mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-05-14 11:33:42 +02:00
[Fix] Removed the possibility to create an Obs from data on several replica
This commit is contained in:
parent
6ed6ce6113
commit
f2fb69a79d
6 changed files with 67 additions and 29 deletions
|
@ -529,7 +529,8 @@ def import_dobs_string(content, full_output=False, separator_insertion=True):
|
||||||
deltas.append(repdeltas)
|
deltas.append(repdeltas)
|
||||||
idl.append(repidl)
|
idl.append(repidl)
|
||||||
|
|
||||||
res.append(Obs(deltas, obs_names, idl=idl))
|
obsmeans = [np.average(deltas[j]) for j in range(len(deltas))]
|
||||||
|
res.append(Obs([np.array(deltas[j]) - obsmeans[j] for j in range(len(obsmeans))], obs_names, idl=idl, means=obsmeans))
|
||||||
res[-1]._value = mean[i]
|
res[-1]._value = mean[i]
|
||||||
_check(len(e_names) == ne)
|
_check(len(e_names) == ne)
|
||||||
|
|
||||||
|
|
|
@ -136,7 +136,8 @@ def create_json_string(ol, description='', indent=1):
|
||||||
samples.append([np.nan] * len(value))
|
samples.append([np.nan] * len(value))
|
||||||
names.append(key)
|
names.append(key)
|
||||||
idl.append(value)
|
idl.append(value)
|
||||||
my_obs = Obs(samples, names, idl)
|
my_obs = Obs(np.array(samples), names, idl, means=[np.nan for n in names])
|
||||||
|
my_obs._value = np.nan
|
||||||
my_obs._covobs = obs._covobs
|
my_obs._covobs = obs._covobs
|
||||||
for name in obs._covobs:
|
for name in obs._covobs:
|
||||||
my_obs.names.append(name)
|
my_obs.names.append(name)
|
||||||
|
@ -331,7 +332,8 @@ def _parse_json_dict(json_dict, verbose=True, full_output=False):
|
||||||
cd = _gen_covobsd_from_cdatad(o.get('cdata', {}))
|
cd = _gen_covobsd_from_cdatad(o.get('cdata', {}))
|
||||||
|
|
||||||
if od:
|
if od:
|
||||||
ret = Obs([[ddi[0] + values[0] for ddi in di] for di in od['deltas']], od['names'], idl=od['idl'])
|
r_offsets = [np.average([ddi[0] for ddi in di]) for di in od['deltas']]
|
||||||
|
ret = Obs([np.array([ddi[0] for ddi in od['deltas'][i]]) - r_offsets[i] for i in range(len(od['deltas']))], od['names'], idl=od['idl'], means=[ro + values[0] for ro in r_offsets])
|
||||||
ret._value = values[0]
|
ret._value = values[0]
|
||||||
else:
|
else:
|
||||||
ret = Obs([], [], means=[])
|
ret = Obs([], [], means=[])
|
||||||
|
@ -356,7 +358,8 @@ def _parse_json_dict(json_dict, verbose=True, full_output=False):
|
||||||
taglist = o.get('tag', layout * [None])
|
taglist = o.get('tag', layout * [None])
|
||||||
for i in range(layout):
|
for i in range(layout):
|
||||||
if od:
|
if od:
|
||||||
ret.append(Obs([list(di[:, i] + values[i]) for di in od['deltas']], od['names'], idl=od['idl']))
|
r_offsets = np.array([np.average(di[:, i]) for di in od['deltas']])
|
||||||
|
ret.append(Obs([od['deltas'][j][:, i] - r_offsets[j] for j in range(len(od['deltas']))], od['names'], idl=od['idl'], means=[ro + values[i] for ro in r_offsets]))
|
||||||
ret[-1]._value = values[i]
|
ret[-1]._value = values[i]
|
||||||
else:
|
else:
|
||||||
ret.append(Obs([], [], means=[]))
|
ret.append(Obs([], [], means=[]))
|
||||||
|
@ -383,7 +386,8 @@ def _parse_json_dict(json_dict, verbose=True, full_output=False):
|
||||||
taglist = o.get('tag', N * [None])
|
taglist = o.get('tag', N * [None])
|
||||||
for i in range(N):
|
for i in range(N):
|
||||||
if od:
|
if od:
|
||||||
ret.append(Obs([di[:, i] + values[i] for di in od['deltas']], od['names'], idl=od['idl']))
|
r_offsets = np.array([np.average(di[:, i]) for di in od['deltas']])
|
||||||
|
ret.append(Obs([od['deltas'][j][:, i] - r_offsets[j] for j in range(len(od['deltas']))], od['names'], idl=od['idl'], means=[ro + values[i] for ro in r_offsets]))
|
||||||
ret[-1]._value = values[i]
|
ret[-1]._value = values[i]
|
||||||
else:
|
else:
|
||||||
ret.append(Obs([], [], means=[]))
|
ret.append(Obs([], [], means=[]))
|
||||||
|
|
|
@ -82,6 +82,8 @@ class Obs:
|
||||||
raise ValueError('Names are not unique.')
|
raise ValueError('Names are not unique.')
|
||||||
if not all(isinstance(x, str) for x in names):
|
if not all(isinstance(x, str) for x in names):
|
||||||
raise TypeError('All names have to be strings.')
|
raise TypeError('All names have to be strings.')
|
||||||
|
if len(set([o.split('|')[0] for o in names])) > 1:
|
||||||
|
raise ValueError('Cannot initialize Obs based on multiple ensembles. Please average separate Obs from each ensemble.')
|
||||||
else:
|
else:
|
||||||
if not isinstance(names[0], str):
|
if not isinstance(names[0], str):
|
||||||
raise TypeError('All names have to be strings.')
|
raise TypeError('All names have to be strings.')
|
||||||
|
@ -1407,6 +1409,8 @@ def reweight(weight, obs, **kwargs):
|
||||||
raise ValueError('Error: Not possible to reweight an Obs that contains covobs!')
|
raise ValueError('Error: Not possible to reweight an Obs that contains covobs!')
|
||||||
if not set(obs[i].names).issubset(weight.names):
|
if not set(obs[i].names).issubset(weight.names):
|
||||||
raise ValueError('Error: Ensembles do not fit')
|
raise ValueError('Error: Ensembles do not fit')
|
||||||
|
if len(obs[i].mc_names) > 1 or len(weight.mc_names) > 1:
|
||||||
|
raise ValueError('Error: Cannot reweight an Obs that contains multiple ensembles.')
|
||||||
for name in obs[i].names:
|
for name in obs[i].names:
|
||||||
if not set(obs[i].idl[name]).issubset(weight.idl[name]):
|
if not set(obs[i].idl[name]).issubset(weight.idl[name]):
|
||||||
raise ValueError('obs[%d] has to be defined on a subset of the configs in weight.idl[%s]!' % (i, name))
|
raise ValueError('obs[%d] has to be defined on a subset of the configs in weight.idl[%s]!' % (i, name))
|
||||||
|
@ -1442,9 +1446,12 @@ def correlate(obs_a, obs_b):
|
||||||
-----
|
-----
|
||||||
Keep in mind to only correlate primary observables which have not been reweighted
|
Keep in mind to only correlate primary observables which have not been reweighted
|
||||||
yet. The reweighting has to be applied after correlating the observables.
|
yet. The reweighting has to be applied after correlating the observables.
|
||||||
Currently only works if ensembles are identical (this is not strictly necessary).
|
Only works if a single ensemble is present in the Obs.
|
||||||
|
Currently only works if ensemble content is identical (this is not strictly necessary).
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
if len(obs_a.mc_names) > 1 or len(obs_b.mc_names) > 1:
|
||||||
|
raise ValueError('Error: Cannot correlate Obs that contain multiple ensembles.')
|
||||||
if sorted(obs_a.names) != sorted(obs_b.names):
|
if sorted(obs_a.names) != sorted(obs_b.names):
|
||||||
raise ValueError(f"Ensembles do not fit {set(sorted(obs_a.names)) ^ set(sorted(obs_b.names))}")
|
raise ValueError(f"Ensembles do not fit {set(sorted(obs_a.names)) ^ set(sorted(obs_b.names))}")
|
||||||
if len(obs_a.cov_names) or len(obs_b.cov_names):
|
if len(obs_a.cov_names) or len(obs_b.cov_names):
|
||||||
|
@ -1755,7 +1762,11 @@ def import_bootstrap(boots, name, random_numbers):
|
||||||
|
|
||||||
|
|
||||||
def merge_obs(list_of_obs):
|
def merge_obs(list_of_obs):
|
||||||
"""Combine all observables in list_of_obs into one new observable
|
"""Combine all observables in list_of_obs into one new observable.
|
||||||
|
This allows to merge Obs that have been computed on multiple replica
|
||||||
|
of the same ensemble.
|
||||||
|
If you like to merge Obs that are based on several ensembles, please
|
||||||
|
average them yourself.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
|
|
|
@ -337,7 +337,7 @@ def test_dobsio():
|
||||||
|
|
||||||
tt4 = pe.Obs([np.random.rand(100), np.random.rand(100)], ['t|r1', 't|r2'], idl=[range(1, 101, 1), range(2, 202, 2)])
|
tt4 = pe.Obs([np.random.rand(100), np.random.rand(100)], ['t|r1', 't|r2'], idl=[range(1, 101, 1), range(2, 202, 2)])
|
||||||
|
|
||||||
ol = [o2, o3, o4, do, o5, tt, tt4, np.log(tt4 / o5**2), np.exp(o5 + np.log(co3 / tt3 + o4) / tt)]
|
ol = [o2, o3, o4, do, o5, tt, tt4, np.log(tt4 / o5**2), np.exp(o5 + np.log(co3 / tt3 + o4) / tt), o4.reweight(o4)]
|
||||||
print(ol)
|
print(ol)
|
||||||
fname = 'test_rw'
|
fname = 'test_rw'
|
||||||
|
|
||||||
|
@ -362,9 +362,12 @@ def test_dobsio():
|
||||||
|
|
||||||
|
|
||||||
def test_reconstruct_non_linear_r_obs(tmp_path):
|
def test_reconstruct_non_linear_r_obs(tmp_path):
|
||||||
to = pe.Obs([np.random.rand(500), np.random.rand(500), np.random.rand(111)],
|
to = (
|
||||||
["e|r1", "e|r2", "my_new_ensemble_54^£$|8'[@124435%6^7&()~#"],
|
pe.Obs([np.random.rand(500), np.random.rand(500)],
|
||||||
idl=[range(1, 501), range(0, 500), range(1, 999, 9)])
|
["e|r1", "e|r2", ],
|
||||||
|
idl=[range(1, 501), range(0, 500)])
|
||||||
|
+ pe.Obs([np.random.rand(111)], ["my_new_ensemble_54^£$|8'[@124435%6^7&()~#"], idl=[range(1, 999, 9)])
|
||||||
|
)
|
||||||
to = np.log(to ** 2) / to
|
to = np.log(to ** 2) / to
|
||||||
to.dump((tmp_path / "test_equality").as_posix())
|
to.dump((tmp_path / "test_equality").as_posix())
|
||||||
ro = pe.input.json.load_json((tmp_path / "test_equality").as_posix())
|
ro = pe.input.json.load_json((tmp_path / "test_equality").as_posix())
|
||||||
|
@ -372,9 +375,12 @@ def test_reconstruct_non_linear_r_obs(tmp_path):
|
||||||
|
|
||||||
|
|
||||||
def test_reconstruct_non_linear_r_obs_list(tmp_path):
|
def test_reconstruct_non_linear_r_obs_list(tmp_path):
|
||||||
to = pe.Obs([np.random.rand(500), np.random.rand(500), np.random.rand(111)],
|
to = (
|
||||||
["e|r1", "e|r2", "my_new_ensemble_54^£$|8'[@124435%6^7&()~#"],
|
pe.Obs([np.random.rand(500), np.random.rand(500)],
|
||||||
idl=[range(1, 501), range(0, 500), range(1, 999, 9)])
|
["e|r1", "e|r2", ],
|
||||||
|
idl=[range(1, 501), range(0, 500)])
|
||||||
|
+ pe.Obs([np.random.rand(111)], ["my_new_ensemble_54^£$|8'[@124435%6^7&()~#"], idl=[range(1, 999, 9)])
|
||||||
|
)
|
||||||
to = np.log(to ** 2) / to
|
to = np.log(to ** 2) / to
|
||||||
for to_list in [[to, to, to], np.array([to, to, to])]:
|
for to_list in [[to, to, to], np.array([to, to, to])]:
|
||||||
pe.input.json.dump_to_json(to_list, (tmp_path / "test_equality_list").as_posix())
|
pe.input.json.dump_to_json(to_list, (tmp_path / "test_equality_list").as_posix())
|
||||||
|
|
|
@ -34,7 +34,7 @@ def test_matmul():
|
||||||
my_list = []
|
my_list = []
|
||||||
length = 100 + np.random.randint(200)
|
length = 100 + np.random.randint(200)
|
||||||
for i in range(dim ** 2):
|
for i in range(dim ** 2):
|
||||||
my_list.append(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']))
|
my_list.append(pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2']))
|
||||||
my_array = const * np.array(my_list).reshape((dim, dim))
|
my_array = const * np.array(my_list).reshape((dim, dim))
|
||||||
tt = pe.linalg.matmul(my_array, my_array) - my_array @ my_array
|
tt = pe.linalg.matmul(my_array, my_array) - my_array @ my_array
|
||||||
for t, e in np.ndenumerate(tt):
|
for t, e in np.ndenumerate(tt):
|
||||||
|
@ -43,8 +43,8 @@ def test_matmul():
|
||||||
my_list = []
|
my_list = []
|
||||||
length = 100 + np.random.randint(200)
|
length = 100 + np.random.randint(200)
|
||||||
for i in range(dim ** 2):
|
for i in range(dim ** 2):
|
||||||
my_list.append(pe.CObs(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']),
|
my_list.append(pe.CObs(pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2']),
|
||||||
pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2'])))
|
pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2'])))
|
||||||
my_array = np.array(my_list).reshape((dim, dim)) * const
|
my_array = np.array(my_list).reshape((dim, dim)) * const
|
||||||
tt = pe.linalg.matmul(my_array, my_array) - my_array @ my_array
|
tt = pe.linalg.matmul(my_array, my_array) - my_array @ my_array
|
||||||
for t, e in np.ndenumerate(tt):
|
for t, e in np.ndenumerate(tt):
|
||||||
|
@ -151,7 +151,7 @@ def test_multi_dot():
|
||||||
my_list = []
|
my_list = []
|
||||||
length = 1000 + np.random.randint(200)
|
length = 1000 + np.random.randint(200)
|
||||||
for i in range(dim ** 2):
|
for i in range(dim ** 2):
|
||||||
my_list.append(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']))
|
my_list.append(pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2']))
|
||||||
my_array = pe.cov_Obs(1.0, 0.002, 'cov') * np.array(my_list).reshape((dim, dim))
|
my_array = pe.cov_Obs(1.0, 0.002, 'cov') * np.array(my_list).reshape((dim, dim))
|
||||||
tt = pe.linalg.matmul(my_array, my_array, my_array, my_array) - my_array @ my_array @ my_array @ my_array
|
tt = pe.linalg.matmul(my_array, my_array, my_array, my_array) - my_array @ my_array @ my_array @ my_array
|
||||||
for t, e in np.ndenumerate(tt):
|
for t, e in np.ndenumerate(tt):
|
||||||
|
@ -160,8 +160,8 @@ def test_multi_dot():
|
||||||
my_list = []
|
my_list = []
|
||||||
length = 1000 + np.random.randint(200)
|
length = 1000 + np.random.randint(200)
|
||||||
for i in range(dim ** 2):
|
for i in range(dim ** 2):
|
||||||
my_list.append(pe.CObs(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']),
|
my_list.append(pe.CObs(pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2']),
|
||||||
pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2'])))
|
pe.Obs([np.random.rand(length)], ['t1']) + pe.Obs([np.random.rand(length + 1)], ['t2'])))
|
||||||
my_array = np.array(my_list).reshape((dim, dim)) * pe.cov_Obs(1.0, 0.002, 'cov')
|
my_array = np.array(my_list).reshape((dim, dim)) * pe.cov_Obs(1.0, 0.002, 'cov')
|
||||||
tt = pe.linalg.matmul(my_array, my_array, my_array, my_array) - my_array @ my_array @ my_array @ my_array
|
tt = pe.linalg.matmul(my_array, my_array, my_array, my_array) - my_array @ my_array @ my_array @ my_array
|
||||||
for t, e in np.ndenumerate(tt):
|
for t, e in np.ndenumerate(tt):
|
||||||
|
@ -209,7 +209,7 @@ def test_irregular_matrix_inverse():
|
||||||
for idl in [range(8, 508, 10), range(250, 273), [2, 8, 19, 20, 78, 99, 828, 10548979]]:
|
for idl in [range(8, 508, 10), range(250, 273), [2, 8, 19, 20, 78, 99, 828, 10548979]]:
|
||||||
irregular_array = []
|
irregular_array = []
|
||||||
for i in range(dim ** 2):
|
for i in range(dim ** 2):
|
||||||
irregular_array.append(pe.Obs([np.random.normal(1.1, 0.2, len(idl)), np.random.normal(0.25, 0.1, 10)], ['ens1', 'ens2'], idl=[idl, range(1, 11)]))
|
irregular_array.append(pe.Obs([np.random.normal(1.1, 0.2, len(idl))], ['ens1'], idl=[idl]) + pe.Obs([np.random.normal(0.25, 0.1, 10)], ['ens2'], idl=[range(1, 11)]))
|
||||||
irregular_matrix = np.array(irregular_array).reshape((dim, dim)) * pe.cov_Obs(1.0, 0.002, 'cov') * pe.pseudo_Obs(1.0, 0.002, 'ens2|r23')
|
irregular_matrix = np.array(irregular_array).reshape((dim, dim)) * pe.cov_Obs(1.0, 0.002, 'cov') * pe.pseudo_Obs(1.0, 0.002, 'ens2|r23')
|
||||||
|
|
||||||
invertible_irregular_matrix = np.identity(dim) + irregular_matrix @ irregular_matrix.T
|
invertible_irregular_matrix = np.identity(dim) + irregular_matrix @ irregular_matrix.T
|
||||||
|
|
|
@ -333,7 +333,7 @@ def test_derived_observables():
|
||||||
|
|
||||||
def test_multi_ens():
|
def test_multi_ens():
|
||||||
names = ['A0', 'A1|r001', 'A1|r002']
|
names = ['A0', 'A1|r001', 'A1|r002']
|
||||||
test_obs = pe.Obs([np.random.rand(50), np.random.rand(50), np.random.rand(50)], names)
|
test_obs = pe.Obs([np.random.rand(50)], names[:1]) + pe.Obs([np.random.rand(50), np.random.rand(50)], names[1:])
|
||||||
assert test_obs.e_names == ['A0', 'A1']
|
assert test_obs.e_names == ['A0', 'A1']
|
||||||
assert test_obs.e_content['A0'] == ['A0']
|
assert test_obs.e_content['A0'] == ['A0']
|
||||||
assert test_obs.e_content['A1'] == ['A1|r001', 'A1|r002']
|
assert test_obs.e_content['A1'] == ['A1|r001', 'A1|r002']
|
||||||
|
@ -345,6 +345,9 @@ def test_multi_ens():
|
||||||
ensembles.append(str(i))
|
ensembles.append(str(i))
|
||||||
assert my_sum.e_names == sorted(ensembles)
|
assert my_sum.e_names == sorted(ensembles)
|
||||||
|
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
test_obs = pe.Obs([np.random.rand(50), np.random.rand(50), np.random.rand(50)], names)
|
||||||
|
|
||||||
|
|
||||||
def test_multi_ens2():
|
def test_multi_ens2():
|
||||||
names = ['ens', 'e', 'en', 'e|r010', 'E|er', 'ens|', 'Ens|34', 'ens|r548984654ez4e3t34terh']
|
names = ['ens', 'e', 'en', 'e|r010', 'E|er', 'ens|', 'Ens|34', 'ens|r548984654ez4e3t34terh']
|
||||||
|
@ -498,18 +501,25 @@ def test_reweighting():
|
||||||
with pytest.raises(ValueError):
|
with pytest.raises(ValueError):
|
||||||
pe.reweight(my_irregular_obs, [my_obs])
|
pe.reweight(my_irregular_obs, [my_obs])
|
||||||
|
|
||||||
|
my_merged_obs = my_obs + pe.Obs([np.random.rand(1000)], ['q'])
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
pe.reweight(my_merged_obs, [my_merged_obs])
|
||||||
|
|
||||||
|
|
||||||
def test_merge_obs():
|
def test_merge_obs():
|
||||||
my_obs1 = pe.Obs([np.random.rand(100)], ['t'])
|
my_obs1 = pe.Obs([np.random.rand(100)], ['t|1'])
|
||||||
my_obs2 = pe.Obs([np.random.rand(100)], ['q'], idl=[range(1, 200, 2)])
|
my_obs2 = pe.Obs([np.random.rand(100)], ['t|2'], idl=[range(1, 200, 2)])
|
||||||
merged = pe.merge_obs([my_obs1, my_obs2])
|
merged = pe.merge_obs([my_obs1, my_obs2])
|
||||||
diff = merged - my_obs2 - my_obs1
|
diff = merged - (my_obs2 + my_obs1) / 2
|
||||||
assert diff == -(my_obs1.value + my_obs2.value) / 2
|
assert diff.value == 0
|
||||||
with pytest.raises(ValueError):
|
with pytest.raises(ValueError):
|
||||||
pe.merge_obs([my_obs1, my_obs1])
|
pe.merge_obs([my_obs1, my_obs1])
|
||||||
my_covobs = pe.cov_Obs(1.0, 0.003, 'cov')
|
my_covobs = pe.cov_Obs(1.0, 0.003, 'cov')
|
||||||
with pytest.raises(ValueError):
|
with pytest.raises(ValueError):
|
||||||
pe.merge_obs([my_obs1, my_covobs])
|
pe.merge_obs([my_obs1, my_covobs])
|
||||||
|
my_obs3 = pe.Obs([np.random.rand(100)], ['q|2'], idl=[range(1, 200, 2)])
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
pe.merge_obs([my_obs1, my_obs3])
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -542,6 +552,9 @@ def test_correlate():
|
||||||
my_obs6 = pe.Obs([np.random.rand(100)], ['t'], idl=[range(5, 505, 5)])
|
my_obs6 = pe.Obs([np.random.rand(100)], ['t'], idl=[range(5, 505, 5)])
|
||||||
corr3 = pe.correlate(my_obs5, my_obs6)
|
corr3 = pe.correlate(my_obs5, my_obs6)
|
||||||
assert my_obs5.idl == corr3.idl
|
assert my_obs5.idl == corr3.idl
|
||||||
|
my_obs7 = pe.Obs([np.random.rand(99)], ['q'])
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
pe.correlate(my_obs1, my_obs7)
|
||||||
|
|
||||||
my_new_obs = pe.Obs([np.random.rand(100)], ['q3'])
|
my_new_obs = pe.Obs([np.random.rand(100)], ['q3'])
|
||||||
with pytest.raises(ValueError):
|
with pytest.raises(ValueError):
|
||||||
|
@ -681,14 +694,14 @@ def test_gamma_method_irregular():
|
||||||
assert (a.dvalue - 5 * a.ddvalue < expe and expe < a.dvalue + 5 * a.ddvalue)
|
assert (a.dvalue - 5 * a.ddvalue < expe and expe < a.dvalue + 5 * a.ddvalue)
|
||||||
|
|
||||||
arr2 = np.random.normal(1, .2, size=N)
|
arr2 = np.random.normal(1, .2, size=N)
|
||||||
afull = pe.Obs([arr, arr2], ['a1', 'a2'])
|
afull = pe.Obs([arr], ['a1']) + pe.Obs([arr2], ['a2'])
|
||||||
|
|
||||||
configs = np.ones_like(arr2)
|
configs = np.ones_like(arr2)
|
||||||
for i in np.random.uniform(0, len(arr2), size=int(.8*N)):
|
for i in np.random.uniform(0, len(arr2), size=int(.8*N)):
|
||||||
configs[int(i)] = 0
|
configs[int(i)] = 0
|
||||||
zero_arr2 = [arr2[i] for i in range(len(arr2)) if not configs[i] == 0]
|
zero_arr2 = [arr2[i] for i in range(len(arr2)) if not configs[i] == 0]
|
||||||
idx2 = [i + 1 for i in range(len(configs)) if configs[i] == 1]
|
idx2 = [i + 1 for i in range(len(configs)) if configs[i] == 1]
|
||||||
a = pe.Obs([zero_arr, zero_arr2], ['a1', 'a2'], idl=[idx, idx2])
|
a = pe.Obs([zero_arr], ['a1'], idl=[idx]) + pe.Obs([zero_arr2], ['a2'], idl=[idx2])
|
||||||
|
|
||||||
afull.gamma_method()
|
afull.gamma_method()
|
||||||
a.gamma_method()
|
a.gamma_method()
|
||||||
|
@ -1022,7 +1035,7 @@ def test_correlation_intersection_of_idls():
|
||||||
|
|
||||||
|
|
||||||
def test_covariance_non_identical_objects():
|
def test_covariance_non_identical_objects():
|
||||||
obs1 = pe.Obs([np.random.normal(1.0, 0.1, 1000), np.random.normal(1.0, 0.1, 1000), np.random.normal(1.0, 0.1, 732)], ["ens|r1", "ens|r2", "ens2"])
|
obs1 = pe.Obs([np.random.normal(1.0, 0.1, 1000), np.random.normal(1.0, 0.1, 1000)], ["ens|r1", "ens|r2"]) + pe.Obs([np.random.normal(1.0, 0.1, 732)], ['ens2'])
|
||||||
obs1.gamma_method()
|
obs1.gamma_method()
|
||||||
obs2 = obs1 + 1e-18
|
obs2 = obs1 + 1e-18
|
||||||
obs2.gamma_method()
|
obs2.gamma_method()
|
||||||
|
@ -1106,6 +1119,9 @@ def test_reweight_method():
|
||||||
obs1 = pe.pseudo_Obs(0.2, 0.01, 'test')
|
obs1 = pe.pseudo_Obs(0.2, 0.01, 'test')
|
||||||
rw = pe.pseudo_Obs(0.999, 0.001, 'test')
|
rw = pe.pseudo_Obs(0.999, 0.001, 'test')
|
||||||
assert obs1.reweight(rw) == pe.reweight(rw, [obs1])[0]
|
assert obs1.reweight(rw) == pe.reweight(rw, [obs1])[0]
|
||||||
|
rw2 = pe.pseudo_Obs(0.999, 0.001, 'test2')
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
obs1.reweight(rw2)
|
||||||
|
|
||||||
|
|
||||||
def test_jackknife():
|
def test_jackknife():
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue