mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-03-16 07:10:24 +01:00
Merge branch 'develop' into documentation
This commit is contained in:
commit
f13ddce69c
5 changed files with 20 additions and 56 deletions
1
.github/workflows/pytest.yml
vendored
1
.github/workflows/pytest.yml
vendored
|
@ -29,6 +29,7 @@ jobs:
|
|||
- name: Install
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install wheel
|
||||
pip install .
|
||||
pip install pytest
|
||||
pip install pytest-cov
|
||||
|
|
|
@ -2,9 +2,6 @@ import numpy as np
|
|||
import autograd.numpy as anp # Thinly-wrapped numpy
|
||||
from .obs import derived_observable, CObs, Obs, import_jackknife
|
||||
|
||||
from functools import partial
|
||||
from autograd.extend import defvjp
|
||||
|
||||
|
||||
def matmul(*operands):
|
||||
"""Matrix multiply all operands.
|
||||
|
@ -527,51 +524,3 @@ def _num_diff_svd(obs, **kwargs):
|
|||
res_mat2.append(row)
|
||||
|
||||
return (np.array(res_mat0) @ np.identity(mid_index), np.array(res_mat1) @ np.identity(mid_index), np.array(res_mat2) @ np.identity(shape[1]))
|
||||
|
||||
|
||||
# This code block is directly taken from the current master branch of autograd and remains
|
||||
# only until the new version is released on PyPi
|
||||
_dot = partial(anp.einsum, '...ij,...jk->...ik')
|
||||
|
||||
|
||||
# batched diag
|
||||
def _diag(a):
|
||||
return anp.eye(a.shape[-1]) * a
|
||||
|
||||
|
||||
# batched diagonal, similar to matrix_diag in tensorflow
|
||||
def _matrix_diag(a):
|
||||
reps = anp.array(a.shape)
|
||||
reps[:-1] = 1
|
||||
reps[-1] = a.shape[-1]
|
||||
newshape = list(a.shape) + [a.shape[-1]]
|
||||
return _diag(anp.tile(a, reps).reshape(newshape))
|
||||
|
||||
# https://arxiv.org/pdf/1701.00392.pdf Eq(4.77)
|
||||
# Note the formula from Sec3.1 in https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf is incomplete
|
||||
|
||||
|
||||
def grad_eig(ans, x):
|
||||
"""Gradient of a general square (complex valued) matrix"""
|
||||
e, u = ans # eigenvalues as 1d array, eigenvectors in columns
|
||||
n = e.shape[-1]
|
||||
|
||||
def vjp(g):
|
||||
ge, gu = g
|
||||
ge = _matrix_diag(ge)
|
||||
f = 1 / (e[..., anp.newaxis, :] - e[..., :, anp.newaxis] + 1.e-20)
|
||||
f -= _diag(f)
|
||||
ut = anp.swapaxes(u, -1, -2)
|
||||
r1 = f * _dot(ut, gu)
|
||||
r2 = -f * (_dot(_dot(ut, anp.conj(u)), anp.real(_dot(ut, gu)) * anp.eye(n)))
|
||||
r = _dot(_dot(anp.linalg.inv(ut), ge + r1 + r2), ut)
|
||||
if not anp.iscomplexobj(x):
|
||||
r = anp.real(r)
|
||||
# the derivative is still complex for real input (imaginary delta is allowed), real output
|
||||
# but the derivative should be real in real input case when imaginary delta is forbidden
|
||||
return r
|
||||
return vjp
|
||||
|
||||
|
||||
defvjp(anp.linalg.eig, grad_eig)
|
||||
# End of the code block from autograd.master
|
||||
|
|
2
setup.py
2
setup.py
|
@ -9,5 +9,5 @@ setup(name='pyerrors',
|
|||
author_email='fabian.joswig@ed.ac.uk',
|
||||
packages=find_packages(),
|
||||
python_requires='>=3.6.0',
|
||||
install_requires=['numpy>=1.16', 'autograd>=1.2', 'numdifftools', 'matplotlib>=3.3', 'scipy', 'iminuit>=2', 'h5py']
|
||||
install_requires=['numpy>=1.16', 'autograd @ git+https://github.com/HIPS/autograd.git', 'numdifftools', 'matplotlib>=3.3', 'scipy', 'iminuit>=2', 'h5py']
|
||||
)
|
||||
|
|
|
@ -1,7 +1,8 @@
|
|||
import os
|
||||
import gzip
|
||||
import numpy as np
|
||||
import pyerrors as pe
|
||||
import pyerrors.input.json as jsonio
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
|
||||
def test_jsonio():
|
||||
|
@ -70,6 +71,15 @@ def test_jsonio():
|
|||
|
||||
def test_json_string_reconstruction():
|
||||
my_obs = pe.Obs([np.random.rand(100)], ['name'])
|
||||
|
||||
json_string = pe.input.json.create_json_string(my_obs)
|
||||
reconstructed_obs = pe.input.json.import_json_string(json_string)
|
||||
assert my_obs == reconstructed_obs
|
||||
reconstructed_obs1 = pe.input.json.import_json_string(json_string)
|
||||
assert my_obs == reconstructed_obs1
|
||||
|
||||
compressed_string = gzip.compress(json_string.encode('utf-8'))
|
||||
|
||||
reconstructed_string = gzip.decompress(compressed_string).decode('utf-8')
|
||||
reconstructed_obs2 = pe.input.json.import_json_string(reconstructed_string)
|
||||
|
||||
assert reconstructed_string == json_string
|
||||
assert my_obs == reconstructed_obs2
|
||||
|
|
|
@ -300,6 +300,10 @@ def test_matrix_functions():
|
|||
for j in range(dim):
|
||||
assert tmp[j].is_zero()
|
||||
|
||||
# Check eig function
|
||||
e2 = pe.linalg.eig(sym)
|
||||
assert np.all(np.sort(e) == np.sort(e2))
|
||||
|
||||
# Check svd
|
||||
u, v, vh = pe.linalg.svd(sym)
|
||||
diff = sym - u @ np.diag(v) @ vh
|
||||
|
|
Loading…
Add table
Reference in a new issue