mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-03-15 14:50:25 +01:00
Several improvements for read_rwms and extract_t0
This commit is contained in:
parent
eab2ba45ff
commit
ef1fecad10
1 changed files with 97 additions and 14 deletions
|
@ -3,6 +3,8 @@ import fnmatch
|
|||
import re
|
||||
import struct
|
||||
import numpy as np # Thinly-wrapped numpy
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib import gridspec
|
||||
from ..obs import Obs
|
||||
from ..fits import fit_lin
|
||||
|
||||
|
@ -27,6 +29,9 @@ def read_rwms(path, prefix, version='2.0', names=None, **kwargs):
|
|||
list which contains the first config to be read for each replicum
|
||||
r_stop : list
|
||||
list which contains the last config to be read for each replicum
|
||||
r_step : int
|
||||
integer that defines a fixed step size between two measurements (in units of configs)
|
||||
If not given, r_step=1 is assumed.
|
||||
postfix : str
|
||||
postfix of the file to read, e.g. '.ms1' for openQCD-files
|
||||
files : list
|
||||
|
@ -76,6 +81,11 @@ def read_rwms(path, prefix, version='2.0', names=None, **kwargs):
|
|||
else:
|
||||
r_stop = [None] * replica
|
||||
|
||||
if 'r_step' in kwargs:
|
||||
r_step = kwargs.get('r_step')
|
||||
else:
|
||||
r_step = 1
|
||||
|
||||
print('Read reweighting factors from', prefix[:-1], ',',
|
||||
replica, 'replica', end='')
|
||||
|
||||
|
@ -85,6 +95,8 @@ def read_rwms(path, prefix, version='2.0', names=None, **kwargs):
|
|||
truncated_entry = entry.split('.')[0]
|
||||
idx = truncated_entry.index('r')
|
||||
rep_names.append(truncated_entry[:idx] + '|' + truncated_entry[idx:])
|
||||
else:
|
||||
rep_names = names
|
||||
|
||||
print_err = 0
|
||||
if 'print_err' in kwargs:
|
||||
|
@ -129,6 +141,9 @@ def read_rwms(path, prefix, version='2.0', names=None, **kwargs):
|
|||
if not struct.unpack('i', fp.read(4))[0] == 0:
|
||||
print('something is wrong!')
|
||||
|
||||
if r_start[rep] is None:
|
||||
r_start[rep] = 0
|
||||
|
||||
while 0 < 1:
|
||||
t = fp.read(4)
|
||||
if len(t) < 4:
|
||||
|
@ -164,18 +179,16 @@ def read_rwms(path, prefix, version='2.0', names=None, **kwargs):
|
|||
print('Sources:', np.exp(-np.asarray(tmp_rw)))
|
||||
print('Partial factor:', tmp_nfct)
|
||||
tmp_array[i].append(tmp_nfct)
|
||||
|
||||
if r_stop[rep] is None:
|
||||
r_stop[rep] = len(tmp_array[0])
|
||||
for k in range(nrw):
|
||||
deltas[k].append(tmp_array[k][r_start[rep]:r_stop[rep]])
|
||||
deltas[k].append(tmp_array[k][r_start[rep]:r_stop[rep]][::r_step])
|
||||
|
||||
print(',', nrw, 'reweighting factors with', nsrc, 'sources')
|
||||
result = []
|
||||
idl = [range(r_start[rep] + 1, r_stop[rep] + r_step, r_step) for rep in range(replica)]
|
||||
for t in range(nrw):
|
||||
if names is None:
|
||||
result.append(Obs(deltas[t], rep_names))
|
||||
else:
|
||||
print(names)
|
||||
result.append(Obs(deltas[t], names))
|
||||
result.append(Obs(deltas[t], rep_names, idl=idl))
|
||||
return result
|
||||
|
||||
|
||||
|
@ -212,8 +225,19 @@ def extract_t0(path, prefix, dtr_read, xmin,
|
|||
list which contains the first config to be read for each replicum.
|
||||
r_stop : list
|
||||
list which contains the last config to be read for each replicum.
|
||||
r_step : int
|
||||
integer that defines a fixed step size between two measurements (in units of configs)
|
||||
If not given, r_step=1 is assumed.
|
||||
plaquette : bool
|
||||
If true extract the plaquette estimate of t0 instead.
|
||||
names : list
|
||||
list of names that is assigned to the data according according
|
||||
to the order in the file list. Use careful, if you do not provide file names!
|
||||
files : list
|
||||
list which contains the filenames to be read. No automatic detection of
|
||||
files performed if given.
|
||||
plot_fit : bool
|
||||
If true, the fit for the extraction of t0 is shown together with the data.
|
||||
"""
|
||||
|
||||
ls = []
|
||||
|
@ -224,11 +248,14 @@ def extract_t0(path, prefix, dtr_read, xmin,
|
|||
if not ls:
|
||||
raise Exception('Error, directory not found')
|
||||
|
||||
for exc in ls:
|
||||
if not fnmatch.fnmatch(exc, prefix + '*.ms.dat'):
|
||||
ls = list(set(ls) - set([exc]))
|
||||
if len(ls) > 1:
|
||||
ls.sort(key=lambda x: int(re.findall(r'\d+', x[len(prefix):])[0]))
|
||||
if 'files' in kwargs:
|
||||
ls = kwargs.get('files')
|
||||
else:
|
||||
for exc in ls:
|
||||
if not fnmatch.fnmatch(exc, prefix + '*.ms.dat'):
|
||||
ls = list(set(ls) - set([exc]))
|
||||
if len(ls) > 1:
|
||||
ls.sort(key=lambda x: int(re.findall(r'\d+', x[len(prefix):])[0]))
|
||||
replica = len(ls)
|
||||
|
||||
if 'r_start' in kwargs:
|
||||
|
@ -246,8 +273,22 @@ def extract_t0(path, prefix, dtr_read, xmin,
|
|||
else:
|
||||
r_stop = [None] * replica
|
||||
|
||||
if 'r_step' in kwargs:
|
||||
r_step = kwargs.get('r_step')
|
||||
else:
|
||||
r_step = 1
|
||||
|
||||
print('Extract t0 from', prefix, ',', replica, 'replica')
|
||||
|
||||
if 'names' in kwargs:
|
||||
rep_names = kwargs.get('names')
|
||||
else:
|
||||
rep_names = []
|
||||
for entry in ls:
|
||||
truncated_entry = entry.split('.')[0]
|
||||
idx = truncated_entry.index('r')
|
||||
rep_names.append(truncated_entry[:idx] + '|' + truncated_entry[idx:])
|
||||
|
||||
Ysum = []
|
||||
|
||||
for rep in range(replica):
|
||||
|
@ -271,6 +312,10 @@ def extract_t0(path, prefix, dtr_read, xmin,
|
|||
|
||||
Ysl = []
|
||||
|
||||
if r_start[rep] is None:
|
||||
r_start[rep] = 0
|
||||
|
||||
cfgcount = -1
|
||||
while 0 < 1:
|
||||
t = fp.read(4)
|
||||
if(len(t) < 4):
|
||||
|
@ -287,12 +332,16 @@ def extract_t0(path, prefix, dtr_read, xmin,
|
|||
Ysl.append(struct.unpack('d' * tmax * (nn + 1), t))
|
||||
t = fp.read(8 * tmax * (nn + 1))
|
||||
|
||||
cfgcount += 1
|
||||
if r_stop[rep] is None:
|
||||
r_stop[rep] = cfgcount
|
||||
Ysum.append([])
|
||||
for i, item in enumerate(Ysl):
|
||||
Ysum[-1].append([np.mean(item[current + xmin:
|
||||
current + tmax - xmin])
|
||||
for current in range(0, len(item), tmax)])
|
||||
|
||||
idl = [range(r_start[rep] + 1, r_stop[rep] + r_step, r_step) for rep in range(len(r_start))]
|
||||
t2E_dict = {}
|
||||
for n in range(nn + 1):
|
||||
samples = []
|
||||
|
@ -300,8 +349,8 @@ def extract_t0(path, prefix, dtr_read, xmin,
|
|||
samples.append([])
|
||||
for cnfg in rep:
|
||||
samples[-1].append(cnfg[n])
|
||||
samples[-1] = samples[-1][r_start[nrep]:r_stop[nrep]]
|
||||
new_obs = Obs(samples, [(w.split('.'))[0] for w in ls])
|
||||
samples[-1] = samples[-1][r_start[nrep]:r_stop[nrep]][::r_step]
|
||||
new_obs = Obs(samples, rep_names, idl=idl)
|
||||
t2E_dict[n * dn * eps] = (n * dn * eps) ** 2 * new_obs / (spatial_extent ** 3) - 0.3
|
||||
|
||||
zero_crossing = np.argmax(np.array(
|
||||
|
@ -314,6 +363,40 @@ def extract_t0(path, prefix, dtr_read, xmin,
|
|||
[o.gamma_method() for o in y]
|
||||
|
||||
fit_result = fit_lin(x, y)
|
||||
|
||||
if kwargs.get('plot_fit'):
|
||||
plt.figure()
|
||||
gs = gridspec.GridSpec(2, 1, height_ratios=[3, 1], wspace=0.0, hspace=0.0)
|
||||
ax0 = plt.subplot(gs[0])
|
||||
xmore = list(t2E_dict.keys())[zero_crossing - fit_range - 2: zero_crossing + fit_range + 2]
|
||||
ymore = list(t2E_dict.values())[zero_crossing - fit_range - 2: zero_crossing + fit_range + 2]
|
||||
[o.gamma_method() for o in ymore]
|
||||
ax0.errorbar(xmore, [yi.value for yi in ymore], yerr=[yi.dvalue for yi in ymore], fmt='x')
|
||||
xplot = np.linspace(np.min(x), np.max(x))
|
||||
yplot = [fit_result[0] + fit_result[1] * xi for xi in xplot]
|
||||
[yi.gamma_method() for yi in yplot]
|
||||
ax0.fill_between(xplot, y1=[yi.value - yi.dvalue for yi in yplot], y2=[yi.value + yi.dvalue for yi in yplot])
|
||||
retval = (-fit_result[0] / fit_result[1])
|
||||
retval.gamma_method()
|
||||
ylim = ax0.get_ylim()
|
||||
ax0.fill_betweenx(ylim, x1=retval.value - retval.dvalue, x2=retval.value + retval.dvalue, color='gray', alpha=0.4)
|
||||
ax0.set_ylim(ylim)
|
||||
ax0.set_ylabel(r'$t^2 \langle E(t) \rangle - 0.3 $')
|
||||
xlim = ax0.get_xlim()
|
||||
|
||||
fit_res = [fit_result[0] + fit_result[1] * xi for xi in x]
|
||||
residuals = (np.asarray([o.value for o in y]) - [o.value for o in fit_res]) / np.asarray([o.dvalue for o in y])
|
||||
ax1 = plt.subplot(gs[1])
|
||||
ax1.plot(x, residuals, 'ko', ls='none', markersize=5)
|
||||
ax1.tick_params(direction='out')
|
||||
ax1.tick_params(axis="x", bottom=True, top=True, labelbottom=True)
|
||||
ax1.axhline(y=0.0, ls='--', color='k')
|
||||
ax1.fill_between(xlim, -1.0, 1.0, alpha=0.1, facecolor='k')
|
||||
ax1.set_xlim(xlim)
|
||||
ax1.set_ylabel('Residuals')
|
||||
ax1.set_xlabel(r'$t/a^2$')
|
||||
|
||||
plt.show()
|
||||
return -fit_result[0] / fit_result[1]
|
||||
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue