Merge branch 'develop' into documentation

This commit is contained in:
s-kuberski 2021-12-06 08:41:35 +00:00
commit f9c728264d
5 changed files with 56 additions and 11 deletions

View file

@ -301,8 +301,7 @@ def total_least_squares(x, y, func, silent=False, **kwargs):
result = []
for i in range(n_parms):
result.append(derived_observable(lambda x, **kwargs: x[0], list(x.ravel()) + list(y), man_grad=list(deriv_x[i]) + list(deriv_y[i])))
result[-1]._value = out.beta[i]
result.append(derived_observable(lambda my_var, **kwargs: my_var[0] / x.ravel()[0].value * out.beta[i], list(x.ravel()) + list(y), man_grad=list(deriv_x[i]) + list(deriv_y[i])))
output.fit_parameters = result + const_par
@ -419,8 +418,7 @@ def _prior_fit(x, y, func, priors, silent=False, **kwargs):
result = []
for i in range(n_parms):
result.append(derived_observable(lambda x, **kwargs: x[0], list(y) + list(loc_priors), man_grad=list(deriv[i])))
result[-1]._value = params[i]
result.append(derived_observable(lambda x, **kwargs: x[0] / y[0].value * params[i], list(y) + list(loc_priors), man_grad=list(deriv[i])))
output.fit_parameters = result
output.chisquare = chisqfunc(np.asarray(params))
@ -614,8 +612,7 @@ def _standard_fit(x, y, func, silent=False, **kwargs):
result = []
for i in range(n_parms):
result.append(derived_observable(lambda x, **kwargs: x[0], list(y), man_grad=list(deriv[i])))
result[-1]._value = fit_result.x[i]
result.append(derived_observable(lambda x, **kwargs: x[0] / y[0].value * fit_result.x[i], list(y), man_grad=list(deriv[i])))
output.fit_parameters = result + const_par

View file

@ -33,6 +33,5 @@ def find_root(d, func, guess=1.0, **kwargs):
da = jacobian(lambda u, v: func(v, u))(d.value, root[0])
deriv = - da / dx
res = derived_observable(lambda x, **kwargs: x[0], [d], man_grad=[deriv])
res._value = root[0]
res = derived_observable(lambda x, **kwargs: x[0] / d.value * root[0], [d], man_grad=[deriv])
return res

View file

@ -208,3 +208,41 @@ def test_odr_derivatives():
tfit = pe.fits.fit_general(x, y, func, base_step=0.1, step_ratio=1.1, num_steps=20)
assert np.abs(np.max(np.array(list(fit1[1].deltas.values()))
- np.array(list(tfit[1].deltas.values())))) < 10e-8
def test_r_value_persistence():
def f(a, x):
return a[0] + a[1] * x
a = pe.pseudo_Obs(1.1, .1, 'a')
assert np.isclose(a.value, a.r_values['a'])
a_2 = a ** 2
assert np.isclose(a_2.value, a_2.r_values['a'])
b = pe.pseudo_Obs(2.1, .2, 'b')
y = [a, b]
[o.gamma_method() for o in y]
fitp = pe.fits.least_squares([1, 2], y, f)
assert np.isclose(fitp[0].value, fitp[0].r_values['a'])
assert np.isclose(fitp[0].value, fitp[0].r_values['b'])
assert np.isclose(fitp[1].value, fitp[1].r_values['a'])
assert np.isclose(fitp[1].value, fitp[1].r_values['b'])
fitp = pe.fits.total_least_squares(y, y, f)
assert np.isclose(fitp[0].value, fitp[0].r_values['a'])
assert np.isclose(fitp[0].value, fitp[0].r_values['b'])
assert np.isclose(fitp[1].value, fitp[1].r_values['a'])
assert np.isclose(fitp[1].value, fitp[1].r_values['b'])
fitp = pe.fits.least_squares([1, 2], y, f, priors=y)
assert np.isclose(fitp[0].value, fitp[0].r_values['a'])
assert np.isclose(fitp[0].value, fitp[0].r_values['b'])
assert np.isclose(fitp[1].value, fitp[1].r_values['a'])
assert np.isclose(fitp[1].value, fitp[1].r_values['b'])

View file

@ -381,6 +381,16 @@ def test_merge_obs():
assert diff == -(my_obs1.value + my_obs2.value) / 2
def test_merge_obs_r_values():
a1 = pe.pseudo_Obs(1.1, .1, 'a|1')
a2 = pe.pseudo_Obs(1.2, .1, 'a|2')
a = pe.merge_obs([a1, a2])
assert np.isclose(a.r_values['a|1'], a1.value)
assert np.isclose(a.r_values['a|2'], a2.value)
assert np.isclose(a.value, np.mean([a1.value, a2.value]))
def test_correlate():
my_obs1 = pe.Obs([np.random.rand(100)], ['t'])
my_obs2 = pe.Obs([np.random.rand(100)], ['t'])

View file

@ -15,6 +15,7 @@ def test_root_linear():
my_root = pe.roots.find_root(my_obs, root_function)
assert np.isclose(my_root.value, value)
assert np.isclose(my_root.value, my_root.r_values['t'])
difference = my_obs - my_root
assert difference.is_zero()