Several improvements for read_rwms and extract_t0

This commit is contained in:
Simon Kuberski 2022-02-03 15:57:23 +01:00
parent eab2ba45ff
commit ef1fecad10

View file

@ -3,6 +3,8 @@ import fnmatch
import re
import struct
import numpy as np # Thinly-wrapped numpy
import matplotlib.pyplot as plt
from matplotlib import gridspec
from ..obs import Obs
from ..fits import fit_lin
@ -27,6 +29,9 @@ def read_rwms(path, prefix, version='2.0', names=None, **kwargs):
list which contains the first config to be read for each replicum
r_stop : list
list which contains the last config to be read for each replicum
r_step : int
integer that defines a fixed step size between two measurements (in units of configs)
If not given, r_step=1 is assumed.
postfix : str
postfix of the file to read, e.g. '.ms1' for openQCD-files
files : list
@ -76,6 +81,11 @@ def read_rwms(path, prefix, version='2.0', names=None, **kwargs):
else:
r_stop = [None] * replica
if 'r_step' in kwargs:
r_step = kwargs.get('r_step')
else:
r_step = 1
print('Read reweighting factors from', prefix[:-1], ',',
replica, 'replica', end='')
@ -85,6 +95,8 @@ def read_rwms(path, prefix, version='2.0', names=None, **kwargs):
truncated_entry = entry.split('.')[0]
idx = truncated_entry.index('r')
rep_names.append(truncated_entry[:idx] + '|' + truncated_entry[idx:])
else:
rep_names = names
print_err = 0
if 'print_err' in kwargs:
@ -129,6 +141,9 @@ def read_rwms(path, prefix, version='2.0', names=None, **kwargs):
if not struct.unpack('i', fp.read(4))[0] == 0:
print('something is wrong!')
if r_start[rep] is None:
r_start[rep] = 0
while 0 < 1:
t = fp.read(4)
if len(t) < 4:
@ -164,18 +179,16 @@ def read_rwms(path, prefix, version='2.0', names=None, **kwargs):
print('Sources:', np.exp(-np.asarray(tmp_rw)))
print('Partial factor:', tmp_nfct)
tmp_array[i].append(tmp_nfct)
if r_stop[rep] is None:
r_stop[rep] = len(tmp_array[0])
for k in range(nrw):
deltas[k].append(tmp_array[k][r_start[rep]:r_stop[rep]])
deltas[k].append(tmp_array[k][r_start[rep]:r_stop[rep]][::r_step])
print(',', nrw, 'reweighting factors with', nsrc, 'sources')
result = []
idl = [range(r_start[rep] + 1, r_stop[rep] + r_step, r_step) for rep in range(replica)]
for t in range(nrw):
if names is None:
result.append(Obs(deltas[t], rep_names))
else:
print(names)
result.append(Obs(deltas[t], names))
result.append(Obs(deltas[t], rep_names, idl=idl))
return result
@ -212,8 +225,19 @@ def extract_t0(path, prefix, dtr_read, xmin,
list which contains the first config to be read for each replicum.
r_stop : list
list which contains the last config to be read for each replicum.
r_step : int
integer that defines a fixed step size between two measurements (in units of configs)
If not given, r_step=1 is assumed.
plaquette : bool
If true extract the plaquette estimate of t0 instead.
names : list
list of names that is assigned to the data according according
to the order in the file list. Use careful, if you do not provide file names!
files : list
list which contains the filenames to be read. No automatic detection of
files performed if given.
plot_fit : bool
If true, the fit for the extraction of t0 is shown together with the data.
"""
ls = []
@ -224,11 +248,14 @@ def extract_t0(path, prefix, dtr_read, xmin,
if not ls:
raise Exception('Error, directory not found')
for exc in ls:
if not fnmatch.fnmatch(exc, prefix + '*.ms.dat'):
ls = list(set(ls) - set([exc]))
if len(ls) > 1:
ls.sort(key=lambda x: int(re.findall(r'\d+', x[len(prefix):])[0]))
if 'files' in kwargs:
ls = kwargs.get('files')
else:
for exc in ls:
if not fnmatch.fnmatch(exc, prefix + '*.ms.dat'):
ls = list(set(ls) - set([exc]))
if len(ls) > 1:
ls.sort(key=lambda x: int(re.findall(r'\d+', x[len(prefix):])[0]))
replica = len(ls)
if 'r_start' in kwargs:
@ -246,8 +273,22 @@ def extract_t0(path, prefix, dtr_read, xmin,
else:
r_stop = [None] * replica
if 'r_step' in kwargs:
r_step = kwargs.get('r_step')
else:
r_step = 1
print('Extract t0 from', prefix, ',', replica, 'replica')
if 'names' in kwargs:
rep_names = kwargs.get('names')
else:
rep_names = []
for entry in ls:
truncated_entry = entry.split('.')[0]
idx = truncated_entry.index('r')
rep_names.append(truncated_entry[:idx] + '|' + truncated_entry[idx:])
Ysum = []
for rep in range(replica):
@ -271,6 +312,10 @@ def extract_t0(path, prefix, dtr_read, xmin,
Ysl = []
if r_start[rep] is None:
r_start[rep] = 0
cfgcount = -1
while 0 < 1:
t = fp.read(4)
if(len(t) < 4):
@ -287,12 +332,16 @@ def extract_t0(path, prefix, dtr_read, xmin,
Ysl.append(struct.unpack('d' * tmax * (nn + 1), t))
t = fp.read(8 * tmax * (nn + 1))
cfgcount += 1
if r_stop[rep] is None:
r_stop[rep] = cfgcount
Ysum.append([])
for i, item in enumerate(Ysl):
Ysum[-1].append([np.mean(item[current + xmin:
current + tmax - xmin])
for current in range(0, len(item), tmax)])
idl = [range(r_start[rep] + 1, r_stop[rep] + r_step, r_step) for rep in range(len(r_start))]
t2E_dict = {}
for n in range(nn + 1):
samples = []
@ -300,8 +349,8 @@ def extract_t0(path, prefix, dtr_read, xmin,
samples.append([])
for cnfg in rep:
samples[-1].append(cnfg[n])
samples[-1] = samples[-1][r_start[nrep]:r_stop[nrep]]
new_obs = Obs(samples, [(w.split('.'))[0] for w in ls])
samples[-1] = samples[-1][r_start[nrep]:r_stop[nrep]][::r_step]
new_obs = Obs(samples, rep_names, idl=idl)
t2E_dict[n * dn * eps] = (n * dn * eps) ** 2 * new_obs / (spatial_extent ** 3) - 0.3
zero_crossing = np.argmax(np.array(
@ -314,6 +363,40 @@ def extract_t0(path, prefix, dtr_read, xmin,
[o.gamma_method() for o in y]
fit_result = fit_lin(x, y)
if kwargs.get('plot_fit'):
plt.figure()
gs = gridspec.GridSpec(2, 1, height_ratios=[3, 1], wspace=0.0, hspace=0.0)
ax0 = plt.subplot(gs[0])
xmore = list(t2E_dict.keys())[zero_crossing - fit_range - 2: zero_crossing + fit_range + 2]
ymore = list(t2E_dict.values())[zero_crossing - fit_range - 2: zero_crossing + fit_range + 2]
[o.gamma_method() for o in ymore]
ax0.errorbar(xmore, [yi.value for yi in ymore], yerr=[yi.dvalue for yi in ymore], fmt='x')
xplot = np.linspace(np.min(x), np.max(x))
yplot = [fit_result[0] + fit_result[1] * xi for xi in xplot]
[yi.gamma_method() for yi in yplot]
ax0.fill_between(xplot, y1=[yi.value - yi.dvalue for yi in yplot], y2=[yi.value + yi.dvalue for yi in yplot])
retval = (-fit_result[0] / fit_result[1])
retval.gamma_method()
ylim = ax0.get_ylim()
ax0.fill_betweenx(ylim, x1=retval.value - retval.dvalue, x2=retval.value + retval.dvalue, color='gray', alpha=0.4)
ax0.set_ylim(ylim)
ax0.set_ylabel(r'$t^2 \langle E(t) \rangle - 0.3 $')
xlim = ax0.get_xlim()
fit_res = [fit_result[0] + fit_result[1] * xi for xi in x]
residuals = (np.asarray([o.value for o in y]) - [o.value for o in fit_res]) / np.asarray([o.dvalue for o in y])
ax1 = plt.subplot(gs[1])
ax1.plot(x, residuals, 'ko', ls='none', markersize=5)
ax1.tick_params(direction='out')
ax1.tick_params(axis="x", bottom=True, top=True, labelbottom=True)
ax1.axhline(y=0.0, ls='--', color='k')
ax1.fill_between(xlim, -1.0, 1.0, alpha=0.1, facecolor='k')
ax1.set_xlim(xlim)
ax1.set_ylabel('Residuals')
ax1.set_xlabel(r'$t/a^2$')
plt.show()
return -fit_result[0] / fit_result[1]