Compare commits

..

No commits in common. "develop" and "v2.13.0" have entirely different histories.

25 changed files with 243 additions and 366 deletions

View file

@ -27,17 +27,17 @@ jobs:
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
- name: uv
uses: astral-sh/setup-uv@v5
- name: Install
run: |
sudo apt-get update
sudo apt-get install dvipng texlive-latex-extra texlive-fonts-recommended cm-super
uv pip install wheel --system
uv pip install . --system
uv pip install pytest nbmake --system
uv pip install -U matplotlib!=3.7.0 --system # Exclude version 3.7.0 of matplotlib as this breaks local imports of style files.
python -m pip install --upgrade pip
pip install wheel
pip install .
pip install pytest
pip install nbmake
pip install -U matplotlib!=3.7.0 # Exclude version 3.7.0 of matplotlib as this breaks local imports of style files.
- name: Run tests
run: pytest -vv --nbmake examples/*.ipynb

View file

@ -20,9 +20,7 @@ jobs:
python-version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
include:
- os: macos-latest
python-version: "3.12"
- os: ubuntu-24.04-arm
python-version: "3.12"
python-version: "3.10"
steps:
- name: Checkout source
@ -32,15 +30,17 @@ jobs:
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
- name: uv
uses: astral-sh/setup-uv@v5
- name: Install
run: |
uv pip install wheel --system
uv pip install . --system
uv pip install pytest pytest-cov pytest-benchmark hypothesis --system
uv pip freeze --system
python -m pip install --upgrade pip
pip install wheel
pip install .
pip install pytest
pip install pytest-cov
pip install pytest-benchmark
pip install hypothesis
pip freeze
- name: Run tests
run: pytest --cov=pyerrors -vv

View file

@ -1,15 +0,0 @@
name: ruff
on:
push:
branches:
- master
- develop
pull_request:
jobs:
ruff:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: astral-sh/ruff-action@v2
with:
src: "./pyerrors"

View file

@ -2,21 +2,6 @@
All notable changes to this project will be documented in this file.
## [2.14.0] - 2025-03-09
### Added
- Explicit checks of the provided inverse matrix for correlated fits #259
### Changed
- Compute derivative for pow explicitly instead of relying on autograd. This results in a ~4x speedup for pow operations #246
- More explicit exception types #248
### Fixed
- Removed the possibility to create an Obs from data on several replica #258
- Fix range in `set_prange` #247
- Fix ensemble name handling in sfcf input modules #253
- Correct error message for fit shape mismatch #257
## [2.13.0] - 2024-11-03
### Added

View file

@ -1,4 +1,4 @@
[![](https://img.shields.io/badge/python-3.9+-blue.svg)](https://www.python.org/downloads/) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![arXiv](https://img.shields.io/badge/arXiv-2209.14371-b31b1b.svg)](https://arxiv.org/abs/2209.14371) [![DOI](https://img.shields.io/badge/DOI-10.1016%2Fj.cpc.2023.108750-blue)](https://doi.org/10.1016/j.cpc.2023.108750)
[![pytest](https://github.com/fjosw/pyerrors/actions/workflows/pytest.yml/badge.svg)](https://github.com/fjosw/pyerrors/actions/workflows/pytest.yml) [![](https://img.shields.io/badge/python-3.9+-blue.svg)](https://www.python.org/downloads/) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![arXiv](https://img.shields.io/badge/arXiv-2209.14371-b31b1b.svg)](https://arxiv.org/abs/2209.14371) [![DOI](https://img.shields.io/badge/DOI-10.1016%2Fj.cpc.2023.108750-blue)](https://doi.org/10.1016/j.cpc.2023.108750)
# pyerrors
`pyerrors` is a python framework for error computation and propagation of Markov chain Monte Carlo data from lattice field theory and statistical mechanics simulations.
@ -14,6 +14,11 @@ Install the most recent release using pip and [pypi](https://pypi.org/project/py
python -m pip install pyerrors # Fresh install
python -m pip install -U pyerrors # Update
```
Install the most recent release using conda and [conda-forge](https://anaconda.org/conda-forge/pyerrors):
```bash
conda install -c conda-forge pyerrors # Fresh install
conda update -c conda-forge pyerrors # Update
```
## Contributing
We appreciate all contributions to the code, the documentation and the examples. If you want to get involved please have a look at our [contribution guideline](https://github.com/fjosw/pyerrors/blob/develop/CONTRIBUTING.md).

View file

@ -481,12 +481,12 @@ from .obs import *
from .correlators import *
from .fits import *
from .misc import *
from . import dirac as dirac
from . import input as input
from . import linalg as linalg
from . import mpm as mpm
from . import roots as roots
from . import integrate as integrate
from . import special as special
from . import dirac
from . import input
from . import linalg
from . import mpm
from . import roots
from . import integrate
from . import special
from .version import __version__ as __version__
from .version import __version__

View file

@ -101,7 +101,7 @@ class Corr:
self.N = 1
elif all([isinstance(item, np.ndarray) or item is None for item in data_input]) and any([isinstance(item, np.ndarray) for item in data_input]):
self.content = data_input
noNull = [a for a in self.content if a is not None] # To check if the matrices are correct for all undefined elements
noNull = [a for a in self.content if not (a is None)] # To check if the matrices are correct for all undefined elements
self.N = noNull[0].shape[0]
if self.N > 1 and noNull[0].shape[0] != noNull[0].shape[1]:
raise ValueError("Smearing matrices are not NxN.")
@ -141,7 +141,7 @@ class Corr:
def gamma_method(self, **kwargs):
"""Apply the gamma method to the content of the Corr."""
for item in self.content:
if item is not None:
if not (item is None):
if self.N == 1:
item[0].gamma_method(**kwargs)
else:
@ -159,7 +159,7 @@ class Corr:
By default it will return the lowest source, which usually means unsmeared-unsmeared (0,0), but it does not have to
"""
if self.N == 1:
raise ValueError("Trying to project a Corr, that already has N=1.")
raise Exception("Trying to project a Corr, that already has N=1.")
if vector_l is None:
vector_l, vector_r = np.asarray([1.] + (self.N - 1) * [0.]), np.asarray([1.] + (self.N - 1) * [0.])
@ -167,16 +167,16 @@ class Corr:
vector_r = vector_l
if isinstance(vector_l, list) and not isinstance(vector_r, list):
if len(vector_l) != self.T:
raise ValueError("Length of vector list must be equal to T")
raise Exception("Length of vector list must be equal to T")
vector_r = [vector_r] * self.T
if isinstance(vector_r, list) and not isinstance(vector_l, list):
if len(vector_r) != self.T:
raise ValueError("Length of vector list must be equal to T")
raise Exception("Length of vector list must be equal to T")
vector_l = [vector_l] * self.T
if not isinstance(vector_l, list):
if not vector_l.shape == vector_r.shape == (self.N,):
raise ValueError("Vectors are of wrong shape!")
raise Exception("Vectors are of wrong shape!")
if normalize:
vector_l, vector_r = vector_l / np.sqrt((vector_l @ vector_l)), vector_r / np.sqrt(vector_r @ vector_r)
newcontent = [None if _check_for_none(self, item) else np.asarray([vector_l.T @ item @ vector_r]) for item in self.content]
@ -201,7 +201,7 @@ class Corr:
Second index to be picked.
"""
if self.N == 1:
raise ValueError("Trying to pick item from projected Corr")
raise Exception("Trying to pick item from projected Corr")
newcontent = [None if (item is None) else item[i, j] for item in self.content]
return Corr(newcontent)
@ -212,8 +212,8 @@ class Corr:
timeslice and the error on each timeslice.
"""
if self.N != 1:
raise ValueError("Can only make Corr[N=1] plottable")
x_list = [x for x in range(self.T) if self.content[x] is not None]
raise Exception("Can only make Corr[N=1] plottable")
x_list = [x for x in range(self.T) if not self.content[x] is None]
y_list = [y[0].value for y in self.content if y is not None]
y_err_list = [y[0].dvalue for y in self.content if y is not None]
@ -222,9 +222,9 @@ class Corr:
def symmetric(self):
""" Symmetrize the correlator around x0=0."""
if self.N != 1:
raise ValueError('symmetric cannot be safely applied to multi-dimensional correlators.')
raise Exception('symmetric cannot be safely applied to multi-dimensional correlators.')
if self.T % 2 != 0:
raise ValueError("Can not symmetrize odd T")
raise Exception("Can not symmetrize odd T")
if self.content[0] is not None:
if np.argmax(np.abs([o[0].value if o is not None else 0 for o in self.content])) != 0:
@ -237,7 +237,7 @@ class Corr:
else:
newcontent.append(0.5 * (self.content[t] + self.content[self.T - t]))
if (all([x is None for x in newcontent])):
raise ValueError("Corr could not be symmetrized: No redundant values")
raise Exception("Corr could not be symmetrized: No redundant values")
return Corr(newcontent, prange=self.prange)
def anti_symmetric(self):
@ -245,7 +245,7 @@ class Corr:
if self.N != 1:
raise TypeError('anti_symmetric cannot be safely applied to multi-dimensional correlators.')
if self.T % 2 != 0:
raise ValueError("Can not symmetrize odd T")
raise Exception("Can not symmetrize odd T")
test = 1 * self
test.gamma_method()
@ -259,7 +259,7 @@ class Corr:
else:
newcontent.append(0.5 * (self.content[t] - self.content[self.T - t]))
if (all([x is None for x in newcontent])):
raise ValueError("Corr could not be symmetrized: No redundant values")
raise Exception("Corr could not be symmetrized: No redundant values")
return Corr(newcontent, prange=self.prange)
def is_matrix_symmetric(self):
@ -292,7 +292,7 @@ class Corr:
def matrix_symmetric(self):
"""Symmetrizes the correlator matrices on every timeslice."""
if self.N == 1:
raise ValueError("Trying to symmetrize a correlator matrix, that already has N=1.")
raise Exception("Trying to symmetrize a correlator matrix, that already has N=1.")
if self.is_matrix_symmetric():
return 1.0 * self
else:
@ -336,10 +336,10 @@ class Corr:
'''
if self.N == 1:
raise ValueError("GEVP methods only works on correlator matrices and not single correlators.")
raise Exception("GEVP methods only works on correlator matrices and not single correlators.")
if ts is not None:
if (ts <= t0):
raise ValueError("ts has to be larger than t0.")
raise Exception("ts has to be larger than t0.")
if "sorted_list" in kwargs:
warnings.warn("Argument 'sorted_list' is deprecated, use 'sort' instead.", DeprecationWarning)
@ -371,9 +371,9 @@ class Corr:
if sort is None:
if (ts is None):
raise ValueError("ts is required if sort=None.")
raise Exception("ts is required if sort=None.")
if (self.content[t0] is None) or (self.content[ts] is None):
raise ValueError("Corr not defined at t0/ts.")
raise Exception("Corr not defined at t0/ts.")
Gt = _get_mat_at_t(ts)
reordered_vecs = _GEVP_solver(Gt, G0, method=method, chol_inv=chol_inv)
if kwargs.get('auto_gamma', False) and vector_obs:
@ -391,14 +391,14 @@ class Corr:
all_vecs.append(None)
if sort == "Eigenvector":
if ts is None:
raise ValueError("ts is required for the Eigenvector sorting method.")
raise Exception("ts is required for the Eigenvector sorting method.")
all_vecs = _sort_vectors(all_vecs, ts)
reordered_vecs = [[v[s] if v is not None else None for v in all_vecs] for s in range(self.N)]
if kwargs.get('auto_gamma', False) and vector_obs:
[[[o.gm() for o in evn] for evn in ev if evn is not None] for ev in reordered_vecs]
else:
raise ValueError("Unknown value for 'sort'. Choose 'Eigenvalue', 'Eigenvector' or None.")
raise Exception("Unknown value for 'sort'. Choose 'Eigenvalue', 'Eigenvector' or None.")
if "state" in kwargs:
return reordered_vecs[kwargs.get("state")]
@ -435,7 +435,7 @@ class Corr:
"""
if self.N != 1:
raise NotImplementedError("Multi-operator Prony not implemented!")
raise Exception("Multi-operator Prony not implemented!")
array = np.empty([N, N], dtype="object")
new_content = []
@ -502,7 +502,7 @@ class Corr:
correlator or a Corr of same length.
"""
if self.N != 1:
raise ValueError("Only one-dimensional correlators can be safely correlated.")
raise Exception("Only one-dimensional correlators can be safely correlated.")
new_content = []
for x0, t_slice in enumerate(self.content):
if _check_for_none(self, t_slice):
@ -516,7 +516,7 @@ class Corr:
elif isinstance(partner, Obs): # Should this include CObs?
new_content.append(np.array([correlate(o, partner) for o in t_slice]))
else:
raise TypeError("Can only correlate with an Obs or a Corr.")
raise Exception("Can only correlate with an Obs or a Corr.")
return Corr(new_content)
@ -583,7 +583,7 @@ class Corr:
Available choice: symmetric, forward, backward, improved, log, default: symmetric
"""
if self.N != 1:
raise ValueError("deriv only implemented for one-dimensional correlators.")
raise Exception("deriv only implemented for one-dimensional correlators.")
if variant == "symmetric":
newcontent = []
for t in range(1, self.T - 1):
@ -592,7 +592,7 @@ class Corr:
else:
newcontent.append(0.5 * (self.content[t + 1] - self.content[t - 1]))
if (all([x is None for x in newcontent])):
raise ValueError('Derivative is undefined at all timeslices')
raise Exception('Derivative is undefined at all timeslices')
return Corr(newcontent, padding=[1, 1])
elif variant == "forward":
newcontent = []
@ -602,7 +602,7 @@ class Corr:
else:
newcontent.append(self.content[t + 1] - self.content[t])
if (all([x is None for x in newcontent])):
raise ValueError("Derivative is undefined at all timeslices")
raise Exception("Derivative is undefined at all timeslices")
return Corr(newcontent, padding=[0, 1])
elif variant == "backward":
newcontent = []
@ -612,7 +612,7 @@ class Corr:
else:
newcontent.append(self.content[t] - self.content[t - 1])
if (all([x is None for x in newcontent])):
raise ValueError("Derivative is undefined at all timeslices")
raise Exception("Derivative is undefined at all timeslices")
return Corr(newcontent, padding=[1, 0])
elif variant == "improved":
newcontent = []
@ -622,7 +622,7 @@ class Corr:
else:
newcontent.append((1 / 12) * (self.content[t - 2] - 8 * self.content[t - 1] + 8 * self.content[t + 1] - self.content[t + 2]))
if (all([x is None for x in newcontent])):
raise ValueError('Derivative is undefined at all timeslices')
raise Exception('Derivative is undefined at all timeslices')
return Corr(newcontent, padding=[2, 2])
elif variant == 'log':
newcontent = []
@ -632,11 +632,11 @@ class Corr:
else:
newcontent.append(np.log(self.content[t]))
if (all([x is None for x in newcontent])):
raise ValueError("Log is undefined at all timeslices")
raise Exception("Log is undefined at all timeslices")
logcorr = Corr(newcontent)
return self * logcorr.deriv('symmetric')
else:
raise ValueError("Unknown variant.")
raise Exception("Unknown variant.")
def second_deriv(self, variant="symmetric"):
r"""Return the second derivative of the correlator with respect to x0.
@ -656,7 +656,7 @@ class Corr:
$$f(x) = \tilde{\partial}^2_0 log(f(x_0))+(\tilde{\partial}_0 log(f(x_0)))^2$$
"""
if self.N != 1:
raise ValueError("second_deriv only implemented for one-dimensional correlators.")
raise Exception("second_deriv only implemented for one-dimensional correlators.")
if variant == "symmetric":
newcontent = []
for t in range(1, self.T - 1):
@ -665,7 +665,7 @@ class Corr:
else:
newcontent.append((self.content[t + 1] - 2 * self.content[t] + self.content[t - 1]))
if (all([x is None for x in newcontent])):
raise ValueError("Derivative is undefined at all timeslices")
raise Exception("Derivative is undefined at all timeslices")
return Corr(newcontent, padding=[1, 1])
elif variant == "big_symmetric":
newcontent = []
@ -675,7 +675,7 @@ class Corr:
else:
newcontent.append((self.content[t + 2] - 2 * self.content[t] + self.content[t - 2]) / 4)
if (all([x is None for x in newcontent])):
raise ValueError("Derivative is undefined at all timeslices")
raise Exception("Derivative is undefined at all timeslices")
return Corr(newcontent, padding=[2, 2])
elif variant == "improved":
newcontent = []
@ -685,7 +685,7 @@ class Corr:
else:
newcontent.append((1 / 12) * (-self.content[t + 2] + 16 * self.content[t + 1] - 30 * self.content[t] + 16 * self.content[t - 1] - self.content[t - 2]))
if (all([x is None for x in newcontent])):
raise ValueError("Derivative is undefined at all timeslices")
raise Exception("Derivative is undefined at all timeslices")
return Corr(newcontent, padding=[2, 2])
elif variant == 'log':
newcontent = []
@ -695,11 +695,11 @@ class Corr:
else:
newcontent.append(np.log(self.content[t]))
if (all([x is None for x in newcontent])):
raise ValueError("Log is undefined at all timeslices")
raise Exception("Log is undefined at all timeslices")
logcorr = Corr(newcontent)
return self * (logcorr.second_deriv('symmetric') + (logcorr.deriv('symmetric'))**2)
else:
raise ValueError("Unknown variant.")
raise Exception("Unknown variant.")
def m_eff(self, variant='log', guess=1.0):
"""Returns the effective mass of the correlator as correlator object
@ -728,7 +728,7 @@ class Corr:
else:
newcontent.append(self.content[t] / self.content[t + 1])
if (all([x is None for x in newcontent])):
raise ValueError('m_eff is undefined at all timeslices')
raise Exception('m_eff is undefined at all timeslices')
return np.log(Corr(newcontent, padding=[0, 1]))
@ -742,7 +742,7 @@ class Corr:
else:
newcontent.append(self.content[t - 1] / self.content[t + 1])
if (all([x is None for x in newcontent])):
raise ValueError('m_eff is undefined at all timeslices')
raise Exception('m_eff is undefined at all timeslices')
return np.log(Corr(newcontent, padding=[1, 1])) / 2
@ -767,7 +767,7 @@ class Corr:
else:
newcontent.append(np.abs(find_root(self.content[t][0] / self.content[t + 1][0], root_function, guess=guess)))
if (all([x is None for x in newcontent])):
raise ValueError('m_eff is undefined at all timeslices')
raise Exception('m_eff is undefined at all timeslices')
return Corr(newcontent, padding=[0, 1])
@ -779,11 +779,11 @@ class Corr:
else:
newcontent.append((self.content[t + 1] + self.content[t - 1]) / (2 * self.content[t]))
if (all([x is None for x in newcontent])):
raise ValueError("m_eff is undefined at all timeslices")
raise Exception("m_eff is undefined at all timeslices")
return np.arccosh(Corr(newcontent, padding=[1, 1]))
else:
raise ValueError('Unknown variant.')
raise Exception('Unknown variant.')
def fit(self, function, fitrange=None, silent=False, **kwargs):
r'''Fits function to the data
@ -801,7 +801,7 @@ class Corr:
Decides whether output is printed to the standard output.
'''
if self.N != 1:
raise ValueError("Correlator must be projected before fitting")
raise Exception("Correlator must be projected before fitting")
if fitrange is None:
if self.prange:
@ -810,12 +810,12 @@ class Corr:
fitrange = [0, self.T - 1]
else:
if not isinstance(fitrange, list):
raise TypeError("fitrange has to be a list with two elements")
raise Exception("fitrange has to be a list with two elements")
if len(fitrange) != 2:
raise ValueError("fitrange has to have exactly two elements [fit_start, fit_stop]")
raise Exception("fitrange has to have exactly two elements [fit_start, fit_stop]")
xs = np.array([x for x in range(fitrange[0], fitrange[1] + 1) if self.content[x] is not None])
ys = np.array([self.content[x][0] for x in range(fitrange[0], fitrange[1] + 1) if self.content[x] is not None])
xs = np.array([x for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None])
ys = np.array([self.content[x][0] for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None])
result = least_squares(xs, ys, function, silent=silent, **kwargs)
return result
@ -840,9 +840,9 @@ class Corr:
else:
raise Exception("no plateau range provided")
if self.N != 1:
raise ValueError("Correlator must be projected before getting a plateau.")
raise Exception("Correlator must be projected before getting a plateau.")
if (all([self.content[t] is None for t in range(plateau_range[0], plateau_range[1] + 1)])):
raise ValueError("plateau is undefined at all timeslices in plateaurange.")
raise Exception("plateau is undefined at all timeslices in plateaurange.")
if auto_gamma:
self.gamma_method()
if method == "fit":
@ -854,16 +854,16 @@ class Corr:
return returnvalue
else:
raise ValueError("Unsupported plateau method: " + method)
raise Exception("Unsupported plateau method: " + method)
def set_prange(self, prange):
"""Sets the attribute prange of the Corr object."""
if not len(prange) == 2:
raise ValueError("prange must be a list or array with two values")
raise Exception("prange must be a list or array with two values")
if not ((isinstance(prange[0], int)) and (isinstance(prange[1], int))):
raise TypeError("Start and end point must be integers")
if not (0 <= prange[0] <= self.T and 0 <= prange[1] <= self.T and prange[0] <= prange[1]):
raise ValueError("Start and end point must define a range in the interval 0,T")
raise Exception("Start and end point must be integers")
if not (0 <= prange[0] <= self.T and 0 <= prange[1] <= self.T and prange[0] < prange[1]):
raise Exception("Start and end point must define a range in the interval 0,T")
self.prange = prange
return
@ -900,7 +900,7 @@ class Corr:
Optional title of the figure.
"""
if self.N != 1:
raise ValueError("Correlator must be projected before plotting")
raise Exception("Correlator must be projected before plotting")
if auto_gamma:
self.gamma_method()
@ -941,7 +941,7 @@ class Corr:
hide_from = None
ax1.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=corr.tag, mfc=plt.rcParams['axes.facecolor'])
else:
raise TypeError("'comp' must be a correlator or a list of correlators.")
raise Exception("'comp' must be a correlator or a list of correlators.")
if plateau:
if isinstance(plateau, Obs):
@ -950,14 +950,14 @@ class Corr:
ax1.axhline(y=plateau.value, linewidth=2, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--', label=str(plateau))
ax1.axhspan(plateau.value - plateau.dvalue, plateau.value + plateau.dvalue, alpha=0.25, color=plt.rcParams['text.color'], ls='-')
else:
raise TypeError("'plateau' must be an Obs")
raise Exception("'plateau' must be an Obs")
if references:
if isinstance(references, list):
for ref in references:
ax1.axhline(y=ref, linewidth=1, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--')
else:
raise TypeError("'references' must be a list of floating pint values.")
raise Exception("'references' must be a list of floating pint values.")
if self.prange:
ax1.axvline(self.prange[0], 0, 1, ls='-', marker=',', color="black", zorder=0)
@ -991,7 +991,7 @@ class Corr:
if isinstance(save, str):
fig.savefig(save, bbox_inches='tight')
else:
raise TypeError("'save' has to be a string.")
raise Exception("'save' has to be a string.")
def spaghetti_plot(self, logscale=True):
"""Produces a spaghetti plot of the correlator suited to monitor exceptional configurations.
@ -1002,7 +1002,7 @@ class Corr:
Determines whether the scale of the y-axis is logarithmic or standard.
"""
if self.N != 1:
raise ValueError("Correlator needs to be projected first.")
raise Exception("Correlator needs to be projected first.")
mc_names = list(set([item for sublist in [sum(map(o[0].e_content.get, o[0].mc_names), []) for o in self.content if o is not None] for item in sublist]))
x0_vals = [n for (n, o) in zip(np.arange(self.T), self.content) if o is not None]
@ -1044,7 +1044,7 @@ class Corr:
elif datatype == "pickle":
dump_object(self, filename, **kwargs)
else:
raise ValueError("Unknown datatype " + str(datatype))
raise Exception("Unknown datatype " + str(datatype))
def print(self, print_range=None):
print(self.__repr__(print_range))
@ -1094,7 +1094,7 @@ class Corr:
def __add__(self, y):
if isinstance(y, Corr):
if ((self.N != y.N) or (self.T != y.T)):
raise ValueError("Addition of Corrs with different shape")
raise Exception("Addition of Corrs with different shape")
newcontent = []
for t in range(self.T):
if _check_for_none(self, self.content[t]) or _check_for_none(y, y.content[t]):
@ -1122,7 +1122,7 @@ class Corr:
def __mul__(self, y):
if isinstance(y, Corr):
if not ((self.N == 1 or y.N == 1 or self.N == y.N) and self.T == y.T):
raise ValueError("Multiplication of Corr object requires N=N or N=1 and T=T")
raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T")
newcontent = []
for t in range(self.T):
if _check_for_none(self, self.content[t]) or _check_for_none(y, y.content[t]):
@ -1193,7 +1193,7 @@ class Corr:
def __truediv__(self, y):
if isinstance(y, Corr):
if not ((self.N == 1 or y.N == 1 or self.N == y.N) and self.T == y.T):
raise ValueError("Multiplication of Corr object requires N=N or N=1 and T=T")
raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T")
newcontent = []
for t in range(self.T):
if _check_for_none(self, self.content[t]) or _check_for_none(y, y.content[t]):
@ -1207,16 +1207,16 @@ class Corr:
newcontent[t] = None
if all([item is None for item in newcontent]):
raise ValueError("Division returns completely undefined correlator")
raise Exception("Division returns completely undefined correlator")
return Corr(newcontent)
elif isinstance(y, (Obs, CObs)):
if isinstance(y, Obs):
if y.value == 0:
raise ValueError('Division by zero will return undefined correlator')
raise Exception('Division by zero will return undefined correlator')
if isinstance(y, CObs):
if y.is_zero():
raise ValueError('Division by zero will return undefined correlator')
raise Exception('Division by zero will return undefined correlator')
newcontent = []
for t in range(self.T):
@ -1228,7 +1228,7 @@ class Corr:
elif isinstance(y, (int, float)):
if y == 0:
raise ValueError('Division by zero will return undefined correlator')
raise Exception('Division by zero will return undefined correlator')
newcontent = []
for t in range(self.T):
if _check_for_none(self, self.content[t]):
@ -1284,7 +1284,7 @@ class Corr:
if np.isnan(tmp_sum.value):
newcontent[t] = None
if all([item is None for item in newcontent]):
raise ValueError('Operation returns undefined correlator')
raise Exception('Operation returns undefined correlator')
return Corr(newcontent)
def sin(self):
@ -1392,13 +1392,13 @@ class Corr:
'''
if self.N == 1:
raise ValueError('Method cannot be applied to one-dimensional correlators.')
raise Exception('Method cannot be applied to one-dimensional correlators.')
if basematrix is None:
basematrix = self
if Ntrunc >= basematrix.N:
raise ValueError('Cannot truncate using Ntrunc <= %d' % (basematrix.N))
raise Exception('Cannot truncate using Ntrunc <= %d' % (basematrix.N))
if basematrix.N != self.N:
raise ValueError('basematrix and targetmatrix have to be of the same size.')
raise Exception('basematrix and targetmatrix have to be of the same size.')
evecs = basematrix.GEVP(t0proj, tproj, sort=None)[:Ntrunc]

View file

@ -34,7 +34,7 @@ def epsilon_tensor(i, j, k):
"""
test_set = set((i, j, k))
if not (test_set <= set((1, 2, 3)) or test_set <= set((0, 1, 2))):
raise ValueError("Unexpected input", i, j, k)
raise Exception("Unexpected input", i, j, k)
return (i - j) * (j - k) * (k - i) / 2
@ -52,7 +52,7 @@ def epsilon_tensor_rank4(i, j, k, o):
"""
test_set = set((i, j, k, o))
if not (test_set <= set((1, 2, 3, 4)) or test_set <= set((0, 1, 2, 3))):
raise ValueError("Unexpected input", i, j, k, o)
raise Exception("Unexpected input", i, j, k, o)
return (i - j) * (j - k) * (k - i) * (i - o) * (j - o) * (o - k) / 12
@ -92,5 +92,5 @@ def Grid_gamma(gamma_tag):
elif gamma_tag == 'SigmaZT':
g = 0.5 * (gamma[2] @ gamma[3] - gamma[3] @ gamma[2])
else:
raise ValueError('Unkown gamma structure', gamma_tag)
raise Exception('Unkown gamma structure', gamma_tag)
return g

View file

@ -293,7 +293,7 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs):
if len(key_ls) > 1:
for key in key_ls:
if np.asarray(yd[key]).shape != funcd[key](np.arange(n_parms), xd[key]).shape:
raise ValueError(f"Fit function {key} returns the wrong shape ({funcd[key](np.arange(n_parms), xd[key]).shape} instead of {np.asarray(yd[key]).shape})\nIf the fit function is just a constant you could try adding x*0 to get the correct shape.")
raise ValueError(f"Fit function {key} returns the wrong shape ({funcd[key](np.arange(n_parms), xd[key]).shape} instead of {xd[key].shape})\nIf the fit function is just a constant you could try adding x*0 to get the correct shape.")
if not silent:
print('Fit with', n_parms, 'parameter' + 's' * (n_parms > 1))
@ -365,8 +365,6 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs):
if (chol_inv[1] != key_ls):
raise ValueError('The keys of inverse covariance matrix are not the same or do not appear in the same order as the x and y values.')
chol_inv = chol_inv[0]
if np.any(np.diag(chol_inv) <= 0) or (not np.all(chol_inv == np.tril(chol_inv))):
raise ValueError('The inverse covariance matrix inv_chol_cov_matrix[0] has to be a lower triangular matrix constructed from a Cholesky decomposition.')
else:
corr = covariance(y_all, correlation=True, **kwargs)
inverrdiag = np.diag(1 / np.asarray(dy_f))

View file

@ -5,11 +5,11 @@ r'''
For comparison with other analysis workflows `pyerrors` can also generate jackknife samples from an `Obs` object or import jackknife samples into an `Obs` object.
See `pyerrors.obs.Obs.export_jackknife` and `pyerrors.obs.import_jackknife` for details.
'''
from . import bdio as bdio
from . import dobs as dobs
from . import hadrons as hadrons
from . import json as json
from . import misc as misc
from . import openQCD as openQCD
from . import pandas as pandas
from . import sfcf as sfcf
from . import bdio
from . import dobs
from . import hadrons
from . import json
from . import misc
from . import openQCD
from . import pandas
from . import sfcf

View file

@ -79,7 +79,7 @@ def _dict_to_xmlstring_spaces(d, space=' '):
o += space
o += li + '\n'
if li.startswith('<') and not cm:
if '<%s' % ('/') not in li:
if not '<%s' % ('/') in li:
c += 1
cm = False
return o
@ -529,8 +529,7 @@ def import_dobs_string(content, full_output=False, separator_insertion=True):
deltas.append(repdeltas)
idl.append(repidl)
obsmeans = [np.average(deltas[j]) for j in range(len(deltas))]
res.append(Obs([np.array(deltas[j]) - obsmeans[j] for j in range(len(obsmeans))], obs_names, idl=idl, means=obsmeans))
res.append(Obs(deltas, obs_names, idl=idl))
res[-1]._value = mean[i]
_check(len(e_names) == ne)
@ -672,7 +671,7 @@ def _dobsdict_to_xmlstring_spaces(d, space=' '):
o += space
o += li + '\n'
if li.startswith('<') and not cm:
if '<%s' % ('/') not in li:
if not '<%s' % ('/') in li:
c += 1
cm = False
return o

View file

@ -113,7 +113,7 @@ def read_hd5(filestem, ens_id, group, attrs=None, idl=None, part="real"):
infos = []
for hd5_file in files:
h5file = h5py.File(path + '/' + hd5_file, "r")
if group + '/' + entry not in h5file:
if not group + '/' + entry in h5file:
raise Exception("Entry '" + entry + "' not contained in the files.")
raw_data = h5file[group + '/' + entry + '/corr']
real_data = raw_data[:].view("complex")
@ -186,7 +186,7 @@ def _extract_real_arrays(path, files, tree, keys):
for hd5_file in files:
h5file = h5py.File(path + '/' + hd5_file, "r")
for key in keys:
if tree + '/' + key not in h5file:
if not tree + '/' + key in h5file:
raise Exception("Entry '" + key + "' not contained in the files.")
raw_data = h5file[tree + '/' + key + '/data']
real_data = raw_data[:].astype(np.double)

View file

@ -133,11 +133,10 @@ def create_json_string(ol, description='', indent=1):
names = []
idl = []
for key, value in obs.idl.items():
samples.append(np.array([np.nan] * len(value)))
samples.append([np.nan] * len(value))
names.append(key)
idl.append(value)
my_obs = Obs(samples, names, idl, means=[np.nan for n in names])
my_obs._value = np.nan
my_obs = Obs(samples, names, idl)
my_obs._covobs = obs._covobs
for name in obs._covobs:
my_obs.names.append(name)
@ -332,8 +331,7 @@ def _parse_json_dict(json_dict, verbose=True, full_output=False):
cd = _gen_covobsd_from_cdatad(o.get('cdata', {}))
if od:
r_offsets = [np.average([ddi[0] for ddi in di]) for di in od['deltas']]
ret = Obs([np.array([ddi[0] for ddi in od['deltas'][i]]) - r_offsets[i] for i in range(len(od['deltas']))], od['names'], idl=od['idl'], means=[ro + values[0] for ro in r_offsets])
ret = Obs([[ddi[0] + values[0] for ddi in di] for di in od['deltas']], od['names'], idl=od['idl'])
ret._value = values[0]
else:
ret = Obs([], [], means=[])
@ -358,8 +356,7 @@ def _parse_json_dict(json_dict, verbose=True, full_output=False):
taglist = o.get('tag', layout * [None])
for i in range(layout):
if od:
r_offsets = np.array([np.average(di[:, i]) for di in od['deltas']])
ret.append(Obs([od['deltas'][j][:, i] - r_offsets[j] for j in range(len(od['deltas']))], od['names'], idl=od['idl'], means=[ro + values[i] for ro in r_offsets]))
ret.append(Obs([list(di[:, i] + values[i]) for di in od['deltas']], od['names'], idl=od['idl']))
ret[-1]._value = values[i]
else:
ret.append(Obs([], [], means=[]))
@ -386,8 +383,7 @@ def _parse_json_dict(json_dict, verbose=True, full_output=False):
taglist = o.get('tag', N * [None])
for i in range(N):
if od:
r_offsets = np.array([np.average(di[:, i]) for di in od['deltas']])
ret.append(Obs([od['deltas'][j][:, i] - r_offsets[j] for j in range(len(od['deltas']))], od['names'], idl=od['idl'], means=[ro + values[i] for ro in r_offsets]))
ret.append(Obs([di[:, i] + values[i] for di in od['deltas']], od['names'], idl=od['idl']))
ret[-1]._value = values[i]
else:
ret.append(Obs([], [], means=[]))

View file

@ -47,7 +47,7 @@ def read_rwms(path, prefix, version='2.0', names=None, **kwargs):
Reweighting factors read
"""
known_oqcd_versions = ['1.4', '1.6', '2.0']
if version not in known_oqcd_versions:
if not (version in known_oqcd_versions):
raise Exception('Unknown openQCD version defined!')
print("Working with openQCD version " + version)
if 'postfix' in kwargs:

View file

@ -127,8 +127,7 @@ def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list=
check_configs: list[list[int]]
list of list of supposed configs, eg. [range(1,1000)]
for one replicum with 1000 configs
rep_string: str
Separator of ensemble name and replicum. Example: In "ensAr0", "r" would be the separator string.
Returns
-------
result: dict[list[Obs]]
@ -200,9 +199,9 @@ def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list=
else:
ens_name = kwargs.get("ens_name")
if not appended:
new_names = _get_rep_names(ls, ens_name, rep_sep=(kwargs.get('rep_string', 'r')))
new_names = _get_rep_names(ls, ens_name)
else:
new_names = _get_appended_rep_names(ls, prefix, name_list[0], ens_name, rep_sep=(kwargs.get('rep_string', 'r')))
new_names = _get_appended_rep_names(ls, prefix, name_list[0], ens_name)
new_names = sort_names(new_names)
idl = []
@ -647,22 +646,22 @@ def _read_append_rep(filename, pattern, b2b, cfg_separator, im, single):
return T, rep_idl, data
def _get_rep_names(ls, ens_name=None, rep_sep='r'):
def _get_rep_names(ls, ens_name=None):
new_names = []
for entry in ls:
try:
idx = entry.index(rep_sep)
idx = entry.index('r')
except Exception:
raise Exception("Automatic recognition of replicum failed, please enter the key word 'names'.")
if ens_name:
new_names.append(ens_name + '|' + entry[idx:])
new_names.append('ens_name' + '|' + entry[idx:])
else:
new_names.append(entry[:idx] + '|' + entry[idx:])
return new_names
def _get_appended_rep_names(ls, prefix, name, ens_name=None, rep_sep='r'):
def _get_appended_rep_names(ls, prefix, name, ens_name=None):
new_names = []
for exc in ls:
if not fnmatch.fnmatch(exc, prefix + '*.' + name):
@ -671,12 +670,12 @@ def _get_appended_rep_names(ls, prefix, name, ens_name=None, rep_sep='r'):
for entry in ls:
myentry = entry[:-len(name) - 1]
try:
idx = myentry.index(rep_sep)
idx = myentry.index('r')
except Exception:
raise Exception("Automatic recognition of replicum failed, please enter the key word 'names'.")
if ens_name:
new_names.append(ens_name + '|' + entry[idx:])
new_names.append('ens_name' + '|' + entry[idx:])
else:
new_names.append(myentry[:idx] + '|' + myentry[idx:])
return new_names

View file

@ -82,8 +82,6 @@ class Obs:
raise ValueError('Names are not unique.')
if not all(isinstance(x, str) for x in names):
raise TypeError('All names have to be strings.')
if len(set([o.split('|')[0] for o in names])) > 1:
raise ValueError('Cannot initialize Obs based on multiple ensembles. Please average separate Obs from each ensemble.')
else:
if not isinstance(names[0], str):
raise TypeError('All names have to be strings.')
@ -224,7 +222,7 @@ class Obs:
tmp = kwargs.get(kwarg_name)
if isinstance(tmp, (int, float)):
if tmp < 0:
raise ValueError(kwarg_name + ' has to be larger or equal to 0.')
raise Exception(kwarg_name + ' has to be larger or equal to 0.')
for e, e_name in enumerate(self.e_names):
getattr(self, kwarg_name)[e_name] = tmp
else:
@ -293,7 +291,7 @@ class Obs:
texp = self.tau_exp[e_name]
# Critical slowing down analysis
if w_max // 2 <= 1:
raise ValueError("Need at least 8 samples for tau_exp error analysis")
raise Exception("Need at least 8 samples for tau_exp error analysis")
for n in range(1, w_max // 2):
_compute_drho(n + 1)
if (self.e_rho[e_name][n] - self.N_sigma[e_name] * self.e_drho[e_name][n]) < 0 or n >= w_max // 2 - 2:
@ -622,7 +620,7 @@ class Obs:
if not hasattr(self, 'e_dvalue'):
raise Exception('Run the gamma method first.')
if np.isclose(0.0, self._dvalue, atol=1e-15):
raise ValueError('Error is 0.0')
raise Exception('Error is 0.0')
labels = self.e_names
sizes = [self.e_dvalue[name] ** 2 for name in labels] / self._dvalue ** 2
fig1, ax1 = plt.subplots()
@ -661,7 +659,7 @@ class Obs:
with open(file_name + '.p', 'wb') as fb:
pickle.dump(self, fb)
else:
raise TypeError("Unknown datatype " + str(datatype))
raise Exception("Unknown datatype " + str(datatype))
def export_jackknife(self):
"""Export jackknife samples from the Obs
@ -678,7 +676,7 @@ class Obs:
"""
if len(self.names) != 1:
raise ValueError("'export_jackknife' is only implemented for Obs defined on one ensemble and replicum.")
raise Exception("'export_jackknife' is only implemented for Obs defined on one ensemble and replicum.")
name = self.names[0]
full_data = self.deltas[name] + self.r_values[name]
@ -713,7 +711,7 @@ class Obs:
should agree with samples from a full bootstrap analysis up to O(1/N).
"""
if len(self.names) != 1:
raise ValueError("'export_boostrap' is only implemented for Obs defined on one ensemble and replicum.")
raise Exception("'export_boostrap' is only implemented for Obs defined on one ensemble and replicum.")
name = self.names[0]
length = self.N
@ -858,12 +856,15 @@ class Obs:
def __pow__(self, y):
if isinstance(y, Obs):
return derived_observable(lambda x, **kwargs: x[0] ** x[1], [self, y], man_grad=[y.value * self.value ** (y.value - 1), self.value ** y.value * np.log(self.value)])
return derived_observable(lambda x: x[0] ** x[1], [self, y])
else:
return derived_observable(lambda x, **kwargs: x[0] ** y, [self], man_grad=[y * self.value ** (y - 1)])
return derived_observable(lambda x: x[0] ** y, [self])
def __rpow__(self, y):
return derived_observable(lambda x, **kwargs: y ** x[0], [self], man_grad=[y ** self.value * np.log(y)])
if isinstance(y, Obs):
return derived_observable(lambda x: x[0] ** x[1], [y, self])
else:
return derived_observable(lambda x: y ** x[0], [self])
def __abs__(self):
return derived_observable(lambda x: anp.abs(x[0]), [self])
@ -1269,7 +1270,7 @@ def derived_observable(func, data, array_mode=False, **kwargs):
if 'man_grad' in kwargs:
deriv = np.asarray(kwargs.get('man_grad'))
if new_values.shape + data.shape != deriv.shape:
raise ValueError('Manual derivative does not have correct shape.')
raise Exception('Manual derivative does not have correct shape.')
elif kwargs.get('num_grad') is True:
if multi > 0:
raise Exception('Multi mode currently not supported for numerical derivative')
@ -1335,7 +1336,7 @@ def derived_observable(func, data, array_mode=False, **kwargs):
new_covobs = {name: Covobs(0, allcov[name], name, grad=new_grad[name]) for name in new_grad}
if not set(new_covobs.keys()).isdisjoint(new_deltas.keys()):
raise ValueError('The same name has been used for deltas and covobs!')
raise Exception('The same name has been used for deltas and covobs!')
new_samples = []
new_means = []
new_idl = []
@ -1376,7 +1377,7 @@ def _reduce_deltas(deltas, idx_old, idx_new):
Has to be a subset of idx_old.
"""
if not len(deltas) == len(idx_old):
raise ValueError('Length of deltas and idx_old have to be the same: %d != %d' % (len(deltas), len(idx_old)))
raise Exception('Length of deltas and idx_old have to be the same: %d != %d' % (len(deltas), len(idx_old)))
if type(idx_old) is range and type(idx_new) is range:
if idx_old == idx_new:
return deltas
@ -1384,7 +1385,7 @@ def _reduce_deltas(deltas, idx_old, idx_new):
return deltas
indices = np.intersect1d(idx_old, idx_new, assume_unique=True, return_indices=True)[1]
if len(indices) < len(idx_new):
raise ValueError('Error in _reduce_deltas: Config of idx_new not in idx_old')
raise Exception('Error in _reduce_deltas: Config of idx_new not in idx_old')
return np.array(deltas)[indices]
@ -1406,14 +1407,12 @@ def reweight(weight, obs, **kwargs):
result = []
for i in range(len(obs)):
if len(obs[i].cov_names):
raise ValueError('Error: Not possible to reweight an Obs that contains covobs!')
raise Exception('Error: Not possible to reweight an Obs that contains covobs!')
if not set(obs[i].names).issubset(weight.names):
raise ValueError('Error: Ensembles do not fit')
if len(obs[i].mc_names) > 1 or len(weight.mc_names) > 1:
raise ValueError('Error: Cannot reweight an Obs that contains multiple ensembles.')
raise Exception('Error: Ensembles do not fit')
for name in obs[i].names:
if not set(obs[i].idl[name]).issubset(weight.idl[name]):
raise ValueError('obs[%d] has to be defined on a subset of the configs in weight.idl[%s]!' % (i, name))
raise Exception('obs[%d] has to be defined on a subset of the configs in weight.idl[%s]!' % (i, name))
new_samples = []
w_deltas = {}
for name in sorted(obs[i].names):
@ -1446,21 +1445,18 @@ def correlate(obs_a, obs_b):
-----
Keep in mind to only correlate primary observables which have not been reweighted
yet. The reweighting has to be applied after correlating the observables.
Only works if a single ensemble is present in the Obs.
Currently only works if ensemble content is identical (this is not strictly necessary).
Currently only works if ensembles are identical (this is not strictly necessary).
"""
if len(obs_a.mc_names) > 1 or len(obs_b.mc_names) > 1:
raise ValueError('Error: Cannot correlate Obs that contain multiple ensembles.')
if sorted(obs_a.names) != sorted(obs_b.names):
raise ValueError(f"Ensembles do not fit {set(sorted(obs_a.names)) ^ set(sorted(obs_b.names))}")
raise Exception(f"Ensembles do not fit {set(sorted(obs_a.names)) ^ set(sorted(obs_b.names))}")
if len(obs_a.cov_names) or len(obs_b.cov_names):
raise ValueError('Error: Not possible to correlate Obs that contain covobs!')
raise Exception('Error: Not possible to correlate Obs that contain covobs!')
for name in obs_a.names:
if obs_a.shape[name] != obs_b.shape[name]:
raise ValueError('Shapes of ensemble', name, 'do not fit')
raise Exception('Shapes of ensemble', name, 'do not fit')
if obs_a.idl[name] != obs_b.idl[name]:
raise ValueError('idl of ensemble', name, 'do not fit')
raise Exception('idl of ensemble', name, 'do not fit')
if obs_a.reweighted is True:
warnings.warn("The first observable is already reweighted.", RuntimeWarning)
@ -1562,7 +1558,7 @@ def invert_corr_cov_cholesky(corr, inverrdiag):
condn = np.linalg.cond(corr)
if condn > 0.1 / np.finfo(float).eps:
raise ValueError(f"Cannot invert correlation matrix as its condition number exceeds machine precision ({condn:1.2e})")
raise Exception(f"Cannot invert correlation matrix as its condition number exceeds machine precision ({condn:1.2e})")
if condn > 1e13:
warnings.warn("Correlation matrix may be ill-conditioned, condition number: {%1.2e}" % (condn), RuntimeWarning)
chol = np.linalg.cholesky(corr)
@ -1643,7 +1639,7 @@ def _smooth_eigenvalues(corr, E):
Number of eigenvalues to be left substantially unchanged
"""
if not (2 < E < corr.shape[0] - 1):
raise ValueError(f"'E' has to be between 2 and the dimension of the correlation matrix minus 1 ({corr.shape[0] - 1}).")
raise Exception(f"'E' has to be between 2 and the dimension of the correlation matrix minus 1 ({corr.shape[0] - 1}).")
vals, vec = np.linalg.eigh(corr)
lambda_min = np.mean(vals[:-E])
vals[vals < lambda_min] = lambda_min
@ -1762,11 +1758,7 @@ def import_bootstrap(boots, name, random_numbers):
def merge_obs(list_of_obs):
"""Combine all observables in list_of_obs into one new observable.
This allows to merge Obs that have been computed on multiple replica
of the same ensemble.
If you like to merge Obs that are based on several ensembles, please
average them yourself.
"""Combine all observables in list_of_obs into one new observable
Parameters
----------
@ -1779,9 +1771,9 @@ def merge_obs(list_of_obs):
"""
replist = [item for obs in list_of_obs for item in obs.names]
if (len(replist) == len(set(replist))) is False:
raise ValueError('list_of_obs contains duplicate replica: %s' % (str(replist)))
raise Exception('list_of_obs contains duplicate replica: %s' % (str(replist)))
if any([len(o.cov_names) for o in list_of_obs]):
raise ValueError('Not possible to merge data that contains covobs!')
raise Exception('Not possible to merge data that contains covobs!')
new_dict = {}
idl_dict = {}
for o in list_of_obs:
@ -1832,7 +1824,7 @@ def cov_Obs(means, cov, name, grad=None):
for i in range(len(means)):
ol.append(covobs_to_obs(Covobs(means[i], cov, name, pos=i, grad=grad)))
if ol[0].covobs[name].N != len(means):
raise ValueError('You have to provide %d mean values!' % (ol[0].N))
raise Exception('You have to provide %d mean values!' % (ol[0].N))
if len(ol) == 1:
return ol[0]
return ol
@ -1848,7 +1840,7 @@ def _determine_gap(o, e_content, e_name):
gap = min(gaps)
if not np.all([gi % gap == 0 for gi in gaps]):
raise ValueError(f"Replica for ensemble {e_name} do not have a common spacing.", gaps)
raise Exception(f"Replica for ensemble {e_name} do not have a common spacing.", gaps)
return gap

View file

@ -1 +1 @@
__version__ = "2.15.0-dev"
__version__ = "2.13.0"

View file

@ -1,6 +1,3 @@
[build-system]
requires = ["setuptools >= 63.0.0", "wheel"]
build-backend = "setuptools.build_meta"
[tool.ruff.lint]
ignore = ["F403"]

View file

@ -129,7 +129,7 @@ def test_m_eff():
with pytest.warns(RuntimeWarning):
my_corr.m_eff('sinh')
with pytest.raises(ValueError):
with pytest.raises(Exception):
my_corr.m_eff('unkown_variant')
@ -140,7 +140,7 @@ def test_m_eff_negative_values():
assert m_eff_log[padding + 1] is None
m_eff_cosh = my_corr.m_eff('cosh')
assert m_eff_cosh[padding + 1] is None
with pytest.raises(ValueError):
with pytest.raises(Exception):
my_corr.m_eff('logsym')
@ -155,7 +155,7 @@ def test_correlate():
my_corr = pe.correlators.Corr([pe.pseudo_Obs(10, 0.1, 't'), pe.pseudo_Obs(0, 0.05, 't')])
corr1 = my_corr.correlate(my_corr)
corr2 = my_corr.correlate(my_corr[0])
with pytest.raises(TypeError):
with pytest.raises(Exception):
corr3 = my_corr.correlate(7.3)
@ -176,9 +176,9 @@ def test_fit_correlator():
assert fit_res[0] == my_corr[0]
assert fit_res[1] == my_corr[1] - my_corr[0]
with pytest.raises(TypeError):
with pytest.raises(Exception):
my_corr.fit(f, "from 0 to 3")
with pytest.raises(ValueError):
with pytest.raises(Exception):
my_corr.fit(f, [0, 2, 3])
@ -256,11 +256,11 @@ def test_prange():
corr = pe.correlators.Corr(corr_content)
corr.set_prange([2, 4])
with pytest.raises(ValueError):
with pytest.raises(Exception):
corr.set_prange([2])
with pytest.raises(TypeError):
with pytest.raises(Exception):
corr.set_prange([2, 2.3])
with pytest.raises(ValueError):
with pytest.raises(Exception):
corr.set_prange([4, 1])

View file

@ -30,7 +30,7 @@ def test_grid_dirac():
'SigmaYZ',
'SigmaZT']:
pe.dirac.Grid_gamma(gamma)
with pytest.raises(ValueError):
with pytest.raises(Exception):
pe.dirac.Grid_gamma('Not a gamma matrix')
@ -44,7 +44,7 @@ def test_epsilon_tensor():
(1, 1, 3) : 0.0}
for key, value in check.items():
assert pe.dirac.epsilon_tensor(*key) == value
with pytest.raises(ValueError):
with pytest.raises(Exception):
pe.dirac.epsilon_tensor(0, 1, 3)
@ -59,5 +59,5 @@ def test_epsilon_tensor_rank4():
(1, 2, 3, 1) : 0.0}
for key, value in check.items():
assert pe.dirac.epsilon_tensor_rank4(*key) == value
with pytest.raises(ValueError):
with pytest.raises(Exception):
pe.dirac.epsilon_tensor_rank4(0, 1, 3, 4)

View file

@ -223,9 +223,6 @@ def test_inv_cov_matrix_input_least_squares():
diff_inv_cov_combined_fit.gamma_method()
assert(diff_inv_cov_combined_fit.is_zero(atol=1e-12))
with pytest.raises(ValueError):
pe.least_squares(x_dict, data_dict, fitf_dict, correlated_fit = True, inv_chol_cov_matrix = [corr,chol_inv_keys_combined_fit])
def test_least_squares_invalid_inv_cov_matrix_input():
xvals = []
yvals = []

View file

@ -12,7 +12,7 @@ def test_jsonio():
o = pe.pseudo_Obs(1.0, .2, 'one')
o2 = pe.pseudo_Obs(0.5, .1, 'two|r1')
o3 = pe.pseudo_Obs(0.5, .1, 'two|r2')
o4 = pe.merge_obs([o2, o3, pe.pseudo_Obs(0.5, .1, 'two|r3', samples=3221)])
o4 = pe.merge_obs([o2, o3])
otag = 'This has been merged!'
o4.tag = otag
do = o - .2 * o4
@ -101,8 +101,8 @@ def test_json_string_reconstruction():
def test_json_corr_io():
my_list = [pe.Obs([np.random.normal(1.0, 0.1, 100), np.random.normal(1.0, 0.1, 321)], ['ens1|r1', 'ens1|r2'], idl=[range(1, 201, 2), range(321)]) for o in range(8)]
rw_list = pe.reweight(pe.Obs([np.random.normal(1.0, 0.1, 100), np.random.normal(1.0, 0.1, 321)], ['ens1|r1', 'ens1|r2'], idl=[range(1, 201, 2), range(321)]), my_list)
my_list = [pe.Obs([np.random.normal(1.0, 0.1, 100)], ['ens1']) for o in range(8)]
rw_list = pe.reweight(pe.Obs([np.random.normal(1.0, 0.1, 100)], ['ens1']), my_list)
for obs_list in [my_list, rw_list]:
for tag in [None, "test"]:
@ -111,51 +111,40 @@ def test_json_corr_io():
for corr_tag in [None, 'my_Corr_tag']:
for prange in [None, [3, 6]]:
for gap in [False, True]:
for mult in [1., pe.cov_Obs([12.22, 1.21], [.212**2, .11**2], 'renorm')[0]]:
my_corr = mult * pe.Corr(obs_list, padding=[pad, pad], prange=prange)
my_corr.tag = corr_tag
if gap:
my_corr.content[4] = None
pe.input.json.dump_to_json(my_corr, 'corr')
recover = pe.input.json.load_json('corr')
os.remove('corr.json.gz')
assert np.all([o.is_zero() for o in [x for x in (my_corr - recover) if x is not None]])
for index, entry in enumerate(my_corr):
if entry is None:
assert recover[index] is None
assert my_corr.tag == recover.tag
assert my_corr.prange == recover.prange
assert my_corr.reweighted == recover.reweighted
my_corr = pe.Corr(obs_list, padding=[pad, pad], prange=prange)
my_corr.tag = corr_tag
if gap:
my_corr.content[4] = None
pe.input.json.dump_to_json(my_corr, 'corr')
recover = pe.input.json.load_json('corr')
os.remove('corr.json.gz')
assert np.all([o.is_zero() for o in [x for x in (my_corr - recover) if x is not None]])
for index, entry in enumerate(my_corr):
if entry is None:
assert recover[index] is None
assert my_corr.tag == recover.tag
assert my_corr.prange == recover.prange
assert my_corr.reweighted == recover.reweighted
def test_json_corr_2d_io():
obs_list = [np.array([
[
pe.merge_obs([pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test|r2'), pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test|r1', samples=321)]),
pe.merge_obs([pe.pseudo_Obs(0.0, 0.1 * i, 'test|r2'), pe.pseudo_Obs(0.0, 0.1 * i, 'test|r1', samples=321)]),
],
[
pe.merge_obs([pe.pseudo_Obs(0.0, 0.1 * i, 'test|r2'), pe.pseudo_Obs(0.0, 0.1 * i, 'test|r1', samples=321),]),
pe.merge_obs([pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test|r2'), pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test|r1', samples=321)]),
],
]) for i in range(4)]
obs_list = [np.array([[pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test'), pe.pseudo_Obs(0.0, 0.1 * i, 'test')], [pe.pseudo_Obs(0.0, 0.1 * i, 'test'), pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test')]]) for i in range(4)]
for tag in [None, "test"]:
obs_list[3][0, 1].tag = tag
for padding in [0, 1]:
for prange in [None, [3, 6]]:
for mult in [1., pe.cov_Obs([12.22, 1.21], [.212**2, .11**2], 'renorm')[0]]:
my_corr = mult * pe.Corr(obs_list, padding=[padding, padding], prange=prange)
my_corr.tag = tag
pe.input.json.dump_to_json(my_corr, 'corr')
recover = pe.input.json.load_json('corr')
os.remove('corr.json.gz')
assert np.all([np.all([o.is_zero() for o in q]) for q in [x.ravel() for x in (my_corr - recover) if x is not None]])
for index, entry in enumerate(my_corr):
if entry is None:
assert recover[index] is None
assert my_corr.tag == recover.tag
assert my_corr.prange == recover.prange
my_corr = pe.Corr(obs_list, padding=[padding, padding], prange=prange)
my_corr.tag = tag
pe.input.json.dump_to_json(my_corr, 'corr')
recover = pe.input.json.load_json('corr')
os.remove('corr.json.gz')
assert np.all([np.all([o.is_zero() for o in q]) for q in [x.ravel() for x in (my_corr - recover) if x is not None]])
for index, entry in enumerate(my_corr):
if entry is None:
assert recover[index] is None
assert my_corr.tag == recover.tag
assert my_corr.prange == recover.prange
def test_json_dict_io():
@ -222,7 +211,6 @@ def test_json_dict_io():
'd': pe.pseudo_Obs(.01, .001, 'testd', samples=10) * pe.cov_Obs(1, .01, 'cov1'),
'se': None,
'sf': 1.2,
'k': pe.cov_Obs(.1, .001**2, 'cov') * pe.merge_obs([pe.pseudo_Obs(1.0, 0.1, 'test|r2'), pe.pseudo_Obs(1.0, 0.1, 'test|r1', samples=321)]),
}
}
@ -326,7 +314,7 @@ def test_dobsio():
o2 = pe.pseudo_Obs(0.5, .1, 'two|r1')
o3 = pe.pseudo_Obs(0.5, .1, 'two|r2')
o4 = pe.merge_obs([o2, o3, pe.pseudo_Obs(0.5, .1, 'two|r3', samples=3221)])
o4 = pe.merge_obs([o2, o3])
otag = 'This has been merged!'
o4.tag = otag
do = o - .2 * o4
@ -340,7 +328,7 @@ def test_dobsio():
o5 /= co2[0]
o5.tag = 2 * otag
tt1 = pe.Obs([np.random.rand(100), np.random.rand(102)], ['t|r1', 't|r2'], idl=[range(2, 202, 2), range(22, 226, 2)])
tt1 = pe.Obs([np.random.rand(100), np.random.rand(100)], ['t|r1', 't|r2'], idl=[range(2, 202, 2), range(22, 222, 2)])
tt3 = pe.Obs([np.random.rand(102)], ['qe|r1'])
tt = tt1 + tt3
@ -349,7 +337,7 @@ def test_dobsio():
tt4 = pe.Obs([np.random.rand(100), np.random.rand(100)], ['t|r1', 't|r2'], idl=[range(1, 101, 1), range(2, 202, 2)])
ol = [o2, o3, o4, do, o5, tt, tt4, np.log(tt4 / o5**2), np.exp(o5 + np.log(co3 / tt3 + o4) / tt), o4.reweight(o4)]
ol = [o2, o3, o4, do, o5, tt, tt4, np.log(tt4 / o5**2), np.exp(o5 + np.log(co3 / tt3 + o4) / tt)]
print(ol)
fname = 'test_rw'
@ -374,12 +362,9 @@ def test_dobsio():
def test_reconstruct_non_linear_r_obs(tmp_path):
to = (
pe.Obs([np.random.rand(500), np.random.rand(1200)],
["e|r1", "e|r2", ],
idl=[range(1, 501), range(0, 1200)])
+ pe.Obs([np.random.rand(111)], ["my_new_ensemble_54^£$|8'[@124435%6^7&()~#"], idl=[range(1, 999, 9)])
)
to = pe.Obs([np.random.rand(500), np.random.rand(500), np.random.rand(111)],
["e|r1", "e|r2", "my_new_ensemble_54^£$|8'[@124435%6^7&()~#"],
idl=[range(1, 501), range(0, 500), range(1, 999, 9)])
to = np.log(to ** 2) / to
to.dump((tmp_path / "test_equality").as_posix())
ro = pe.input.json.load_json((tmp_path / "test_equality").as_posix())
@ -387,12 +372,9 @@ def test_reconstruct_non_linear_r_obs(tmp_path):
def test_reconstruct_non_linear_r_obs_list(tmp_path):
to = (
pe.Obs([np.random.rand(500), np.random.rand(1200)],
["e|r1", "e|r2", ],
idl=[range(1, 501), range(0, 1200)])
+ pe.Obs([np.random.rand(111)], ["my_new_ensemble_54^£$|8'[@124435%6^7&()~#"], idl=[range(1, 999, 9)])
)
to = pe.Obs([np.random.rand(500), np.random.rand(500), np.random.rand(111)],
["e|r1", "e|r2", "my_new_ensemble_54^£$|8'[@124435%6^7&()~#"],
idl=[range(1, 501), range(0, 500), range(1, 999, 9)])
to = np.log(to ** 2) / to
for to_list in [[to, to, to], np.array([to, to, to])]:
pe.input.json.dump_to_json(to_list, (tmp_path / "test_equality_list").as_posix())

View file

@ -34,7 +34,7 @@ def test_matmul():
my_list = []
length = 100 + np.random.randint(200)
for i in range(dim ** 2):
my_list.append(pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2']))
my_list.append(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']))
my_array = const * np.array(my_list).reshape((dim, dim))
tt = pe.linalg.matmul(my_array, my_array) - my_array @ my_array
for t, e in np.ndenumerate(tt):
@ -43,8 +43,8 @@ def test_matmul():
my_list = []
length = 100 + np.random.randint(200)
for i in range(dim ** 2):
my_list.append(pe.CObs(pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2']),
pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2'])))
my_list.append(pe.CObs(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']),
pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2'])))
my_array = np.array(my_list).reshape((dim, dim)) * const
tt = pe.linalg.matmul(my_array, my_array) - my_array @ my_array
for t, e in np.ndenumerate(tt):
@ -151,7 +151,7 @@ def test_multi_dot():
my_list = []
length = 1000 + np.random.randint(200)
for i in range(dim ** 2):
my_list.append(pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2']))
my_list.append(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']))
my_array = pe.cov_Obs(1.0, 0.002, 'cov') * np.array(my_list).reshape((dim, dim))
tt = pe.linalg.matmul(my_array, my_array, my_array, my_array) - my_array @ my_array @ my_array @ my_array
for t, e in np.ndenumerate(tt):
@ -160,8 +160,8 @@ def test_multi_dot():
my_list = []
length = 1000 + np.random.randint(200)
for i in range(dim ** 2):
my_list.append(pe.CObs(pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2']),
pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2'])))
my_list.append(pe.CObs(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']),
pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2'])))
my_array = np.array(my_list).reshape((dim, dim)) * pe.cov_Obs(1.0, 0.002, 'cov')
tt = pe.linalg.matmul(my_array, my_array, my_array, my_array) - my_array @ my_array @ my_array @ my_array
for t, e in np.ndenumerate(tt):
@ -209,7 +209,7 @@ def test_irregular_matrix_inverse():
for idl in [range(8, 508, 10), range(250, 273), [2, 8, 19, 20, 78, 99, 828, 10548979]]:
irregular_array = []
for i in range(dim ** 2):
irregular_array.append(pe.Obs([np.random.normal(1.1, 0.2, len(idl))], ['ens1'], idl=[idl]) + pe.Obs([np.random.normal(0.25, 0.1, 10)], ['ens2'], idl=[range(1, 11)]))
irregular_array.append(pe.Obs([np.random.normal(1.1, 0.2, len(idl)), np.random.normal(0.25, 0.1, 10)], ['ens1', 'ens2'], idl=[idl, range(1, 11)]))
irregular_matrix = np.array(irregular_array).reshape((dim, dim)) * pe.cov_Obs(1.0, 0.002, 'cov') * pe.pseudo_Obs(1.0, 0.002, 'ens2|r23')
invertible_irregular_matrix = np.identity(dim) + irregular_matrix @ irregular_matrix.T

View file

@ -61,9 +61,9 @@ def test_Obs_exceptions():
my_obs.plot_rep_dist()
with pytest.raises(Exception):
my_obs.plot_piechart()
with pytest.raises(TypeError):
with pytest.raises(Exception):
my_obs.gamma_method(S='2.3')
with pytest.raises(ValueError):
with pytest.raises(Exception):
my_obs.gamma_method(tau_exp=2.3)
my_obs.gamma_method()
my_obs.details()
@ -199,7 +199,7 @@ def test_gamma_method_no_windowing():
assert np.isclose(np.sqrt(np.var(obs.deltas['ens'], ddof=1) / obs.shape['ens']), obs.dvalue)
obs.gamma_method(S=1.1)
assert obs.e_tauint['ens'] > 0.5
with pytest.raises(ValueError):
with pytest.raises(Exception):
obs.gamma_method(S=-0.2)
@ -333,7 +333,7 @@ def test_derived_observables():
def test_multi_ens():
names = ['A0', 'A1|r001', 'A1|r002']
test_obs = pe.Obs([np.random.rand(50)], names[:1]) + pe.Obs([np.random.rand(50), np.random.rand(50)], names[1:])
test_obs = pe.Obs([np.random.rand(50), np.random.rand(50), np.random.rand(50)], names)
assert test_obs.e_names == ['A0', 'A1']
assert test_obs.e_content['A0'] == ['A0']
assert test_obs.e_content['A1'] == ['A1|r001', 'A1|r002']
@ -345,9 +345,6 @@ def test_multi_ens():
ensembles.append(str(i))
assert my_sum.e_names == sorted(ensembles)
with pytest.raises(ValueError):
test_obs = pe.Obs([np.random.rand(50), np.random.rand(50), np.random.rand(50)], names)
def test_multi_ens2():
names = ['ens', 'e', 'en', 'e|r010', 'E|er', 'ens|', 'Ens|34', 'ens|r548984654ez4e3t34terh']
@ -464,18 +461,6 @@ def test_cobs_overloading():
obs / cobs
def test_pow():
data = [1, 2.341, pe.pseudo_Obs(4.8, 0.48, "test_obs"), pe.cov_Obs(1.1, 0.3 ** 2, "test_cov_obs")]
for d in data:
assert d * d == d ** 2
assert d * d * d == d ** 3
for d2 in data:
assert np.log(d ** d2) == d2 * np.log(d)
assert (d ** d2) ** (1 / d2) == d
def test_reweighting():
my_obs = pe.Obs([np.random.rand(1000)], ['t'])
assert not my_obs.reweighted
@ -493,33 +478,26 @@ def test_reweighting():
r_obs2 = r_obs[0] * my_obs
assert r_obs2.reweighted
my_covobs = pe.cov_Obs(1.0, 0.003, 'cov')
with pytest.raises(ValueError):
with pytest.raises(Exception):
pe.reweight(my_obs, [my_covobs])
my_obs2 = pe.Obs([np.random.rand(1000)], ['t2'])
with pytest.raises(ValueError):
with pytest.raises(Exception):
pe.reweight(my_obs, [my_obs + my_obs2])
with pytest.raises(ValueError):
with pytest.raises(Exception):
pe.reweight(my_irregular_obs, [my_obs])
my_merged_obs = my_obs + pe.Obs([np.random.rand(1000)], ['q'])
with pytest.raises(ValueError):
pe.reweight(my_merged_obs, [my_merged_obs])
def test_merge_obs():
my_obs1 = pe.Obs([np.random.normal(1, .1, 100)], ['t|1'])
my_obs2 = pe.Obs([np.random.normal(1, .1, 100)], ['t|2'], idl=[range(1, 200, 2)])
my_obs1 = pe.Obs([np.random.rand(100)], ['t'])
my_obs2 = pe.Obs([np.random.rand(100)], ['q'], idl=[range(1, 200, 2)])
merged = pe.merge_obs([my_obs1, my_obs2])
diff = merged - (my_obs2 + my_obs1) / 2
assert np.isclose(0, diff.value, atol=1e-16)
with pytest.raises(ValueError):
diff = merged - my_obs2 - my_obs1
assert diff == -(my_obs1.value + my_obs2.value) / 2
with pytest.raises(Exception):
pe.merge_obs([my_obs1, my_obs1])
my_covobs = pe.cov_Obs(1.0, 0.003, 'cov')
with pytest.raises(ValueError):
with pytest.raises(Exception):
pe.merge_obs([my_obs1, my_covobs])
my_obs3 = pe.Obs([np.random.rand(100)], ['q|2'], idl=[range(1, 200, 2)])
with pytest.raises(ValueError):
pe.merge_obs([my_obs1, my_obs3])
@ -541,26 +519,23 @@ def test_correlate():
assert corr1 == corr2
my_obs3 = pe.Obs([np.random.rand(100)], ['t'], idl=[range(2, 102)])
with pytest.raises(ValueError):
with pytest.raises(Exception):
pe.correlate(my_obs1, my_obs3)
my_obs4 = pe.Obs([np.random.rand(99)], ['t'])
with pytest.raises(ValueError):
with pytest.raises(Exception):
pe.correlate(my_obs1, my_obs4)
my_obs5 = pe.Obs([np.random.rand(100)], ['t'], idl=[range(5, 505, 5)])
my_obs6 = pe.Obs([np.random.rand(100)], ['t'], idl=[range(5, 505, 5)])
corr3 = pe.correlate(my_obs5, my_obs6)
assert my_obs5.idl == corr3.idl
my_obs7 = pe.Obs([np.random.rand(99)], ['q'])
with pytest.raises(ValueError):
pe.correlate(my_obs1, my_obs7)
my_new_obs = pe.Obs([np.random.rand(100)], ['q3'])
with pytest.raises(ValueError):
with pytest.raises(Exception):
pe.correlate(my_obs1, my_new_obs)
my_covobs = pe.cov_Obs(1.0, 0.003, 'cov')
with pytest.raises(ValueError):
with pytest.raises(Exception):
pe.correlate(my_covobs, my_covobs)
r_obs = pe.reweight(my_obs1, [my_obs1])[0]
with pytest.warns(RuntimeWarning):
@ -694,14 +669,14 @@ def test_gamma_method_irregular():
assert (a.dvalue - 5 * a.ddvalue < expe and expe < a.dvalue + 5 * a.ddvalue)
arr2 = np.random.normal(1, .2, size=N)
afull = pe.Obs([arr], ['a1']) + pe.Obs([arr2], ['a2'])
afull = pe.Obs([arr, arr2], ['a1', 'a2'])
configs = np.ones_like(arr2)
for i in np.random.uniform(0, len(arr2), size=int(.8*N)):
configs[int(i)] = 0
zero_arr2 = [arr2[i] for i in range(len(arr2)) if not configs[i] == 0]
idx2 = [i + 1 for i in range(len(configs)) if configs[i] == 1]
a = pe.Obs([zero_arr], ['a1'], idl=[idx]) + pe.Obs([zero_arr2], ['a2'], idl=[idx2])
a = pe.Obs([zero_arr, zero_arr2], ['a1', 'a2'], idl=[idx, idx2])
afull.gamma_method()
a.gamma_method()
@ -787,7 +762,7 @@ def test_gamma_method_irregular():
my_obs.gm()
idl += [range(1, 400, 4)]
my_obs = pe.Obs([dat for i in range(len(idl))], ['%s|%d' % ('A', i) for i in range(len(idl))], idl=idl)
with pytest.raises(ValueError):
with pytest.raises(Exception):
my_obs.gm()
# check cases where tau is large compared to the chain length
@ -1035,7 +1010,7 @@ def test_correlation_intersection_of_idls():
def test_covariance_non_identical_objects():
obs1 = pe.Obs([np.random.normal(1.0, 0.1, 1000), np.random.normal(1.0, 0.1, 1000)], ["ens|r1", "ens|r2"]) + pe.Obs([np.random.normal(1.0, 0.1, 732)], ['ens2'])
obs1 = pe.Obs([np.random.normal(1.0, 0.1, 1000), np.random.normal(1.0, 0.1, 1000), np.random.normal(1.0, 0.1, 732)], ["ens|r1", "ens|r2", "ens2"])
obs1.gamma_method()
obs2 = obs1 + 1e-18
obs2.gamma_method()
@ -1119,9 +1094,6 @@ def test_reweight_method():
obs1 = pe.pseudo_Obs(0.2, 0.01, 'test')
rw = pe.pseudo_Obs(0.999, 0.001, 'test')
assert obs1.reweight(rw) == pe.reweight(rw, [obs1])[0]
rw2 = pe.pseudo_Obs(0.999, 0.001, 'test2')
with pytest.raises(ValueError):
obs1.reweight(rw2)
def test_jackknife():
@ -1138,7 +1110,7 @@ def test_jackknife():
assert np.allclose(tmp_jacks, my_obs.export_jackknife())
my_new_obs = my_obs + pe.Obs([full_data], ['test2'])
with pytest.raises(ValueError):
with pytest.raises(Exception):
my_new_obs.export_jackknife()

View file

@ -387,33 +387,3 @@ def test_find_correlator():
found_start, found_T = sfin._find_correlator(file, "2.0", "name f_A\nquarks lquark lquark\noffset 0\nwf 0", False, False)
assert found_start == 21
assert found_T == 3
def test_get_rep_name():
names = ['data_r0', 'data_r1', 'data_r2']
new_names = sfin._get_rep_names(names)
assert len(new_names) == 3
assert new_names[0] == 'data_|r0'
assert new_names[1] == 'data_|r1'
assert new_names[2] == 'data_|r2'
names = ['data_q0', 'data_q1', 'data_q2']
new_names = sfin._get_rep_names(names, rep_sep='q')
assert len(new_names) == 3
assert new_names[0] == 'data_|q0'
assert new_names[1] == 'data_|q1'
assert new_names[2] == 'data_|q2'
def test_get_appended_rep_name():
names = ['data_r0.f_1', 'data_r1.f_1', 'data_r2.f_1']
new_names = sfin._get_appended_rep_names(names, 'data', 'f_1')
assert len(new_names) == 3
assert new_names[0] == 'data_|r0'
assert new_names[1] == 'data_|r1'
assert new_names[2] == 'data_|r2'
names = ['data_q0.f_1', 'data_q1.f_1', 'data_q2.f_1']
new_names = sfin._get_appended_rep_names(names, 'data', 'f_1', rep_sep='q')
assert len(new_names) == 3
assert new_names[0] == 'data_|q0'
assert new_names[1] == 'data_|q1'
assert new_names[2] == 'data_|q2'