mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-05-14 19:43:41 +02:00
fix: removed _filter_zeroes to prevent unintended removal of
configurations from idls.
This commit is contained in:
parent
64034747c0
commit
f76c24b5e8
1 changed files with 2 additions and 38 deletions
|
@ -57,7 +57,6 @@ class Obs:
|
||||||
tau_exp_dict = {}
|
tau_exp_dict = {}
|
||||||
N_sigma_global = 1.0
|
N_sigma_global = 1.0
|
||||||
N_sigma_dict = {}
|
N_sigma_dict = {}
|
||||||
filter_eps = 1e-10
|
|
||||||
|
|
||||||
def __init__(self, samples, names, idl=None, **kwargs):
|
def __init__(self, samples, names, idl=None, **kwargs):
|
||||||
""" Initialize Obs object.
|
""" Initialize Obs object.
|
||||||
|
@ -1102,35 +1101,6 @@ def _expand_deltas_for_merge(deltas, idx, shape, new_idx):
|
||||||
return np.array([ret[new_idx[i] - new_idx[0]] for i in range(len(new_idx))])
|
return np.array([ret[new_idx[i] - new_idx[0]] for i in range(len(new_idx))])
|
||||||
|
|
||||||
|
|
||||||
def _filter_zeroes(deltas, idx, eps=Obs.filter_eps):
|
|
||||||
"""Filter out all configurations with vanishing fluctuation such that they do not
|
|
||||||
contribute to the error estimate anymore. Returns the new deltas and
|
|
||||||
idx according to the filtering.
|
|
||||||
A fluctuation is considered to be vanishing, if it is smaller than eps times
|
|
||||||
the mean of the absolute values of all deltas in one list.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
deltas : list
|
|
||||||
List of fluctuations
|
|
||||||
idx : list
|
|
||||||
List or ranges of configs on which the deltas are defined.
|
|
||||||
eps : float
|
|
||||||
Prefactor that enters the filter criterion.
|
|
||||||
"""
|
|
||||||
new_deltas = []
|
|
||||||
new_idx = []
|
|
||||||
maxd = np.mean(np.fabs(deltas))
|
|
||||||
for i in range(len(deltas)):
|
|
||||||
if abs(deltas[i]) > eps * maxd:
|
|
||||||
new_deltas.append(deltas[i])
|
|
||||||
new_idx.append(idx[i])
|
|
||||||
if new_idx:
|
|
||||||
return np.array(new_deltas), new_idx
|
|
||||||
else:
|
|
||||||
return deltas, idx
|
|
||||||
|
|
||||||
|
|
||||||
def derived_observable(func, data, array_mode=False, **kwargs):
|
def derived_observable(func, data, array_mode=False, **kwargs):
|
||||||
"""Construct a derived Obs according to func(data, **kwargs) using automatic differentiation.
|
"""Construct a derived Obs according to func(data, **kwargs) using automatic differentiation.
|
||||||
|
|
||||||
|
@ -1287,14 +1257,8 @@ def derived_observable(func, data, array_mode=False, **kwargs):
|
||||||
new_names_obs = []
|
new_names_obs = []
|
||||||
for name in new_names:
|
for name in new_names:
|
||||||
if name not in new_covobs:
|
if name not in new_covobs:
|
||||||
if is_merged[name]:
|
new_samples.append(new_deltas[name])
|
||||||
filtered_deltas, filtered_idl_d = _filter_zeroes(new_deltas[name], new_idl_d[name])
|
new_idl.append(new_idl_d[name])
|
||||||
else:
|
|
||||||
filtered_deltas = new_deltas[name]
|
|
||||||
filtered_idl_d = new_idl_d[name]
|
|
||||||
|
|
||||||
new_samples.append(filtered_deltas)
|
|
||||||
new_idl.append(filtered_idl_d)
|
|
||||||
new_means.append(new_r_values[name][i_val])
|
new_means.append(new_r_values[name][i_val])
|
||||||
new_names_obs.append(name)
|
new_names_obs.append(name)
|
||||||
final_result[i_val] = Obs(new_samples, new_names_obs, means=new_means, idl=new_idl)
|
final_result[i_val] = Obs(new_samples, new_names_obs, means=new_means, idl=new_idl)
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue