Merge pull request #102 from fjosw/feature/covariance_idl2

Feature/covariance idl2
This commit is contained in:
Fabian Joswig 2022-05-26 15:01:35 +01:00 committed by GitHub
commit f02488208a
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 202 additions and 9 deletions

View file

@ -515,6 +515,35 @@ def test_merge_idx():
assert pe.obs._merge_idx([range(500, 6050, 50), range(500, 6250, 250)]) == range(500, 6250, 50)
def test_intersection_idx():
assert pe.obs._intersection_idx([range(1, 100), range(1, 100), range(1, 100)]) == range(1, 100)
assert pe.obs._intersection_idx([range(1, 100, 10), range(1, 100, 2)]) == range(1, 100, 10)
assert pe.obs._intersection_idx([range(10, 1010, 10), range(10, 1010, 50)]) == range(10, 1010, 50)
assert pe.obs._intersection_idx([range(500, 6050, 50), range(500, 6250, 250)]) == range(500, 6050, 250)
for ids in [[list(range(1, 80, 3)), list(range(1, 100, 2))], [range(1, 80, 3), range(1, 100, 2), range(1, 100, 7)]]:
assert list(pe.obs._intersection_idx(ids)) == pe.obs._intersection_idx([list(o) for o in ids])
def test_merge_intersection():
for idl_list in [[range(1, 100), range(1, 100), range(1, 100)],
[range(4, 80, 6), range(4, 80, 6)],
[[0, 2, 8, 19, 205], [0, 2, 8, 19, 205]]]:
assert pe.obs._merge_idx(idl_list) == pe.obs._intersection_idx(idl_list)
def test_intersection_collapse():
range1 = range(1, 2000, 2)
range2 = range(2, 2001, 8)
obs1 = pe.Obs([np.random.normal(1.0, 0.1, len(range1))], ["ens"], idl=[range1])
obs_merge = obs1 + pe.Obs([np.random.normal(1.0, 0.1, len(range2))], ["ens"], idl=[range2])
intersection = pe.obs._intersection_idx([o.idl["ens"] for o in [obs1, obs_merge]])
coll = pe.obs._collapse_deltas_for_merge(obs_merge.deltas["ens"], obs_merge.idl["ens"], len(obs_merge.idl["ens"]), range1)
assert np.all(coll == obs1.deltas["ens"])
def test_irregular_error_propagation():
obs_list = [pe.Obs([np.random.rand(100)], ['t']),
pe.Obs([np.random.rand(50)], ['t'], idl=[range(1, 100, 2)]),
@ -619,6 +648,26 @@ def test_covariance_is_variance():
assert np.isclose(test_obs.dvalue ** 2, pe.covariance([test_obs, test_obs])[0, 1])
def test_covariance_vs_numpy():
N = 1078
data1 = np.random.normal(2.5, 0.2, N)
data2 = np.random.normal(0.5, 0.08, N)
data3 = np.random.normal(-178, 5, N)
uncorr = np.row_stack([data1, data2, data3])
corr = np.random.multivariate_normal([0.0, 17, -0.0487], [[1.0, 0.6, -0.22], [0.6, 0.8, 0.01], [-0.22, 0.01, 1.9]], N).T
for X in [uncorr, corr]:
obs1 = pe.Obs([X[0]], ["ens1"])
obs2 = pe.Obs([X[1]], ["ens1"])
obs3 = pe.Obs([X[2]], ["ens1"])
obs1.gamma_method(S=0.0)
obs2.gamma_method(S=0.0)
obs3.gamma_method(S=0.0)
pe_cov = pe.covariance([obs1, obs2, obs3])
np_cov = np.cov(X) / N
assert np.allclose(pe_cov, np_cov, atol=1e-14)
def test_covariance_symmetry():
value1 = np.random.normal(5, 10)
dvalue1 = np.abs(np.random.normal(0, 1))
@ -729,6 +778,86 @@ def test_covariance_idl():
pe.covariance([obs1, obs2])
def test_correlation_intersection_of_idls():
range1 = range(1, 2000, 2)
range2 = range(2, 2001, 2)
obs1 = pe.Obs([np.random.normal(1.0, 0.1, len(range1))], ["ens"], idl=[range1])
obs2_a = 0.4 * pe.Obs([np.random.normal(1.0, 0.1, len(range1))], ["ens"], idl=[range1]) + 0.6 * obs1
obs1.gamma_method()
obs2_a.gamma_method()
cov1 = pe.covariance([obs1, obs2_a])
corr1 = pe.covariance([obs1, obs2_a], correlation=True)
obs2_b = obs2_a + pe.Obs([np.random.normal(1.0, 0.1, len(range2))], ["ens"], idl=[range2])
obs2_b.gamma_method()
cov2 = pe.covariance([obs1, obs2_b])
corr2 = pe.covariance([obs1, obs2_b], correlation=True)
assert np.isclose(corr1[0, 1], corr2[0, 1], atol=1e-14)
assert cov1[0, 1] > cov2[0, 1]
obs2_c = pe.Obs([np.random.normal(1.0, 0.1, len(range2))], ["ens"], idl=[range2])
obs2_c.gamma_method()
assert np.isclose(0, pe.covariance([obs1, obs2_c])[0, 1], atol=1e-14)
def test_covariance_non_identical_objects():
obs1 = pe.Obs([np.random.normal(1.0, 0.1, 1000), np.random.normal(1.0, 0.1, 1000), np.random.normal(1.0, 0.1, 732)], ["ens|r1", "ens|r2", "ens2"])
obs1.gamma_method()
obs2 = obs1 + 1e-18
obs2.gamma_method()
assert obs1 == obs2
assert obs1 is not obs2
assert np.allclose(np.ones((2, 2)), pe.covariance([obs1, obs2], correlation=True), atol=1e-14)
def test_covariance_additional_non_overlapping_data():
range1 = range(1, 20, 2)
data2 = np.random.normal(0.0, 0.1, len(range1))
obs1 = pe.Obs([np.random.normal(1.0, 0.1, len(range1))], ["ens"], idl=[range1])
obs2_a = pe.Obs([data2], ["ens"], idl=[range1])
obs1.gamma_method()
obs2_a.gamma_method()
corr1 = pe.covariance([obs1, obs2_a], correlation=True)
added_data = np.random.normal(0.0, 0.1, len(range1))
added_data -= np.mean(added_data) - np.mean(data2)
data2_extended = np.ravel([data2, added_data], 'F')
obs2_b = pe.Obs([data2_extended], ["ens"])
obs2_b.gamma_method()
corr2 = pe.covariance([obs1, obs2_b], correlation=True)
assert np.isclose(corr1[0, 1], corr2[0, 1], atol=1e-14)
def test_coavariance_reorder_non_overlapping_data():
range1 = range(1, 20, 2)
range2 = range(1, 41, 2)
obs1 = pe.Obs([np.random.normal(1.0, 0.1, len(range1))], ["ens"], idl=[range1])
obs2_b = pe.Obs([np.random.normal(1.0, 0.1, len(range2))], ["ens"], idl=[range2])
obs1.gamma_method()
obs2_b.gamma_method()
corr1 = pe.covariance([obs1, obs2_b], correlation=True)
deltas = list(obs2_b.deltas['ens'][:len(range1)]) + sorted(obs2_b.deltas['ens'][len(range1):])
obs2_a = pe.Obs([obs2_b.value + np.array(deltas)], ["ens"], idl=[range2])
obs2_a.gamma_method()
corr2 = pe.covariance([obs1, obs2_a], correlation=True)
assert np.isclose(corr1[0, 1], corr2[0, 1], atol=1e-14)
def test_empty_obs():
o = pe.Obs([np.random.rand(100)], ['test'])
q = o + pe.Obs([], [], means=[])