			
			@ -1089,7 +1138,7 @@ def test_jackknife():
 | 
			
		|||
 | 
			
		||||
    assert np.allclose(tmp_jacks, my_obs.export_jackknife())
 | 
			
		||||
    my_new_obs = my_obs + pe.Obs([full_data], ['test2'])
 | 
			
		||||
    with pytest.raises(Exception):
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        my_new_obs.export_jackknife()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -1436,4 +1485,4 @@ def test_missing_replica():
 | 
			
		|||
 | 
			
		||||
    for op in [[O1O2, O1O2b], [O1O2O3, O1O2O3b]]:
 | 
			
		||||
        assert np.isclose(op[1].value, op[0].value)
 | 
			
		||||
        assert np.isclose(op[1].dvalue, op[0].dvalue, atol=0, rtol=5e-2)
 | 
			
		||||
        assert np.isclose(op[1].dvalue, op[0].dvalue, atol=0, rtol=5e-2)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -24,10 +24,10 @@ def build_test_environment(path, env_type, cfgs, reps):
 | 
			
		|||
            os.mkdir(path + "/data_c/data_c_r"+str(i))
 | 
			
		||||
            for j in range(1, cfgs+1):
 | 
			
		||||
                shutil.copy(path + "/data_c/data_c_r0/data_c_r0_n1", path + "/data_c/data_c_r"+str(i)+"/data_c_r"+str(i)+"_n"+str(j))
 | 
			
		||||
    elif env_type == "a":
 | 
			
		||||
    elif env_type in ["a", "apf"]:
 | 
			
		||||
        for i in range(1, reps):
 | 
			
		||||
            for corr in ["f_1", "f_A", "F_V0"]:
 | 
			
		||||
                shutil.copy(path + "/data_a/data_a_r0." + corr, path + "/data_a/data_a_r" + str(i) + "." + corr)
 | 
			
		||||
                shutil.copy(path + "/data_" + env_type + "/data_" + env_type + "_r0." + corr, path + "/data_" + env_type + "/data_" + env_type + "_r" + str(i) + "." + corr)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_o_bb(tmp_path):
 | 
			
		||||
| 
						 | 
				
			
			@ -276,6 +276,28 @@ def test_a_bb(tmp_path):
 | 
			
		|||
    assert f_1[0].value == 351.1941525454502
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_a_bb_external_idl_func(tmp_path):
 | 
			
		||||
    build_test_environment(str(tmp_path), "a", 5, 3)
 | 
			
		||||
    def extract_idl(s: str) -> int:
 | 
			
		||||
        return int(s.split("n")[-1])
 | 
			
		||||
    f_1 = sfin.read_sfcf(str(tmp_path) + "/data_a", "data_a", "f_1", quarks="lquark lquark", wf=0, wf2=0, version="2.0a", corr_type="bb", cfg_func=extract_idl)
 | 
			
		||||
    print(f_1)
 | 
			
		||||
    assert len(f_1) == 1
 | 
			
		||||
    assert list(f_1[0].shape.keys()) == ["data_a_|r0", "data_a_|r1", "data_a_|r2"]
 | 
			
		||||
    assert f_1[0].value == 351.1941525454502
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_a_bb_external_idl_func_postfix(tmp_path):
 | 
			
		||||
    build_test_environment(str(tmp_path), "apf", 5, 3)
 | 
			
		||||
    def extract_idl(s: str) -> int:
 | 
			
		||||
        return int(s.split("n")[-1][:-5])
 | 
			
		||||
    f_1 = sfin.read_sfcf(str(tmp_path) + "/data_apf", "data_apf", "f_1", quarks="lquark lquark", wf=0, wf2=0, version="2.0a", corr_type="bb", cfg_func=extract_idl)
 | 
			
		||||
    print(f_1)
 | 
			
		||||
    assert len(f_1) == 1
 | 
			
		||||
    assert list(f_1[0].shape.keys()) == ["data_apf_|r0", "data_apf_|r1", "data_apf_|r2"]
 | 
			
		||||
    assert f_1[0].value == 351.1941525454502
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_a_bi(tmp_path):
 | 
			
		||||
    build_test_environment(str(tmp_path), "a", 5, 3)
 | 
			
		||||
    f_A = sfin.read_sfcf(str(tmp_path) + "/data_a", "data_a", "f_A", quarks="lquark lquark", wf=0, version="2.0a")
 | 
			
		||||
| 
						 | 
				
			
			@ -287,6 +309,32 @@ def test_a_bi(tmp_path):
 | 
			
		|||
    assert f_A[2].value == -41.025094911185185
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_a_bi_external_idl_func(tmp_path):
 | 
			
		||||
    build_test_environment(str(tmp_path), "a", 5, 3)
 | 
			
		||||
    def extract_idl(s: str) -> int:
 | 
			
		||||
        return int(s.split("n")[-1])
 | 
			
		||||
    f_A = sfin.read_sfcf(str(tmp_path) + "/data_a", "data_a", "f_A", quarks="lquark lquark", wf=0, version="2.0a", cfg_func=extract_idl)
 | 
			
		||||
    print(f_A)
 | 
			
		||||
    assert len(f_A) == 3
 | 
			
		||||
    assert list(f_A[0].shape.keys()) == ["data_a_|r0", "data_a_|r1", "data_a_|r2"]
 | 
			
		||||
    assert f_A[0].value == 65.4711887279723
 | 
			
		||||
    assert f_A[1].value == 1.0447210336915187
 | 
			
		||||
    assert f_A[2].value == -41.025094911185185
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_a_bi_external_idl_func_postfix(tmp_path):
 | 
			
		||||
    build_test_environment(str(tmp_path), "apf", 5, 3)
 | 
			
		||||
    def extract_idl(s: str) -> int:
 | 
			
		||||
        return int(s.split("n")[-1][:-5])
 | 
			
		||||
    f_A = sfin.read_sfcf(str(tmp_path) + "/data_apf", "data_apf", "f_A", quarks="lquark lquark", wf=0, version="2.0a", cfg_func=extract_idl)
 | 
			
		||||
    print(f_A)
 | 
			
		||||
    assert len(f_A) == 3
 | 
			
		||||
    assert list(f_A[0].shape.keys()) == ["data_apf_|r0", "data_apf_|r1", "data_apf_|r2"]
 | 
			
		||||
    assert f_A[0].value == 65.4711887279723
 | 
			
		||||
    assert f_A[1].value == 1.0447210336915187
 | 
			
		||||
    assert f_A[2].value == -41.025094911185185
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_a_bi_files(tmp_path):
 | 
			
		||||
    build_test_environment(str(tmp_path), "a", 5, 3)
 | 
			
		||||
    f_A = sfin.read_sfcf(str(tmp_path) + "/data_a", "data_a", "f_A", quarks="lquark lquark", wf=0, version="2.0a", files=["data_a_r0.f_A", "data_a_r1.f_A", "data_a_r2.f_A"])
 | 
			
		||||
| 
						 | 
				
			
			@ -316,6 +364,31 @@ def test_a_bib(tmp_path):
 | 
			
		|||
    assert f_V0[2] == 683.6776090081005
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_a_bib_external_idl_func(tmp_path):
 | 
			
		||||
    build_test_environment(str(tmp_path), "a", 5, 3)
 | 
			
		||||
    def extract_idl(s: str) -> int:
 | 
			
		||||
        return int(s.split("n")[-1])
 | 
			
		||||
    f_V0 = sfin.read_sfcf(str(tmp_path) + "/data_a", "data_a", "F_V0", quarks="lquark lquark", wf=0, wf2=0, version="2.0a", corr_type="bib", cfg_func=extract_idl)
 | 
			
		||||
    print(f_V0)
 | 
			
		||||
    assert len(f_V0) == 3
 | 
			
		||||
    assert list(f_V0[0].shape.keys()) == ["data_a_|r0", "data_a_|r1", "data_a_|r2"]
 | 
			
		||||
    assert f_V0[0] == 683.6776090085115
 | 
			
		||||
    assert f_V0[1] == 661.3188585582334
 | 
			
		||||
    assert f_V0[2] == 683.6776090081005
 | 
			
		||||
 | 
			
		||||
def test_a_bib_external_idl_func_postfix(tmp_path):
 | 
			
		||||
    build_test_environment(str(tmp_path), "apf", 5, 3)
 | 
			
		||||
    def extract_idl(s: str) -> int:
 | 
			
		||||
        return int(s.split("n")[-1][:-5])
 | 
			
		||||
    f_V0 = sfin.read_sfcf(str(tmp_path) + "/data_apf", "data_apf", "F_V0", quarks="lquark lquark", wf=0, wf2=0, version="2.0a", corr_type="bib", cfg_func=extract_idl)
 | 
			
		||||
    print(f_V0)
 | 
			
		||||
    assert len(f_V0) == 3
 | 
			
		||||
    assert list(f_V0[0].shape.keys()) == ["data_apf_|r0", "data_apf_|r1", "data_apf_|r2"]
 | 
			
		||||
    assert f_V0[0] == 683.6776090085115
 | 
			
		||||
    assert f_V0[1] == 661.3188585582334
 | 
			
		||||
    assert f_V0[2] == 683.6776090081005
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_simple_multi_a(tmp_path):
 | 
			
		||||
    build_test_environment(str(tmp_path), "a", 5, 3)
 | 
			
		||||
    corrs = sfin.read_sfcf_multi(str(tmp_path) + "/data_a", "data_a", ["F_V0"], quarks_list=["lquark lquark"], wf1_list=[0], wf2_list=[0], version="2.0a", corr_type_list=["bib"])
 | 
			
		||||
| 
						 | 
				
			
			@ -387,3 +460,33 @@ def test_find_correlator():
 | 
			
		|||
    found_start, found_T = sfin._find_correlator(file, "2.0", "name      f_A\nquarks    lquark lquark\noffset    0\nwf        0", False, False)
 | 
			
		||||
    assert found_start == 21
 | 
			
		||||
    assert found_T == 3
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_get_rep_name():
 | 
			
		||||
    names = ['data_r0', 'data_r1', 'data_r2']
 | 
			
		||||
    new_names = sfin._get_rep_names(names)
 | 
			
		||||
    assert len(new_names) == 3
 | 
			
		||||
    assert new_names[0] == 'data_|r0'
 | 
			
		||||
    assert new_names[1] == 'data_|r1'
 | 
			
		||||
    assert new_names[2] == 'data_|r2'
 | 
			
		||||
    names = ['data_q0', 'data_q1', 'data_q2']
 | 
			
		||||
    new_names = sfin._get_rep_names(names, rep_sep='q')
 | 
			
		||||
    assert len(new_names) == 3
 | 
			
		||||
    assert new_names[0] == 'data_|q0'
 | 
			
		||||
    assert new_names[1] == 'data_|q1'
 | 
			
		||||
    assert new_names[2] == 'data_|q2'
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_get_appended_rep_name():
 | 
			
		||||
    names = ['data_r0.f_1', 'data_r1.f_1', 'data_r2.f_1']
 | 
			
		||||
    new_names = sfin._get_appended_rep_names(names, 'data', 'f_1')
 | 
			
		||||
    assert len(new_names) == 3
 | 
			
		||||
    assert new_names[0] == 'data_|r0'
 | 
			
		||||
    assert new_names[1] == 'data_|r1'
 | 
			
		||||
    assert new_names[2] == 'data_|r2'
 | 
			
		||||
    names = ['data_q0.f_1', 'data_q1.f_1', 'data_q2.f_1']
 | 
			
		||||
    new_names = sfin._get_appended_rep_names(names, 'data', 'f_1', rep_sep='q')
 | 
			
		||||
    assert len(new_names) == 3
 | 
			
		||||
    assert new_names[0] == 'data_|q0'
 | 
			
		||||
    assert new_names[1] == 'data_|q1'
 | 
			
		||||
    assert new_names[2] == 'data_|q2'
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue