diff --git a/docs/pyerrors/correlators.html b/docs/pyerrors/correlators.html index 5d2d2551..08b87efb 100644 --- a/docs/pyerrors/correlators.html +++ b/docs/pyerrors/correlators.html @@ -423,8 +423,8 @@ def roll(self, dt): """Periodically shift the correlator by dt timeslices - Attributes: - ----------- + Parameters + ---------- dt : int number of timeslices """ @@ -461,9 +461,6 @@ weight : Obs Reweighting factor. An Observable that has to be defined on a superset of the configurations in obs[i].idl for all i. - - Keyword arguments - ----------------- all_configs : bool if True, the reweighted observables are normalized by the average of the reweighting factor on all configurations in weight.idl and not @@ -480,8 +477,8 @@ def T_symmetry(self, partner, parity=+1): """Return the time symmetry average of the correlator and its partner - Attributes: - ----------- + Parameters + ---------- partner : Corr Time symmetry partner of the Corr partity : int @@ -506,8 +503,8 @@ def deriv(self, symmetric=True): """Return the first derivative of the correlator with respect to x0. - Attributes: - ----------- + Parameters + ---------- symmetric : bool decides whether symmertic of simple finite differences are used. Default: True """ @@ -611,8 +608,8 @@ def fit(self, function, fitrange=None, silent=False, **kwargs): """Fits function to the data - Attributes: - ----------- + Parameters + ---------- function : obj function to fit to the data. See fits.least_squares for details. fitrange : list @@ -644,8 +641,8 @@ def plateau(self, plateau_range=None, method="fit"): """ Extract a plateu value from a Corr object - Attributes: - ----------- + Parameters + ---------- plateau_range : list list with two entries, indicating the first and the last timeslice of the plateau region. @@ -775,8 +772,8 @@ def dump(self, filename): """Dumps the Corr into a pickel file - Attributes: - ----------- + Parameters + ---------- filename : str Name of the file """ @@ -1225,8 +1222,8 @@ def roll(self, dt): """Periodically shift the correlator by dt timeslices - Attributes: - ----------- + Parameters + ---------- dt : int number of timeslices """ @@ -1263,9 +1260,6 @@ weight : Obs Reweighting factor. An Observable that has to be defined on a superset of the configurations in obs[i].idl for all i. - - Keyword arguments - ----------------- all_configs : bool if True, the reweighted observables are normalized by the average of the reweighting factor on all configurations in weight.idl and not @@ -1282,8 +1276,8 @@ def T_symmetry(self, partner, parity=+1): """Return the time symmetry average of the correlator and its partner - Attributes: - ----------- + Parameters + ---------- partner : Corr Time symmetry partner of the Corr partity : int @@ -1308,8 +1302,8 @@ def deriv(self, symmetric=True): """Return the first derivative of the correlator with respect to x0. - Attributes: - ----------- + Parameters + ---------- symmetric : bool decides whether symmertic of simple finite differences are used. Default: True """ @@ -1413,8 +1407,8 @@ def fit(self, function, fitrange=None, silent=False, **kwargs): """Fits function to the data - Attributes: - ----------- + Parameters + ---------- function : obj function to fit to the data. See fits.least_squares for details. fitrange : list @@ -1446,8 +1440,8 @@ def plateau(self, plateau_range=None, method="fit"): """ Extract a plateu value from a Corr object - Attributes: - ----------- + Parameters + ---------- plateau_range : list list with two entries, indicating the first and the last timeslice of the plateau region. @@ -1577,8 +1571,8 @@ def dump(self, filename): """Dumps the Corr into a pickel file - Attributes: - ----------- + Parameters + ---------- filename : str Name of the file """ @@ -2190,8 +2184,8 @@ timeslice and the error on each timeslice.
def roll(self, dt): """Periodically shift the correlator by dt timeslices - Attributes: - ----------- + Parameters + ---------- dt : int number of timeslices """ @@ -2202,10 +2196,12 @@ timeslice and the error on each timeslice.@@ -2287,9 +2283,6 @@ timeslice and the error on each timeslice. weight : Obs Reweighting factor. An Observable that has to be defined on a superset of the configurations in obs[i].idl for all i. - - Keyword arguments - ----------------- all_configs : bool if True, the reweighted observables are normalized by the average of the reweighting factor on all configurations in weight.idl and not @@ -2314,14 +2307,11 @@ timeslice and the error on each timeslice.Periodically shift the correlator by dt timeslices
-Attributes:
+Parameters
-dt : int - number of timeslices
++
- dt (int): +number of timeslices
+
all_configs : bool - if True, the reweighted observables are normalized by the average of - the reweighting factor on all configurations in weight.idl and not - on the configurations in obs[i].idl.
def T_symmetry(self, partner, parity=+1): """Return the time symmetry average of the correlator and its partner - Attributes: - ----------- + Parameters + ---------- partner : Corr Time symmetry partner of the Corr partity : int @@ -2367,12 +2357,14 @@ configurations in obs[i].idl for all i.@@ -2390,8 +2382,8 @@ partity : intReturn the time symmetry average of the correlator and its partner
-Attributes:
+Parameters
-partner : Corr - Time symmetry partner of the Corr -partity : int - Parity quantum number of the correlator, can be +1 or -1
++
- partner (Corr): +Time symmetry partner of the Corr
+- partity (int): +Parity quantum number of the correlator, can be +1 or -1
+def deriv(self, symmetric=True): """Return the first derivative of the correlator with respect to x0. - Attributes: - ----------- + Parameters + ---------- symmetric : bool decides whether symmertic of simple finite differences are used. Default: True """ @@ -2421,10 +2413,12 @@ partity : int@@ -2566,8 +2560,8 @@ guess for the root finder, only relevant for the root variantReturn the first derivative of the correlator with respect to x0.
-Attributes:
+Parameters
-symmetric : bool - decides whether symmertic of simple finite differences are used. Default: True
++
- symmetric (bool): +decides whether symmertic of simple finite differences are used. Default: True
+def fit(self, function, fitrange=None, silent=False, **kwargs): """Fits function to the data - Attributes: - ----------- + Parameters + ---------- function : obj function to fit to the data. See fits.least_squares for details. fitrange : list @@ -2601,15 +2595,17 @@ guess for the root finder, only relevant for the root variant@@ -2627,8 +2623,8 @@ silent : boolFits function to the data
-Attributes:
+Parameters
-function : obj - function to fit to the data. See fits.least_squares for details. -fitrange : list - Range in which the function is to be fitted to the data. - If not specified, self.prange or all timeslices are used. -silent : bool - Decides whether output is printed to the standard output.
++
- function (obj): +function to fit to the data. See fits.least_squares for details.
+- fitrange (list): +Range in which the function is to be fitted to the data. +If not specified, self.prange or all timeslices are used.
+- silent (bool): +Decides whether output is printed to the standard output.
+def plateau(self, plateau_range=None, method="fit"): """ Extract a plateu value from a Corr object - Attributes: - ----------- + Parameters + ---------- plateau_range : list list with two entries, indicating the first and the last timeslice of the plateau region. @@ -2663,15 +2659,17 @@ silent : bool@@ -2851,8 +2849,8 @@ path to file in which the figure should be savedExtract a plateu value from a Corr object
-Attributes:
+Parameters
-plateau_range : list - list with two entries, indicating the first and the last timeslice - of the plateau region. -method : str - method to extract the plateau. - 'fit' fits a constant to the plateau region - 'avg', 'average' or 'mean' just average over the given timeslices.
++
- plateau_range (list): +list with two entries, indicating the first and the last timeslice +of the plateau region.
+- method (str): +method to extract the plateau. + 'fit' fits a constant to the plateau region + 'avg', 'average' or 'mean' just average over the given timeslices.
+def dump(self, filename): """Dumps the Corr into a pickel file - Attributes: - ----------- + Parameters + ---------- filename : str Name of the file """ @@ -2864,10 +2862,12 @@ path to file in which the figure should be saveddiff --git a/docs/pyerrors/fits.html b/docs/pyerrors/fits.html index 1f62ce8d..15adb214 100644 --- a/docs/pyerrors/fits.html +++ b/docs/pyerrors/fits.html @@ -175,7 +175,7 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs): """Performs a non-linear fit to y = func(x). - Arguments: + Parameters ---------- x : list list of floats. @@ -203,22 +203,23 @@ enough. silent : bool, optional If true all output to the console is omitted (default False). - - - Keyword arguments - ----------------- - initial_guess -- can provide an initial guess for the input parameters. Relevant for + initial_guess : list + can provide an initial guess for the input parameters. Relevant for non-linear fits with many parameters. - method -- can be used to choose an alternative method for the minimization of chisquare. - The possible methods are the ones which can be used for scipy.optimize.minimize and - migrad of iminuit. If no method is specified, Levenberg-Marquard is used. - Reliable alternatives are migrad, Powell and Nelder-Mead. - resplot -- If true, a plot which displays fit, data and residuals is generated (default False). - qqplot -- If true, a quantile-quantile plot of the fit result is generated (default False). - expected_chisquare -- If true prints the expected chisquare which is - corrected by effects caused by correlated input data. - This can take a while as the full correlation matrix - has to be calculated (default False). + method : str + can be used to choose an alternative method for the minimization of chisquare. + The possible methods are the ones which can be used for scipy.optimize.minimize and + migrad of iminuit. If no method is specified, Levenberg-Marquard is used. + Reliable alternatives are migrad, Powell and Nelder-Mead. + resplot : bool + If true, a plot which displays fit, data and residuals is generated (default False). + qqplot : bool + If true, a quantile-quantile plot of the fit result is generated (default False). + expected_chisquare : bool + If true prints the expected chisquare which is + corrected by effects caused by correlated input data. + This can take a while as the full correlation matrix + has to be calculated (default False). """ if priors is not None: return _prior_fit(x, y, func, priors, silent=silent, **kwargs) @@ -370,6 +371,8 @@ def total_least_squares(x, y, func, silent=False, **kwargs): """Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters. + Parameters + ---------- x : list list of Obs, or a tuple of lists of Obs y : list @@ -392,15 +395,14 @@ silent : bool, optional If true all output to the console is omitted (default False). Based on the orthogonal distance regression module of scipy - - Keyword arguments - ----------------- - initial_guess -- can provide an initial guess for the input parameters. Relevant for non-linear - fits with many parameters. - expected_chisquare -- If true prints the expected chisquare which is - corrected by effects caused by correlated input data. - This can take a while as the full correlation matrix - has to be calculated (default False). + initial_guess : list + can provide an initial guess for the input parameters. Relevant for non-linear + fits with many parameters. + expected_chisquare : bool + If true prints the expected chisquare which is + corrected by effects caused by correlated input data. + This can take a while as the full correlation matrix + has to be calculated (default False). """ output = Fit_result() @@ -1044,7 +1046,7 @@ also accesible via indices.Dumps the Corr into a pickel file
-Attributes:
+Parameters
-filename : str - Name of the file
++
- filename (str): +Name of the file
+def least_squares(x, y, func, priors=None, silent=False, **kwargs): """Performs a non-linear fit to y = func(x). - Arguments: + Parameters ---------- x : list list of floats. @@ -1072,22 +1074,23 @@ also accesible via indices. enough. silent : bool, optional If true all output to the console is omitted (default False). - - - Keyword arguments - ----------------- - initial_guess -- can provide an initial guess for the input parameters. Relevant for + initial_guess : list + can provide an initial guess for the input parameters. Relevant for non-linear fits with many parameters. - method -- can be used to choose an alternative method for the minimization of chisquare. - The possible methods are the ones which can be used for scipy.optimize.minimize and - migrad of iminuit. If no method is specified, Levenberg-Marquard is used. - Reliable alternatives are migrad, Powell and Nelder-Mead. - resplot -- If true, a plot which displays fit, data and residuals is generated (default False). - qqplot -- If true, a quantile-quantile plot of the fit result is generated (default False). - expected_chisquare -- If true prints the expected chisquare which is - corrected by effects caused by correlated input data. - This can take a while as the full correlation matrix - has to be calculated (default False). + method : str + can be used to choose an alternative method for the minimization of chisquare. + The possible methods are the ones which can be used for scipy.optimize.minimize and + migrad of iminuit. If no method is specified, Levenberg-Marquard is used. + Reliable alternatives are migrad, Powell and Nelder-Mead. + resplot : bool + If true, a plot which displays fit, data and residuals is generated (default False). + qqplot : bool + If true, a quantile-quantile plot of the fit result is generated (default False). + expected_chisquare : bool + If true prints the expected chisquare which is + corrected by effects caused by correlated input data. + This can take a while as the full correlation matrix + has to be calculated (default False). """ if priors is not None: return _prior_fit(x, y, func, priors, silent=silent, **kwargs) @@ -1099,51 +1102,53 @@ also accesible via indices.@@ -1201,6 +1206,8 @@ expected_chisquare -- If true prints the expected chisquare which isPerforms a non-linear fit to y = func(x).
-Arguments:
+Parameters
-x : list - list of floats. -y : list - list of Obs. -func : object - fit function, has to be of the form
++
- x (list): +list of floats.
+- y (list): +list of Obs.
+- +
func (object): +fit function, has to be of the form
-- -def func(a, x): - return a[0] + a[1] * x + a[2] * anp.sinh(x) +
def func(a, x): + return a[0] + a[1] * x + a[2] * anp.sinh(x)
-For multiple x values func can be of the form +For multiple x values func can be of the form
-def func(a, x): - (x1, x2) = x - return a[0] * x1 ** 2 + a[1] * x2 +def func(a, x): + (x1, x2) = x + return a[0] * x1 ** 2 + a[1] * x2
-It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation -will not work -priors : list, optional - priors has to be a list with an entry for every parameter in the fit. The entries can either be - Obs (e.g. results from a previous fit) or strings containing a value and an error formatted like - 0.548(23), 500(40) or 0.5(0.4) - It is important for the subsequent error estimation that the e_tag for the gamma method is large - enough. -silent : bool, optional - If true all output to the console is omitted (default False).
- -Keyword arguments
- -initial_guess -- can provide an initial guess for the input parameters. Relevant for - non-linear fits with many parameters. -method -- can be used to choose an alternative method for the minimization of chisquare. - The possible methods are the ones which can be used for scipy.optimize.minimize and - migrad of iminuit. If no method is specified, Levenberg-Marquard is used. - Reliable alternatives are migrad, Powell and Nelder-Mead. -resplot -- If true, a plot which displays fit, data and residuals is generated (default False). -qqplot -- If true, a quantile-quantile plot of the fit result is generated (default False). -expected_chisquare -- If true prints the expected chisquare which is - corrected by effects caused by correlated input data. - This can take a while as the full correlation matrix - has to be calculated (default False).
+It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation +will not work
- priors (list, optional): +priors has to be a list with an entry for every parameter in the fit. The entries can either be +Obs (e.g. results from a previous fit) or strings containing a value and an error formatted like +0.548(23), 500(40) or 0.5(0.4) +It is important for the subsequent error estimation that the e_tag for the gamma method is large +enough.
+- silent (bool, optional): +If true all output to the console is omitted (default False).
+- initial_guess (list): +can provide an initial guess for the input parameters. Relevant for + non-linear fits with many parameters.
+- method (str): +can be used to choose an alternative method for the minimization of chisquare. +The possible methods are the ones which can be used for scipy.optimize.minimize and +migrad of iminuit. If no method is specified, Levenberg-Marquard is used. +Reliable alternatives are migrad, Powell and Nelder-Mead.
+- resplot (bool): +If true, a plot which displays fit, data and residuals is generated (default False).
+- qqplot (bool): +If true, a quantile-quantile plot of the fit result is generated (default False).
+- expected_chisquare (bool): +If true prints the expected chisquare which is +corrected by effects caused by correlated input data. +This can take a while as the full correlation matrix +has to be calculated (default False).
+def total_least_squares(x, y, func, silent=False, **kwargs): """Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters. + Parameters + ---------- x : list list of Obs, or a tuple of lists of Obs y : list @@ -1223,15 +1230,14 @@ expected_chisquare -- If true prints the expected chisquare which is silent : bool, optional If true all output to the console is omitted (default False). Based on the orthogonal distance regression module of scipy - - Keyword arguments - ----------------- - initial_guess -- can provide an initial guess for the input parameters. Relevant for non-linear - fits with many parameters. - expected_chisquare -- If true prints the expected chisquare which is - corrected by effects caused by correlated input data. - This can take a while as the full correlation matrix - has to be calculated (default False). + initial_guess : list + can provide an initial guess for the input parameters. Relevant for non-linear + fits with many parameters. + expected_chisquare : bool + If true prints the expected chisquare which is + corrected by effects caused by correlated input data. + This can take a while as the full correlation matrix + has to be calculated (default False). """ output = Fit_result() @@ -1366,39 +1372,40 @@ expected_chisquare -- If true prints the expected chisquare which isdiff --git a/docs/pyerrors/input/openQCD.html b/docs/pyerrors/input/openQCD.html index e3ceb04c..767309f7 100644 --- a/docs/pyerrors/input/openQCD.html +++ b/docs/pyerrors/input/openQCD.html @@ -87,15 +87,16 @@ def read_rwms(path, prefix, version='2.0', names=None, **kwargs): """Read rwms format from given folder structure. Returns a list of length nrw - Attributes - ----------------- - version -- version of openQCD, default 2.0 - - Keyword arguments - ----------------- - r_start -- list which contains the first config to be read for each replicum - r_stop -- list which contains the last config to be read for each replicum - postfix -- postfix of the file to read, e.g. '.ms1' for openQCD-files + Parameters + ---------- + version : str + version of openQCD, default 2.0 + r_start : list + list which contains the first config to be read for each replicum + r_stop : list + list which contains the last config to be read for each replicum + postfix : str + postfix of the file to read, e.g. '.ms1' for openQCD-files """ known_oqcd_versions = ['1.4', '1.6', '2.0'] if not (version in known_oqcd_versions): @@ -248,19 +249,25 @@ Parameters ---------- - path -- Path to .ms.dat files - prefix -- Ensemble prefix - dtr_read -- Determines how many trajectories should be skipped when reading the ms.dat files. - Corresponds to dtr_cnfg / dtr_ms in the openQCD input file. - xmin -- First timeslice where the boundary effects have sufficiently decayed. - spatial_extent -- spatial extent of the lattice, required for normalization. - fit_range -- Number of data points left and right of the zero crossing to be included in the linear fit. (Default: 5) - - Keyword arguments - ----------------- - r_start -- list which contains the first config to be read for each replicum. - r_stop -- list which contains the last config to be read for each replicum. - plaquette -- If true extract the plaquette estimate of t0 instead. + path : str + Path to .ms.dat files + prefix : str + Ensemble prefix + dtr_read : int + Determines how many trajectories should be skipped when reading the ms.dat files. + Corresponds to dtr_cnfg / dtr_ms in the openQCD input file. + xmin : int + First timeslice where the boundary effects have sufficiently decayed. + spatial_extent : int + spatial extent of the lattice, required for normalization. + fit_range : int + Number of data points left and right of the zero crossing to be included in the linear fit. (Default: 5) + r_start : list + list which contains the first config to be read for each replicum. + r_stop: list + list which contains the last config to be read for each replicum. + plaquette : bool + If true extract the plaquette estimate of t0 instead. """ ls = [] @@ -428,15 +435,16 @@Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.
-x : list - list of Obs, or a tuple of lists of Obs -y : list - list of Obs. The dvalues of the Obs are used as x- and yerror for the fit. -func : object - func has to be of the form
+Parameters
-+def func(a, x): - y = a[0] + a[1] * x + a[2] * anp.sinh(x) - return y +
+
- x (list): +list of Obs, or a tuple of lists of Obs
+- y (list): +list of Obs. The dvalues of the Obs are used as x- and yerror for the fit.
+func (object): +func has to be of the form
-For multiple x values func can be of the form +def func(a, x): + y = a[0] + a[1] * x + a[2] * anp.sinh(x) + return y
-def func(a, x): - (x1, x2) = x - return a[0] * x1 ** 2 + a[1] * x2 +For multiple x values func can be of the form
-It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation -will not work. -def func(a, x): + (x1, x2) = x + return a[0] * x1 ** 2 + a[1] * x2
-silent : bool, optional - If true all output to the console is omitted (default False). -Based on the orthogonal distance regression module of scipy
- -Keyword arguments
- -initial_guess -- can provide an initial guess for the input parameters. Relevant for non-linear - fits with many parameters. -expected_chisquare -- If true prints the expected chisquare which is - corrected by effects caused by correlated input data. - This can take a while as the full correlation matrix - has to be calculated (default False).
+It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation +will not work.
+silent (bool, optional): +If true all output to the console is omitted (default False). +Based on the orthogonal distance regression module of scipy +initial_guess (list): +can provide an initial guess for the input parameters. Relevant for non-linear +fits with many parameters. +expected_chisquare (bool): +If true prints the expected chisquare which is +corrected by effects caused by correlated input data. +This can take a while as the full correlation matrix +has to be calculated (default False). +diff --git a/docs/pyerrors/input/sfcf.html b/docs/pyerrors/input/sfcf.html index accf40c0..6fc637ab 100644 --- a/docs/pyerrors/input/sfcf.html +++ b/docs/pyerrors/input/sfcf.html @@ -88,8 +88,8 @@ def read_sfcf(path, prefix, name, **kwargs): """Read sfcf C format from given folder structure. - Keyword arguments - ----------------- + Parameters + ---------- im -- if True, read imaginary instead of real part of the correlation function. single -- if True, read a boundary-to-boundary correlation function with a single value b2b -- if True, read a time-dependent boundary-to-boundary correlation function @@ -190,15 +190,12 @@ def read_sfcf_c(path, prefix, name, quarks='.*', noffset=0, wf=0, wf2=0, **kwargs): """Read sfcf c format from given folder structure. - Arguments - ----------------- + Parameters + ---------- quarks -- Label of the quarks used in the sfcf input file noffset -- Offset of the source (only relevant when wavefunctions are used) wf -- ID of wave function wf2 -- ID of the second wavefunction (only relevant for boundary-to-boundary correlation functions) - - Keyword arguments - ----------------- im -- if True, read imaginary instead of real part of the correlation function. b2b -- if True, read a time-dependent boundary-to-boundary correlation function names -- Alternative labeling for replicas/ensembles. Has to have the appropriate length @@ -313,8 +310,8 @@ def read_qtop(path, prefix, **kwargs): """Read qtop format from given folder structure. - Keyword arguments - ----------------- + Parameters + ---------- target -- specifies the topological sector to be reweighted to (default 0) full -- if true read the charge instead of the reweighting factor. """ @@ -390,8 +387,8 @@def read_rwms(path, prefix, version='2.0', names=None, **kwargs): """Read rwms format from given folder structure. Returns a list of length nrw - Attributes - ----------------- - version -- version of openQCD, default 2.0 - - Keyword arguments - ----------------- - r_start -- list which contains the first config to be read for each replicum - r_stop -- list which contains the last config to be read for each replicum - postfix -- postfix of the file to read, e.g. '.ms1' for openQCD-files + Parameters + ---------- + version : str + version of openQCD, default 2.0 + r_start : list + list which contains the first config to be read for each replicum + r_stop : list + list which contains the last config to be read for each replicum + postfix : str + postfix of the file to read, e.g. '.ms1' for openQCD-files """ known_oqcd_versions = ['1.4', '1.6', '2.0'] if not (version in known_oqcd_versions): @@ -583,17 +591,18 @@@@ -618,19 +627,25 @@ postfix -- postfix of the file to read, e.g. '.ms1' for openQCD-files Parameters ---------- - path -- Path to .ms.dat files - prefix -- Ensemble prefix - dtr_read -- Determines how many trajectories should be skipped when reading the ms.dat files. - Corresponds to dtr_cnfg / dtr_ms in the openQCD input file. - xmin -- First timeslice where the boundary effects have sufficiently decayed. - spatial_extent -- spatial extent of the lattice, required for normalization. - fit_range -- Number of data points left and right of the zero crossing to be included in the linear fit. (Default: 5) - - Keyword arguments - ----------------- - r_start -- list which contains the first config to be read for each replicum. - r_stop -- list which contains the last config to be read for each replicum. - plaquette -- If true extract the plaquette estimate of t0 instead. + path : str + Path to .ms.dat files + prefix : str + Ensemble prefix + dtr_read : int + Determines how many trajectories should be skipped when reading the ms.dat files. + Corresponds to dtr_cnfg / dtr_ms in the openQCD input file. + xmin : int + First timeslice where the boundary effects have sufficiently decayed. + spatial_extent : int + spatial extent of the lattice, required for normalization. + fit_range : int + Number of data points left and right of the zero crossing to be included in the linear fit. (Default: 5) + r_start : list + list which contains the first config to be read for each replicum. + r_stop: list + list which contains the last config to be read for each replicum. + plaquette : bool + If true extract the plaquette estimate of t0 instead. """ ls = [] @@ -745,19 +760,26 @@ Only works with openQCD v 1.2.Read rwms format from given folder structure. Returns a list of length nrw
-Attributes
+Parameters
-
- -- version -- version of openQCD, default 2.0
+- version (str): +version of openQCD, default 2.0
+- r_start (list): +list which contains the first config to be read for each replicum
+- r_stop (list): +list which contains the last config to be read for each replicum
+- postfix (str): +postfix of the file to read, e.g. '.ms1' for openQCD-files
Keyword arguments
- -r_start -- list which contains the first config to be read for each replicum -r_stop -- list which contains the last config to be read for each replicum -postfix -- postfix of the file to read, e.g. '.ms1' for openQCD-files
Parameters
-
- -- path -- Path to .ms.dat files
-- prefix -- Ensemble prefix
-- dtr_read -- Determines how many trajectories should be skipped when reading the ms.dat files.: Corresponds to dtr_cnfg / dtr_ms in the openQCD input file.
-- xmin -- First timeslice where the boundary effects have sufficiently decayed.
-- spatial_extent -- spatial extent of the lattice, required for normalization.
-- fit_range -- Number of data points left and right of the zero crossing to be included in the linear fit. (Default (5)):
+- path (str): +Path to .ms.dat files
+- prefix (str): +Ensemble prefix
+- dtr_read (int): +Determines how many trajectories should be skipped when reading the ms.dat files. +Corresponds to dtr_cnfg / dtr_ms in the openQCD input file.
+- xmin (int): +First timeslice where the boundary effects have sufficiently decayed.
+- spatial_extent (int): +spatial extent of the lattice, required for normalization.
+- fit_range (int): +Number of data points left and right of the zero crossing to be included in the linear fit. (Default: 5)
+- r_start (list): +list which contains the first config to be read for each replicum.
+- r_stop (list): +list which contains the last config to be read for each replicum.
+- plaquette (bool): +If true extract the plaquette estimate of t0 instead.
Keyword arguments
- -r_start -- list which contains the first config to be read for each replicum. -r_stop -- list which contains the last config to be read for each replicum. -plaquette -- If true extract the plaquette estimate of t0 instead.
def read_sfcf(path, prefix, name, **kwargs): """Read sfcf C format from given folder structure. - Keyword arguments - ----------------- + Parameters + ---------- im -- if True, read imaginary instead of real part of the correlation function. single -- if True, read a boundary-to-boundary correlation function with a single value b2b -- if True, read a time-dependent boundary-to-boundary correlation function @@ -493,12 +490,14 @@@@ -516,15 +515,12 @@ names -- Alternative labeling for replicas/ensembles. Has to have the appropriatRead sfcf C format from given folder structure.
-Keyword arguments
+Parameters
-im -- if True, read imaginary instead of real part of the correlation function. -single -- if True, read a boundary-to-boundary correlation function with a single value -b2b -- if True, read a time-dependent boundary-to-boundary correlation function -names -- Alternative labeling for replicas/ensembles. Has to have the appropriate length
++
- im -- if True, read imaginary instead of real part of the correlation function.
+- single -- if True, read a boundary-to-boundary correlation function with a single value
+- b2b -- if True, read a time-dependent boundary-to-boundary correlation function
+- names -- Alternative labeling for replicas/ensembles. Has to have the appropriate length
+def read_sfcf_c(path, prefix, name, quarks='.*', noffset=0, wf=0, wf2=0, **kwargs): """Read sfcf c format from given folder structure. - Arguments - ----------------- + Parameters + ---------- quarks -- Label of the quarks used in the sfcf input file noffset -- Offset of the source (only relevant when wavefunctions are used) wf -- ID of wave function wf2 -- ID of the second wavefunction (only relevant for boundary-to-boundary correlation functions) - - Keyword arguments - ----------------- im -- if True, read imaginary instead of real part of the correlation function. b2b -- if True, read a time-dependent boundary-to-boundary correlation function names -- Alternative labeling for replicas/ensembles. Has to have the appropriate length @@ -640,20 +636,19 @@ names -- Alternative labeling for replicas/ensembles. Has to have the appropriat@@ -671,8 +666,8 @@ ens_name : strRead sfcf c format from given folder structure.
-Arguments
+Parameters
-quarks -- Label of the quarks used in the sfcf input file -noffset -- Offset of the source (only relevant when wavefunctions are used) -wf -- ID of wave function -wf2 -- ID of the second wavefunction (only relevant for boundary-to-boundary correlation functions)
- -Keyword arguments
- -im -- if True, read imaginary instead of real part of the correlation function. -b2b -- if True, read a time-dependent boundary-to-boundary correlation function -names -- Alternative labeling for replicas/ensembles. Has to have the appropriate length -ens_name : str - replaces the name of the ensemble
++
- quarks -- Label of the quarks used in the sfcf input file
+- noffset -- Offset of the source (only relevant when wavefunctions are used)
+- wf -- ID of wave function
+- wf2 -- ID of the second wavefunction (only relevant for boundary-to-boundary correlation functions)
+- im -- if True, read imaginary instead of real part of the correlation function.
+- b2b -- if True, read a time-dependent boundary-to-boundary correlation function
+- names -- Alternative labeling for replicas/ensembles. Has to have the appropriate length
+- ens_name (str): +replaces the name of the ensemble
+diff --git a/docs/pyerrors/misc.html b/docs/pyerrors/misc.html index 40db85ac..856cb4ac 100644 --- a/docs/pyerrors/misc.html +++ b/docs/pyerrors/misc.html @@ -79,8 +79,8 @@ def gen_correlated_data(means, cov, name, tau=0.5, samples=1000): """ Generate observables with given covariance and autocorrelation times. - Arguments - ----------------- + Parameters + ---------- means -- list containing the mean value of each observable. cov -- covariance matrix for the data to be geneated. name -- ensemble name for the data to be geneated. @@ -124,8 +124,8 @@def read_qtop(path, prefix, **kwargs): """Read qtop format from given folder structure. - Keyword arguments - ----------------- + Parameters + ---------- target -- specifies the topological sector to be reweighted to (default 0) full -- if true read the charge instead of the reweighting factor. """ @@ -736,10 +731,12 @@ ens_name : strdiff --git a/docs/pyerrors/linalg.html b/docs/pyerrors/linalg.html index f514df08..f2f9cbe4 100644 --- a/docs/pyerrors/linalg.html +++ b/docs/pyerrors/linalg.html @@ -121,9 +121,6 @@ automatic differentiation to work, all numpy functions have to have the autograd wrapper (use 'import autograd.numpy as anp'). data -- list of Obs, e.g. [obs1, obs2, obs3]. - - Keyword arguments - ----------------- man_grad -- manually supply a list or an array which contains the jacobian of func. Use cautiously, supplying the wrong derivative will not be intercepted. @@ -667,9 +664,6 @@ automatic differentiation to work, all numpy functions have to have the autograd wrapper (use 'import autograd.numpy as anp'). data -- list of Obs, e.g. [obs1, obs2, obs3]. - - Keyword arguments - ----------------- man_grad -- manually supply a list or an array which contains the jacobian of func. Use cautiously, supplying the wrong derivative will not be intercepted. @@ -769,13 +763,9 @@ using automatic differentiation.Read qtop format from given folder structure.
-Keyword arguments
+Parameters
-target -- specifies the topological sector to be reweighted to (default 0) -full -- if true read the charge instead of the reweighting factor.
++
- target -- specifies the topological sector to be reweighted to (default 0)
+- full -- if true read the charge instead of the reweighting factor.
+func -- arbitrary function of the form func(data, **kwargs). For the: automatic differentiation to work, all numpy functions have to have the autograd wrapper (use 'import autograd.numpy as anp'). data -- list of Obs, e.g. [obs1, obs2, obs3]. +man_grad -- manually supply a list or an array which contains the jacobian: of func. Use cautiously, supplying the wrong derivative will +not be intercepted. - -Keyword arguments
- -man_grad -- manually supply a list or an array which contains the jacobian - of func. Use cautiously, supplying the wrong derivative will - not be intercepted.
def gen_correlated_data(means, cov, name, tau=0.5, samples=1000): """ Generate observables with given covariance and autocorrelation times. - Arguments - ----------------- + Parameters + ---------- means -- list containing the mean value of each observable. cov -- covariance matrix for the data to be geneated. name -- ensemble name for the data to be geneated. @@ -157,14 +157,15 @@diff --git a/docs/pyerrors/npr.html b/docs/pyerrors/npr.html index 0fb8a698..9a5975d0 100644 --- a/docs/pyerrors/npr.html +++ b/docs/pyerrors/npr.html @@ -159,9 +159,12 @@ def Zq(inv_prop, fermion='Wilson'): """ Calculates the quark field renormalization constant Zq - Attributes: - inv_prop -- Inverted 12x12 quark propagator - fermion -- Fermion type for which the tree-level propagator is used + Parameters + ---------- + inv_prop : array + Inverted 12x12 quark propagator + fermion : str + Fermion type for which the tree-level propagator is used in the calculation of Zq. Default Wilson. """ _check_geometry() @@ -520,9 +523,12 @@ momenta. Works only for 12x12 matrices.Generate observables with given covariance and autocorrelation times.
-Arguments
+Parameters
-means -- list containing the mean value of each observable. -cov -- covariance matrix for the data to be geneated. -name -- ensemble name for the data to be geneated. -tau -- can either be a real number or a list with an entry for - every dataset. -samples -- number of samples to be generated for each observable.
++
- means -- list containing the mean value of each observable.
+- cov -- covariance matrix for the data to be geneated.
+- name -- ensemble name for the data to be geneated.
+- tau -- can either be a real number or a list with an entry for: every dataset.
+- samples -- number of samples to be generated for each observable.
+def Zq(inv_prop, fermion='Wilson'): """ Calculates the quark field renormalization constant Zq - Attributes: - inv_prop -- Inverted 12x12 quark propagator - fermion -- Fermion type for which the tree-level propagator is used + Parameters + ---------- + inv_prop : array + Inverted 12x12 quark propagator + fermion : str + Fermion type for which the tree-level propagator is used in the calculation of Zq. Default Wilson. """ _check_geometry() @@ -556,10 +562,15 @@ momenta. Works only for 12x12 matrices.diff --git a/docs/pyerrors/obs.html b/docs/pyerrors/obs.html index 40754f5c..f743f329 100644 --- a/docs/pyerrors/obs.html +++ b/docs/pyerrors/obs.html @@ -113,15 +113,15 @@Calculates the quark field renormalization constant Zq
-Attributes: -inv_prop -- Inverted 12x12 quark propagator -fermion -- Fermion type for which the tree-level propagator is used - in the calculation of Zq. Default Wilson.
+Parameters
+ ++
- inv_prop (array): +Inverted 12x12 quark propagator
+- fermion (str): +Fermion type for which the tree-level propagator is used + in the calculation of Zq. Default Wilson.
+e_content ++ gamma_method + expand_deltas calc_gamma -- gamma_method - def __init__(self, samples, names, idl=None, means=None, **kwargs): """ Initialize Obs object. - Attributes + Parameters ---------- samples : list list of numpy arrays containing the Monte Carlo samples @@ -2669,7 +2681,7 @@ Standard value for N_sigma (default 1.0)-Initialize Obs object.
-Attributes
+Parameters
- samples (list): @@ -2865,108 +2877,6 @@ already subtracted from the samples
-- - ---- -View Source
-- -def expand_deltas(self, deltas, idx, shape): - """Expand deltas defined on idx to a regular, contiguous range, where holes are filled by 0. - If idx is of type range, the deltas are not changed - - Parameters - ---------- - deltas -- List of fluctuations - idx -- List or range of configs on which the deltas are defined. - shape -- Number of configs in idx. - """ - if type(idx) is range: - return deltas - else: - ret = np.zeros(idx[-1] - idx[0] + 1) - for i in range(shape): - ret[idx[i] - idx[0]] = deltas[i] - return ret -- - -Expand deltas defined on idx to a regular, contiguous range, where holes are filled by 0. - If idx is of type range, the deltas are not changed
- -Parameters
- --
-- deltas -- List of fluctuations
-- idx -- List or range of configs on which the deltas are defined.
-- shape -- Number of configs in idx.
-- - --- -View Source
-- -def calc_gamma(self, deltas, idx, shape, w_max, fft): - """Calculate Gamma_{AA} from the deltas, which are defined on idx. - idx is assumed to be a contiguous range (possibly with a stepsize != 1) - - Parameters - ---------- - deltas -- List of fluctuations - idx -- List or range of configs on which the deltas are defined. - shape -- Number of configs in idx. - w_max -- Upper bound for the summation window - fft -- boolean, which determines whether the fft algorithm is used for - the computation of the autocorrelation function - """ - gamma = np.zeros(w_max) - deltas = self.expand_deltas(deltas, idx, shape) - new_shape = len(deltas) - if fft: - max_gamma = min(new_shape, w_max) - # The padding for the fft has to be even - padding = new_shape + max_gamma + (new_shape + max_gamma) % 2 - gamma[:max_gamma] += np.fft.irfft(np.abs(np.fft.rfft(deltas, padding)) ** 2)[:max_gamma] - else: - for n in range(w_max): - if new_shape - n >= 0: - gamma[n] += deltas[0:new_shape - n].dot(deltas[n:new_shape]) - - return gamma -- -Calculate Gamma_{AA} from the deltas, which are defined on idx. - idx is assumed to be a contiguous range (possibly with a stepsize != 1)
- -Parameters
- --
-- deltas -- List of fluctuations
-- idx -- List or range of configs on which the deltas are defined.
-- shape -- Number of configs in idx.
-- w_max -- Upper bound for the summation window
-- fft -- boolean, which determines whether the fft algorithm is used for: the computation of the autocorrelation function
-@@ -4713,8 +4731,8 @@ list of Obs, e.g. [obs1, obs2, obs3].#   @@ -2981,8 +2891,8 @@ already subtracted from the samples@@ -4642,9 +4666,6 @@ functions. For the ratio of two observables one can e.g. use configurations in obs[i].idl for all i. obs : list list of Obs, e.g. [obs1, obs2, obs3]. - - Keyword arguments - ----------------- all_configs : bool if True, the reweighted observables are normalized by the average of the reweighting factor on all configurations in weight.idl and not @@ -4688,14 +4709,11 @@ Reweighting factor. An Observable that has to be defined on a superset of the configurations in obs[i].idl for all i.+def gamma_method(self, **kwargs): """Calculate the error and related properties of the Obs. - Keyword arguments - ----------------- + Parameters + ---------- S : float specifies a custom value for the parameter S (default 2.0), can be a float or an array of floats for different ensembles @@ -3165,21 +3075,125 @@ already subtracted from the samples+ + +Calculate the error and related properties of the Obs.
-Keyword arguments
+Parameters
-S : float - specifies a custom value for the parameter S (default 2.0), can be - a float or an array of floats for different ensembles -tau_exp : float - positive value triggers the critical slowing down analysis - (default 0.0), can be a float or an array of floats for different - ensembles -N_sigma : float - number of standard deviations from zero until the tail is - attached to the autocorrelation function (default 1) -fft : bool - determines whether the fft algorithm is used for the computation - of the autocorrelation function (default True)
++
+- S (float): +specifies a custom value for the parameter S (default 2.0), can be +a float or an array of floats for different ensembles
+- tau_exp (float): +positive value triggers the critical slowing down analysis +(default 0.0), can be a float or an array of floats for different +ensembles
+- N_sigma (float): +number of standard deviations from zero until the tail is +attached to the autocorrelation function (default 1)
+- fft (bool): +determines whether the fft algorithm is used for the computation +of the autocorrelation function (default True)
++ + ++++ +View Source
++ +def expand_deltas(self, deltas, idx, shape): + """Expand deltas defined on idx to a regular, contiguous range, where holes are filled by 0. + If idx is of type range, the deltas are not changed + + Parameters + ---------- + deltas -- List of fluctuations + idx -- List or range of configs on which the deltas are defined. + shape -- Number of configs in idx. + """ + if type(idx) is range: + return deltas + else: + ret = np.zeros(idx[-1] - idx[0] + 1) + for i in range(shape): + ret[idx[i] - idx[0]] = deltas[i] + return ret ++ + +Expand deltas defined on idx to a regular, contiguous range, where holes are filled by 0. + If idx is of type range, the deltas are not changed
+ +Parameters
+ ++
+- deltas -- List of fluctuations
+- idx -- List or range of configs on which the deltas are defined.
+- shape -- Number of configs in idx.
++ + +@@ -4392,9 +4415,6 @@ List of configs that defines the new range. the autograd wrapper (use 'import autograd.numpy as anp'). data : list list of Obs, e.g. [obs1, obs2, obs3]. - - Keyword arguments - ----------------- num_grad : bool if True, numerical derivatives are used instead of autograd (default False). To control the numerical differentiation the @@ -4541,20 +4561,17 @@ automatic differentiation to work, all numpy functions have to have the autograd wrapper (use 'import autograd.numpy as anp').++ +View Source
++ +def calc_gamma(self, deltas, idx, shape, w_max, fft): + """Calculate Gamma_{AA} from the deltas, which are defined on idx. + idx is assumed to be a contiguous range (possibly with a stepsize != 1) + + Parameters + ---------- + deltas -- List of fluctuations + idx -- List or range of configs on which the deltas are defined. + shape -- Number of configs in idx. + w_max -- Upper bound for the summation window + fft -- boolean, which determines whether the fft algorithm is used for + the computation of the autocorrelation function + """ + gamma = np.zeros(w_max) + deltas = self.expand_deltas(deltas, idx, shape) + new_shape = len(deltas) + if fft: + max_gamma = min(new_shape, w_max) + # The padding for the fft has to be even + padding = new_shape + max_gamma + (new_shape + max_gamma) % 2 + gamma[:max_gamma] += np.fft.irfft(np.abs(np.fft.rfft(deltas, padding)) ** 2)[:max_gamma] + else: + for n in range(w_max): + if new_shape - n >= 0: + gamma[n] += deltas[0:new_shape - n].dot(deltas[n:new_shape]) + + return gamma +@@ -3518,9 +3532,10 @@ ensemble to the error and returns a dictionary containing the fractions.Calculate Gamma_{AA} from the deltas, which are defined on idx. + idx is assumed to be a contiguous range (possibly with a stepsize != 1)
+ +Parameters
+ ++
- deltas -- List of fluctuations
+- idx -- List or range of configs on which the deltas are defined.
+- shape -- Number of configs in idx.
+- w_max -- Upper bound for the summation window
+- fft -- boolean, which determines whether the fft algorithm is used for: the computation of the autocorrelation function
+@@ -4321,14 +4341,15 @@ List of configs that defines the new range. Parameters ---------- - names -- List of names - deltas -- Dict lists of fluctuations - idx -- Dict of lists or ranges of configs on which the deltas are defined. - Has to be a subset of new_idx. - - Optional parameters - ---------- - eps -- Prefactor that enters the filter criterion. + names : list + List of names + deltas : dict + Dict lists of fluctuations + idx : dict + Dict of lists or ranges of configs on which the deltas are defined. + Has to be a subset of new_idx. + eps : float + Prefactor that enters the filter criterion. """ new_names = [] new_deltas = {} @@ -4359,14 +4380,16 @@ List of configs that defines the new range.def dump(self, name, **kwargs): """Dump the Obs to a pickle file 'name'. - Keyword arguments - ----------------- - path -- specifies a custom path for the file (default '.') + Parameters + ---------- + path : str + specifies a custom path for the file (default '.') """ if 'path' in kwargs: file_name = kwargs.get('path') + '/' + name + '.p' @@ -3534,9 +3549,12 @@ ensemble to the error and returns a dictionary containing the fractions.@@ -4208,7 +4226,8 @@ ensemble to the error and returns a dictionary containing the fractions. Parameters ---------- - idl -- List of lists or ranges. + idl : list + List of lists or ranges. """ # Use groupby to efficiently check whether all elements of idl are identical @@ -4236,7 +4255,8 @@ ensemble to the error and returns a dictionary containing the fractions.Dump the Obs to a pickle file 'name'.
-Keyword arguments
+Parameters
-path -- specifies a custom path for the file (default '.')
++
- path (str): +specifies a custom path for the file (default '.')
+Parameters
-
- idl -- List of lists or ranges.
+- idl (list): +List of lists or ranges.
Parameters
-
- -- names -- List of names
-- deltas -- Dict lists of fluctuations
-- idx -- Dict of lists or ranges of configs on which the deltas are defined.: Has to be a subset of new_idx.
+- names (list): +List of names
+- deltas (dict): +Dict lists of fluctuations
+- idx (dict): +Dict of lists or ranges of configs on which the deltas are defined. +Has to be a subset of new_idx.
+- eps (float): +Prefactor that enters the filter criterion.
Optional parameters
- -eps -- Prefactor that enters the filter criterion.
data (list): list of Obs, e.g. [obs1, obs2, obs3]. +num_grad (bool): +if True, numerical derivatives are used instead of autograd +(default False). To control the numerical differentiation the +kwargs of numdifftools.step_generators.MaxStepGenerator +can be used. +man_grad (list): +manually supply a list or an array which contains the jacobian +of func. Use cautiously, supplying the wrong derivative will +not be intercepted. -Keyword arguments
- -num_grad : bool - if True, numerical derivatives are used instead of autograd - (default False). To control the numerical differentiation the - kwargs of numdifftools.step_generators.MaxStepGenerator - can be used. -man_grad : list - manually supply a list or an array which contains the jacobian - of func. Use cautiously, supplying the wrong derivative will - not be intercepted.
-Notes
For simple mathematical operations it can be practical to use anonymous @@ -4580,10 +4597,13 @@ functions. For the ratio of two observables one can e.g. use
Parameters ---------- - deltas -- List of fluctuations - idx_old -- List or range of configs on which the deltas are defined - idx_new -- List of configs for which we want to extract the deltas. - Has to be a subset of idx_old. + deltas : list + List of fluctuations + idx_old : list + List or range of configs on which the deltas are defined + idx_new : list + List of configs for which we want to extract the deltas. + Has to be a subset of idx_old. """ if not len(deltas) == len(idx_old): raise Exception('Lenght of deltas and idx_old have to be the same: %d != %d' % (len(deltas), len(idx_old))) @@ -4614,9 +4634,13 @@ functions. For the ratio of two observables one can e.g. useParameters
-
- deltas -- List of fluctuations
-- idx_old -- List or range of configs on which the deltas are defined
-- idx_new -- List of configs for which we want to extract the deltas.: Has to be a subset of idx_old.
+- deltas (list): +List of fluctuations
+- idx_old (list): +List or range of configs on which the deltas are defined
+- idx_new (list): +List of configs for which we want to extract the deltas. +Has to be a subset of idx_old.
obs (list): list of Obs, e.g. [obs1, obs2, obs3]. +all_configs (bool): +if True, the reweighted observables are normalized by the average of +the reweighting factor on all configurations in weight.idl and not +on the configurations in obs[i].idl. - -Keyword arguments
- -all_configs : bool - if True, the reweighted observables are normalized by the average of - the reweighting factor on all configurations in weight.idl and not - on the configurations in obs[i].idl.
@@ -5154,9 +5177,14 @@ plot -- if true, the integrated autocorrelation time for each ensemble isdef correlate(obs_a, obs_b): """Correlate two observables. - Attributes: - ----------- + Parameters + ---------- obs_a : Obs First observable obs_b : Obs @@ -4754,16 +4772,17 @@ list of Obs, e.g. [obs1, obs2, obs3].@@ -4788,10 +4807,11 @@ Currently only works if ensembles are identical. This is not really necessary. is constrained to the maximum value in order to make sure that covariance matrices are positive semidefinite. - Keyword arguments - ----------------- - correlation -- if true the correlation instead of the covariance is - returned (default False) + Parameters + ---------- + correlation : bool + if true the correlation instead of the covariance is + returned (default False) """ for name in sorted(set(obs1.names + obs2.names)): @@ -4845,10 +4865,13 @@ The gamma method has to be applied first to both observables. is constrained to the maximum value in order to make sure that covariance matrices are positive semidefinite. -Correlate two observables.
-Attributes:
+Parameters
-obs_a : Obs - First observable -obs_b : Obs - Second observable
- -Keep in mind to only correlate primary observables which have not been reweighted -yet. The reweighting has to be applied after correlating the observables. -Currently only works if ensembles are identical. This is not really necessary.
++
- obs_a (Obs): +First observable
+- obs_b (Obs): +Second observable
+- Keep in mind to only correlate primary observables which have not been reweighted
+- yet. The reweighting has to be applied after correlating the observables.
+- Currently only works if ensembles are identical. This is not really necessary.
+Keyword arguments
+Parameters
-correlation -- if true the correlation instead of the covariance is - returned (default False)
++
- correlation (bool): +if true the correlation instead of the covariance is +returned (default False)
+def dump_object(obj, name, **kwargs): """Dump object into pickle file. - Keyword arguments - ----------------- - path -- specifies a custom path for the file (default '.') + Parameters + ---------- + obj : object + object to be saved in the pickle file + name : str + name of the file + path : str + specifies a custom path for the file (default '.') """ if 'path' in kwargs: file_name = kwargs.get('path') + '/' + name + '.p' @@ -5170,9 +5198,16 @@ plot -- if true, the integrated autocorrelation time for each ensemble is@@ -5213,6 +5248,11 @@ plot -- if true, the integrated autocorrelation time for each ensemble isDump object into pickle file.
-Keyword arguments
+Parameters
-path -- specifies a custom path for the file (default '.')
++
- obj (object): +object to be saved in the pickle file
+- name (str): +name of the file
+- path (str): +specifies a custom path for the file (default '.')
+def merge_obs(list_of_obs): """Combine all observables in list_of_obs into one new observable + Parameters + ---------- + list_of_obs : list + list of the Obs object to be combined + It is not possible to combine obs which are based on the same replicum """ replist = [item for obs in list_of_obs for item in obs.names] @@ -5236,7 +5276,13 @@ plot -- if true, the integrated autocorrelation time for each ensemble isdiff --git a/docs/search.js b/docs/search.js index 8e2e79e9..5065380d 100644 --- a/docs/search.js +++ b/docs/search.js @@ -1,6 +1,6 @@ window.pdocSearch = (function(){ /** elasticlunr - http://weixsong.github.io * Copyright (C) 2017 Oliver Nightingale * Copyright (C) 2017 Wei Song * MIT Licensed */!function(){function e(e){if(null===e||"object"!=typeof e)return e;var t=e.constructor();for(var n in e)e.hasOwnProperty(n)&&(t[n]=e[n]);return t}var t=function(e){var n=new t.Index;return n.pipeline.add(t.trimmer,t.stopWordFilter,t.stemmer),e&&e.call(n,n),n};t.version="0.9.5",lunr=t,t.utils={},t.utils.warn=function(e){return function(t){e.console&&console.warn&&console.warn(t)}}(this),t.utils.toString=function(e){return void 0===e||null===e?"":e.toString()},t.EventEmitter=function(){this.events={}},t.EventEmitter.prototype.addListener=function(){var e=Array.prototype.slice.call(arguments),t=e.pop(),n=e;if("function"!=typeof t)throw new TypeError("last argument must be a function");n.forEach(function(e){this.hasHandler(e)||(this.events[e]=[]),this.events[e].push(t)},this)},t.EventEmitter.prototype.removeListener=function(e,t){if(this.hasHandler(e)){var n=this.events[e].indexOf(t);-1!==n&&(this.events[e].splice(n,1),0==this.events[e].length&&delete this.events[e])}},t.EventEmitter.prototype.emit=function(e){if(this.hasHandler(e)){var t=Array.prototype.slice.call(arguments,1);this.events[e].forEach(function(e){e.apply(void 0,t)},this)}},t.EventEmitter.prototype.hasHandler=function(e){return e in this.events},t.tokenizer=function(e){if(!arguments.length||null===e||void 0===e)return[];if(Array.isArray(e)){var n=e.filter(function(e){return null===e||void 0===e?!1:!0});n=n.map(function(e){return t.utils.toString(e).toLowerCase()});var i=[];return n.forEach(function(e){var n=e.split(t.tokenizer.seperator);i=i.concat(n)},this),i}return e.toString().trim().toLowerCase().split(t.tokenizer.seperator)},t.tokenizer.defaultSeperator=/[\s\-]+/,t.tokenizer.seperator=t.tokenizer.defaultSeperator,t.tokenizer.setSeperator=function(e){null!==e&&void 0!==e&&"object"==typeof e&&(t.tokenizer.seperator=e)},t.tokenizer.resetSeperator=function(){t.tokenizer.seperator=t.tokenizer.defaultSeperator},t.tokenizer.getSeperator=function(){return t.tokenizer.seperator},t.Pipeline=function(){this._queue=[]},t.Pipeline.registeredFunctions={},t.Pipeline.registerFunction=function(e,n){n in t.Pipeline.registeredFunctions&&t.utils.warn("Overwriting existing registered function: "+n),e.label=n,t.Pipeline.registeredFunctions[n]=e},t.Pipeline.getRegisteredFunction=function(e){return e in t.Pipeline.registeredFunctions!=!0?null:t.Pipeline.registeredFunctions[e]},t.Pipeline.warnIfFunctionNotRegistered=function(e){var n=e.label&&e.label in this.registeredFunctions;n||t.utils.warn("Function is not registered with pipeline. This may cause problems when serialising the index.\n",e)},t.Pipeline.load=function(e){var n=new t.Pipeline;return e.forEach(function(e){var i=t.Pipeline.getRegisteredFunction(e);if(!i)throw new Error("Cannot load un-registered function: "+e);n.add(i)}),n},t.Pipeline.prototype.add=function(){var e=Array.prototype.slice.call(arguments);e.forEach(function(e){t.Pipeline.warnIfFunctionNotRegistered(e),this._queue.push(e)},this)},t.Pipeline.prototype.after=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i+1,0,n)},t.Pipeline.prototype.before=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i,0,n)},t.Pipeline.prototype.remove=function(e){var t=this._queue.indexOf(e);-1!==t&&this._queue.splice(t,1)},t.Pipeline.prototype.run=function(e){for(var t=[],n=e.length,i=this._queue.length,o=0;n>o;o++){for(var r=e[o],s=0;i>s&&(r=this._queue[s](r,o,e),void 0!==r&&null!==r);s++);void 0!==r&&null!==r&&t.push(r)}return t},t.Pipeline.prototype.reset=function(){this._queue=[]},t.Pipeline.prototype.get=function(){return this._queue},t.Pipeline.prototype.toJSON=function(){return this._queue.map(function(e){return t.Pipeline.warnIfFunctionNotRegistered(e),e.label})},t.Index=function(){this._fields=[],this._ref="id",this.pipeline=new t.Pipeline,this.documentStore=new t.DocumentStore,this.index={},this.eventEmitter=new t.EventEmitter,this._idfCache={},this.on("add","remove","update",function(){this._idfCache={}}.bind(this))},t.Index.prototype.on=function(){var e=Array.prototype.slice.call(arguments);return this.eventEmitter.addListener.apply(this.eventEmitter,e)},t.Index.prototype.off=function(e,t){return this.eventEmitter.removeListener(e,t)},t.Index.load=function(e){e.version!==t.version&&t.utils.warn("version mismatch: current "+t.version+" importing "+e.version);var n=new this;n._fields=e.fields,n._ref=e.ref,n.documentStore=t.DocumentStore.load(e.documentStore),n.pipeline=t.Pipeline.load(e.pipeline),n.index={};for(var i in e.index)n.index[i]=t.InvertedIndex.load(e.index[i]);return n},t.Index.prototype.addField=function(e){return this._fields.push(e),this.index[e]=new t.InvertedIndex,this},t.Index.prototype.setRef=function(e){return this._ref=e,this},t.Index.prototype.saveDocument=function(e){return this.documentStore=new t.DocumentStore(e),this},t.Index.prototype.addDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.addDoc(i,e),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));this.documentStore.addFieldLength(i,n,o.length);var r={};o.forEach(function(e){e in r?r[e]+=1:r[e]=1},this);for(var s in r){var u=r[s];u=Math.sqrt(u),this.index[n].addToken(s,{ref:i,tf:u})}},this),n&&this.eventEmitter.emit("add",e,this)}},t.Index.prototype.removeDocByRef=function(e){if(e&&this.documentStore.isDocStored()!==!1&&this.documentStore.hasDoc(e)){var t=this.documentStore.getDoc(e);this.removeDoc(t,!1)}},t.Index.prototype.removeDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.hasDoc(i)&&(this.documentStore.removeDoc(i),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));o.forEach(function(e){this.index[n].removeToken(e,i)},this)},this),n&&this.eventEmitter.emit("remove",e,this))}},t.Index.prototype.updateDoc=function(e,t){var t=void 0===t?!0:t;this.removeDocByRef(e[this._ref],!1),this.addDoc(e,!1),t&&this.eventEmitter.emit("update",e,this)},t.Index.prototype.idf=function(e,t){var n="@"+t+"/"+e;if(Object.prototype.hasOwnProperty.call(this._idfCache,n))return this._idfCache[n];var i=this.index[t].getDocFreq(e),o=1+Math.log(this.documentStore.length/(i+1));return this._idfCache[n]=o,o},t.Index.prototype.getFields=function(){return this._fields.slice()},t.Index.prototype.search=function(e,n){if(!e)return[];e="string"==typeof e?{any:e}:JSON.parse(JSON.stringify(e));var i=null;null!=n&&(i=JSON.stringify(n));for(var o=new t.Configuration(i,this.getFields()).get(),r={},s=Object.keys(e),u=0;uCombine all observables in list_of_obs into one new observable
-It is not possible to combine obs which are based on the same replicum
+Parameters
+ ++
- list_of_obs (list): +list of the Obs object to be combined
+- It is not possible to combine obs which are based on the same replicum
+0&&t.push(e);for(var i in n)"docs"!==i&&"df"!==i&&this.expandToken(e+i,t,n[i]);return t},t.InvertedIndex.prototype.toJSON=function(){return{root:this.root}},t.Configuration=function(e,n){var e=e||"";if(void 0==n||null==n)throw new Error("fields should not be null");this.config={};var i;try{i=JSON.parse(e),this.buildUserConfig(i,n)}catch(o){t.utils.warn("user configuration parse failed, will use default configuration"),this.buildDefaultConfig(n)}},t.Configuration.prototype.buildDefaultConfig=function(e){this.reset(),e.forEach(function(e){this.config[e]={boost:1,bool:"OR",expand:!1}},this)},t.Configuration.prototype.buildUserConfig=function(e,n){var i="OR",o=!1;if(this.reset(),"bool"in e&&(i=e.bool||i),"expand"in e&&(o=e.expand||o),"fields"in e)for(var r in e.fields)if(n.indexOf(r)>-1){var s=e.fields[r],u=o;void 0!=s.expand&&(u=s.expand),this.config[r]={boost:s.boost||0===s.boost?s.boost:1,bool:s.bool||i,expand:u}}else t.utils.warn("field name in user configuration not found in index instance fields");else this.addAllFields2UserConfig(i,o,n)},t.Configuration.prototype.addAllFields2UserConfig=function(e,t,n){n.forEach(function(n){this.config[n]={boost:1,bool:e,expand:t}},this)},t.Configuration.prototype.get=function(){return this.config},t.Configuration.prototype.reset=function(){this.config={}},lunr.SortedSet=function(){this.length=0,this.elements=[]},lunr.SortedSet.load=function(e){var t=new this;return t.elements=e,t.length=e.length,t},lunr.SortedSet.prototype.add=function(){var e,t;for(e=0;e 1;){if(r===e)return o;e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o]}return r===e?o:-1},lunr.SortedSet.prototype.locationFor=function(e){for(var t=0,n=this.elements.length,i=n-t,o=t+Math.floor(i/2),r=this.elements[o];i>1;)e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o];return r>e?o:e>r?o+1:void 0},lunr.SortedSet.prototype.intersect=function(e){for(var t=new lunr.SortedSet,n=0,i=0,o=this.length,r=e.length,s=this.elements,u=e.elements;;){if(n>o-1||i>r-1)break;s[n]!==u[i]?s[n]u[i]&&i++:(t.add(s[n]),n++,i++)}return t},lunr.SortedSet.prototype.clone=function(){var e=new lunr.SortedSet;return e.elements=this.toArray(),e.length=e.elements.length,e},lunr.SortedSet.prototype.union=function(e){var t,n,i;this.length>=e.length?(t=this,n=e):(t=e,n=this),i=t.clone();for(var o=0,r=n.toArray();o What is pyerrors?\n\n \n\n
pyerrors
is a python package for error computation and propagation of Markov chain Monte Carlo data.\nIt is based on the gamma method arXiv:hep-lat/0306017. Some of its features are:\n
\n\n- automatic differentiation as suggested in arXiv:1809.01289 (partly based on the autograd package)
\n- treatment of slow modes in the simulation as suggested in arXiv:1009.5228
\n- coherent error propagation for data from different Markov chains
\n- non-linear fits with x- and y-errors and exact linear error propagation based on automatic differentiation as introduced in [arXiv:1809.01289]
\n- real and complex matrix operations and their error propagation based on automatic differentiation (cholesky decomposition, calculation of eigenvalues and eigenvectors, singular value decomposition...)
\nGetting started
\n\n\n\nimport numpy as np\nimport pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name'])\nmy_new_obs = 2 * np.log(my_obs) / my_obs\nmy_new_obs.gamma_method()\nmy_new_obs.details()\nprint(my_new_obs)\n
The
\n\nObs
class\n\n
pyerrors.obs.Obs
\n\nimport pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name'])\n
Multiple ensembles/replica
\n\nIrregular Monte Carlo chains
\n\nError propagation
\n\nAutomatic differentiation, cite Alberto,
\n\nnumpy overloaded
\n\n\n\nimport numpy as np\nimport pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name'])\nmy_new_obs = 2 * np.log(my_obs) / my_obs\nmy_new_obs.gamma_method()\nmy_new_obs.details()\n
Error estimation
\n\n\n\n
pyerrors.obs.Obs.gamma_method
$\\delta_i\\delta_j$
\n\nExponential tails
\n\nCovariance
\n\nCorrelators
\n\n\n\n
pyerrors.correlators.Corr
Optimization / fits / roots
\n\n\n\n
pyerrors.fits
\npyerrors.roots
Complex observables
\n\n\n\n
pyerrors.obs.CObs
Matrix operations
\n\n\n\n
pyerrors.linalg
Input
\n\n\n"}, "pyerrors.correlators": {"fullname": "pyerrors.correlators", "modulename": "pyerrors.correlators", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.correlators.Corr": {"fullname": "pyerrors.correlators.Corr", "modulename": "pyerrors.correlators", "qualname": "Corr", "type": "class", "doc": "
pyerrors.input
The class for a correlator (time dependent sequence of pe.Obs).
\n\nEverything, this class does, can be achieved using lists or arrays of Obs.\nBut it is simply more convenient to have a dedicated object for correlators.\nOne often wants to add or multiply correlators of the same length at every timeslice and it is inconvinient\nto iterate over all timeslices for every operation. This is especially true, when dealing with smearing matrices.
\n\nThe correlator can have two types of content: An Obs at every timeslice OR a GEVP\nsmearing matrix at every timeslice. Other dependency (eg. spacial) are not supported.
\n"}, "pyerrors.correlators.Corr.__init__": {"fullname": "pyerrors.correlators.Corr.__init__", "modulename": "pyerrors.correlators", "qualname": "Corr.__init__", "type": "function", "doc": "\n", "parameters": ["self", "data_input", "padding_front", "padding_back", "prange"], "funcdef": "def"}, "pyerrors.correlators.Corr.reweighted": {"fullname": "pyerrors.correlators.Corr.reweighted", "modulename": "pyerrors.correlators", "qualname": "Corr.reweighted", "type": "variable", "doc": "\n"}, "pyerrors.correlators.Corr.gamma_method": {"fullname": "pyerrors.correlators.Corr.gamma_method", "modulename": "pyerrors.correlators", "qualname": "Corr.gamma_method", "type": "function", "doc": "Apply the gamma method to the content of the Corr.
\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.projected": {"fullname": "pyerrors.correlators.Corr.projected", "modulename": "pyerrors.correlators", "qualname": "Corr.projected", "type": "function", "doc": "\n", "parameters": ["self", "vector_l", "vector_r"], "funcdef": "def"}, "pyerrors.correlators.Corr.sum": {"fullname": "pyerrors.correlators.Corr.sum", "modulename": "pyerrors.correlators", "qualname": "Corr.sum", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.smearing": {"fullname": "pyerrors.correlators.Corr.smearing", "modulename": "pyerrors.correlators", "qualname": "Corr.smearing", "type": "function", "doc": "\n", "parameters": ["self", "i", "j"], "funcdef": "def"}, "pyerrors.correlators.Corr.plottable": {"fullname": "pyerrors.correlators.Corr.plottable", "modulename": "pyerrors.correlators", "qualname": "Corr.plottable", "type": "function", "doc": "Outputs the correlator in a plotable format.
\n\nOutputs three lists containing the timeslice index, the value on each\ntimeslice and the error on each timeslice.
\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.symmetric": {"fullname": "pyerrors.correlators.Corr.symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.symmetric", "type": "function", "doc": "Symmetrize the correlator around x0=0.
\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.anti_symmetric": {"fullname": "pyerrors.correlators.Corr.anti_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.anti_symmetric", "type": "function", "doc": "Anti-symmetrize the correlator around x0=0.
\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.smearing_symmetric": {"fullname": "pyerrors.correlators.Corr.smearing_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.smearing_symmetric", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.GEVP": {"fullname": "pyerrors.correlators.Corr.GEVP", "modulename": "pyerrors.correlators", "qualname": "Corr.GEVP", "type": "function", "doc": "\n", "parameters": ["self", "t0", "ts", "state"], "funcdef": "def"}, "pyerrors.correlators.Corr.Eigenvalue": {"fullname": "pyerrors.correlators.Corr.Eigenvalue", "modulename": "pyerrors.correlators", "qualname": "Corr.Eigenvalue", "type": "function", "doc": "\n", "parameters": ["self", "t0", "state"], "funcdef": "def"}, "pyerrors.correlators.Corr.roll": {"fullname": "pyerrors.correlators.Corr.roll", "modulename": "pyerrors.correlators", "qualname": "Corr.roll", "type": "function", "doc": "Periodically shift the correlator by dt timeslices
\n\nAttributes:
\n\ndt : int\n number of timeslices
\n", "parameters": ["self", "dt"], "funcdef": "def"}, "pyerrors.correlators.Corr.reverse": {"fullname": "pyerrors.correlators.Corr.reverse", "modulename": "pyerrors.correlators", "qualname": "Corr.reverse", "type": "function", "doc": "Reverse the time ordering of the Corr
\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.correlate": {"fullname": "pyerrors.correlators.Corr.correlate", "modulename": "pyerrors.correlators", "qualname": "Corr.correlate", "type": "function", "doc": "Correlate the correlator with another correlator or Obs
\n", "parameters": ["self", "partner"], "funcdef": "def"}, "pyerrors.correlators.Corr.reweight": {"fullname": "pyerrors.correlators.Corr.reweight", "modulename": "pyerrors.correlators", "qualname": "Corr.reweight", "type": "function", "doc": "Reweight the correlator.
\n\nParameters
\n\n\n
\n\n- weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
\nKeyword arguments
\n\nall_configs : bool\n if True, the reweighted observables are normalized by the average of\n the reweighting factor on all configurations in weight.idl and not\n on the configurations in obs[i].idl.
\n", "parameters": ["self", "weight", "kwargs"], "funcdef": "def"}, "pyerrors.correlators.Corr.T_symmetry": {"fullname": "pyerrors.correlators.Corr.T_symmetry", "modulename": "pyerrors.correlators", "qualname": "Corr.T_symmetry", "type": "function", "doc": "Return the time symmetry average of the correlator and its partner
\n\nAttributes:
\n\npartner : Corr\n Time symmetry partner of the Corr\npartity : int\n Parity quantum number of the correlator, can be +1 or -1
\n", "parameters": ["self", "partner", "parity"], "funcdef": "def"}, "pyerrors.correlators.Corr.deriv": {"fullname": "pyerrors.correlators.Corr.deriv", "modulename": "pyerrors.correlators", "qualname": "Corr.deriv", "type": "function", "doc": "Return the first derivative of the correlator with respect to x0.
\n\nAttributes:
\n\nsymmetric : bool\n decides whether symmertic of simple finite differences are used. Default: True
\n", "parameters": ["self", "symmetric"], "funcdef": "def"}, "pyerrors.correlators.Corr.second_deriv": {"fullname": "pyerrors.correlators.Corr.second_deriv", "modulename": "pyerrors.correlators", "qualname": "Corr.second_deriv", "type": "function", "doc": "Return the second derivative of the correlator with respect to x0.
\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.m_eff": {"fullname": "pyerrors.correlators.Corr.m_eff", "modulename": "pyerrors.correlators", "qualname": "Corr.m_eff", "type": "function", "doc": "Returns the effective mass of the correlator as correlator object
\n\nParameters
\n\n\n
\n", "parameters": ["self", "variant", "guess"], "funcdef": "def"}, "pyerrors.correlators.Corr.fit": {"fullname": "pyerrors.correlators.Corr.fit", "modulename": "pyerrors.correlators", "qualname": "Corr.fit", "type": "function", "doc": "- variant (str):\nlog: uses the standard effective mass log(C(t) / C(t+1))\ncosh : Use periodicitiy of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m.\nsinh : Use anti-periodicitiy of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m.\nSee, e.g., arXiv:1205.5380
\n- guess (float):\nguess for the root finder, only relevant for the root variant
\nFits function to the data
\n\nAttributes:
\n\nfunction : obj\n function to fit to the data. See fits.least_squares for details.\nfitrange : list\n Range in which the function is to be fitted to the data.\n If not specified, self.prange or all timeslices are used.\nsilent : bool\n Decides whether output is printed to the standard output.
\n", "parameters": ["self", "function", "fitrange", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.correlators.Corr.plateau": {"fullname": "pyerrors.correlators.Corr.plateau", "modulename": "pyerrors.correlators", "qualname": "Corr.plateau", "type": "function", "doc": "Extract a plateu value from a Corr object
\n\nAttributes:
\n\nplateau_range : list\n list with two entries, indicating the first and the last timeslice\n of the plateau region.\nmethod : str\n method to extract the plateau.\n 'fit' fits a constant to the plateau region\n 'avg', 'average' or 'mean' just average over the given timeslices.
\n", "parameters": ["self", "plateau_range", "method"], "funcdef": "def"}, "pyerrors.correlators.Corr.set_prange": {"fullname": "pyerrors.correlators.Corr.set_prange", "modulename": "pyerrors.correlators", "qualname": "Corr.set_prange", "type": "function", "doc": "Sets the attribute prange of the Corr object.
\n", "parameters": ["self", "prange"], "funcdef": "def"}, "pyerrors.correlators.Corr.show": {"fullname": "pyerrors.correlators.Corr.show", "modulename": "pyerrors.correlators", "qualname": "Corr.show", "type": "function", "doc": "Plots the correlator, uses tag as label if available.
\n\nParameters
\n\n\n
\n", "parameters": ["self", "x_range", "comp", "y_range", "logscale", "plateau", "fit_res", "ylabel", "save"], "funcdef": "def"}, "pyerrors.correlators.Corr.dump": {"fullname": "pyerrors.correlators.Corr.dump", "modulename": "pyerrors.correlators", "qualname": "Corr.dump", "type": "function", "doc": "- x_range (list):\nlist of two values, determining the range of the x-axis e.g. [4, 8]
\n- comp (Corr or list of Corr):\nCorrelator or list of correlators which are plotted for comparison.
\n- logscale (bool):\nSets y-axis to logscale
\n- plateau (Obs):\nplateau to be visualized in the figure
\n- fit_res (Fit_result):\nFit_result object to be visualized
\n- ylabel (str):\nLabel for the y-axis
\n- save (str):\npath to file in which the figure should be saved
\nDumps the Corr into a pickel file
\n\nAttributes:
\n\nfilename : str\n Name of the file
\n", "parameters": ["self", "filename"], "funcdef": "def"}, "pyerrors.correlators.Corr.print": {"fullname": "pyerrors.correlators.Corr.print", "modulename": "pyerrors.correlators", "qualname": "Corr.print", "type": "function", "doc": "\n", "parameters": ["self", "range"], "funcdef": "def"}, "pyerrors.correlators.Corr.sqrt": {"fullname": "pyerrors.correlators.Corr.sqrt", "modulename": "pyerrors.correlators", "qualname": "Corr.sqrt", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.log": {"fullname": "pyerrors.correlators.Corr.log", "modulename": "pyerrors.correlators", "qualname": "Corr.log", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.exp": {"fullname": "pyerrors.correlators.Corr.exp", "modulename": "pyerrors.correlators", "qualname": "Corr.exp", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.sin": {"fullname": "pyerrors.correlators.Corr.sin", "modulename": "pyerrors.correlators", "qualname": "Corr.sin", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.cos": {"fullname": "pyerrors.correlators.Corr.cos", "modulename": "pyerrors.correlators", "qualname": "Corr.cos", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.tan": {"fullname": "pyerrors.correlators.Corr.tan", "modulename": "pyerrors.correlators", "qualname": "Corr.tan", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.sinh": {"fullname": "pyerrors.correlators.Corr.sinh", "modulename": "pyerrors.correlators", "qualname": "Corr.sinh", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.cosh": {"fullname": "pyerrors.correlators.Corr.cosh", "modulename": "pyerrors.correlators", "qualname": "Corr.cosh", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.tanh": {"fullname": "pyerrors.correlators.Corr.tanh", "modulename": "pyerrors.correlators", "qualname": "Corr.tanh", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.arcsin": {"fullname": "pyerrors.correlators.Corr.arcsin", "modulename": "pyerrors.correlators", "qualname": "Corr.arcsin", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.arccos": {"fullname": "pyerrors.correlators.Corr.arccos", "modulename": "pyerrors.correlators", "qualname": "Corr.arccos", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.arctan": {"fullname": "pyerrors.correlators.Corr.arctan", "modulename": "pyerrors.correlators", "qualname": "Corr.arctan", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.arcsinh": {"fullname": "pyerrors.correlators.Corr.arcsinh", "modulename": "pyerrors.correlators", "qualname": "Corr.arcsinh", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.arccosh": {"fullname": "pyerrors.correlators.Corr.arccosh", "modulename": "pyerrors.correlators", "qualname": "Corr.arccosh", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.arctanh": {"fullname": "pyerrors.correlators.Corr.arctanh", "modulename": "pyerrors.correlators", "qualname": "Corr.arctanh", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.dirac": {"fullname": "pyerrors.dirac", "modulename": "pyerrors.dirac", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.dirac.Grid_gamma": {"fullname": "pyerrors.dirac.Grid_gamma", "modulename": "pyerrors.dirac", "qualname": "Grid_gamma", "type": "function", "doc": "Returns gamma matrix in Grid labeling.
\n", "parameters": ["gamma_tag"], "funcdef": "def"}, "pyerrors.fits": {"fullname": "pyerrors.fits", "modulename": "pyerrors.fits", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.fits.Fit_result": {"fullname": "pyerrors.fits.Fit_result", "modulename": "pyerrors.fits", "qualname": "Fit_result", "type": "class", "doc": "Represents fit results.
\n\nAttributes
\n\n\n
\n"}, "pyerrors.fits.Fit_result.__init__": {"fullname": "pyerrors.fits.Fit_result.__init__", "modulename": "pyerrors.fits", "qualname": "Fit_result.__init__", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.fits.Fit_result.gamma_method": {"fullname": "pyerrors.fits.Fit_result.gamma_method", "modulename": "pyerrors.fits", "qualname": "Fit_result.gamma_method", "type": "function", "doc": "- fit_parameters (list):\nresults for the individual fit parameters,\nalso accesible via indices.
\nApply the gamma method to all fit parameters
\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.fits.least_squares": {"fullname": "pyerrors.fits.least_squares", "modulename": "pyerrors.fits", "qualname": "least_squares", "type": "function", "doc": "Performs a non-linear fit to y = func(x).
\n\nArguments:
\n\nx : list\n list of floats.\ny : list\n list of Obs.\nfunc : object\n fit function, has to be of the form
\n\n\n\ndef func(a, x):\n return a[0] + a[1] * x + a[2] * anp.sinh(x)\n\nFor multiple x values func can be of the form\n\ndef func(a, x):\n (x1, x2) = x\n return a[0] * x1 ** 2 + a[1] * x2\n\nIt is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work\n
priors : list, optional\n priors has to be a list with an entry for every parameter in the fit. The entries can either be\n Obs (e.g. results from a previous fit) or strings containing a value and an error formatted like\n 0.548(23), 500(40) or 0.5(0.4)\n It is important for the subsequent error estimation that the e_tag for the gamma method is large\n enough.\nsilent : bool, optional\n If true all output to the console is omitted (default False).
\n\nKeyword arguments
\n\ninitial_guess -- can provide an initial guess for the input parameters. Relevant for\n non-linear fits with many parameters.\nmethod -- can be used to choose an alternative method for the minimization of chisquare.\n The possible methods are the ones which can be used for scipy.optimize.minimize and\n migrad of iminuit. If no method is specified, Levenberg-Marquard is used.\n Reliable alternatives are migrad, Powell and Nelder-Mead.\nresplot -- If true, a plot which displays fit, data and residuals is generated (default False).\nqqplot -- If true, a quantile-quantile plot of the fit result is generated (default False).\nexpected_chisquare -- If true prints the expected chisquare which is\n corrected by effects caused by correlated input data.\n This can take a while as the full correlation matrix\n has to be calculated (default False).
\n", "parameters": ["x", "y", "func", "priors", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.fits.standard_fit": {"fullname": "pyerrors.fits.standard_fit", "modulename": "pyerrors.fits", "qualname": "standard_fit", "type": "function", "doc": "\n", "parameters": ["x", "y", "func", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.fits.odr_fit": {"fullname": "pyerrors.fits.odr_fit", "modulename": "pyerrors.fits", "qualname": "odr_fit", "type": "function", "doc": "\n", "parameters": ["x", "y", "func", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.fits.total_least_squares": {"fullname": "pyerrors.fits.total_least_squares", "modulename": "pyerrors.fits", "qualname": "total_least_squares", "type": "function", "doc": "Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.
\n\nx : list\n list of Obs, or a tuple of lists of Obs\ny : list\n list of Obs. The dvalues of the Obs are used as x- and yerror for the fit.\nfunc : object\n func has to be of the form
\n\n\n\ndef func(a, x):\n y = a[0] + a[1] * x + a[2] * anp.sinh(x)\n return y\n\nFor multiple x values func can be of the form\n\ndef func(a, x):\n (x1, x2) = x\n return a[0] * x1 ** 2 + a[1] * x2\n\nIt is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.\n
silent : bool, optional\n If true all output to the console is omitted (default False).\nBased on the orthogonal distance regression module of scipy
\n\nKeyword arguments
\n\ninitial_guess -- can provide an initial guess for the input parameters. Relevant for non-linear\n fits with many parameters.\nexpected_chisquare -- If true prints the expected chisquare which is\n corrected by effects caused by correlated input data.\n This can take a while as the full correlation matrix\n has to be calculated (default False).
\n", "parameters": ["x", "y", "func", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.fits.prior_fit": {"fullname": "pyerrors.fits.prior_fit", "modulename": "pyerrors.fits", "qualname": "prior_fit", "type": "function", "doc": "\n", "parameters": ["x", "y", "func", "priors", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.fits.fit_lin": {"fullname": "pyerrors.fits.fit_lin", "modulename": "pyerrors.fits", "qualname": "fit_lin", "type": "function", "doc": "Performs a linear fit to y = n + m * x and returns two Obs n, m.
\n\ny has to be a list of Obs, the dvalues of the Obs are used as yerror for the fit.\nx can either be a list of floats in which case no xerror is assumed, or\na list of Obs, where the dvalues of the Obs are used as xerror for the fit.
\n", "parameters": ["x", "y", "kwargs"], "funcdef": "def"}, "pyerrors.fits.qqplot": {"fullname": "pyerrors.fits.qqplot", "modulename": "pyerrors.fits", "qualname": "qqplot", "type": "function", "doc": "Generates a quantile-quantile plot of the fit result which can be used to\ncheck if the residuals of the fit are gaussian distributed.
\n", "parameters": ["x", "o_y", "func", "p"], "funcdef": "def"}, "pyerrors.fits.residual_plot": {"fullname": "pyerrors.fits.residual_plot", "modulename": "pyerrors.fits", "qualname": "residual_plot", "type": "function", "doc": "Generates a plot which compares the fit to the data and displays the corresponding residuals
\n", "parameters": ["x", "y", "func", "fit_res"], "funcdef": "def"}, "pyerrors.fits.covariance_matrix": {"fullname": "pyerrors.fits.covariance_matrix", "modulename": "pyerrors.fits", "qualname": "covariance_matrix", "type": "function", "doc": "Returns the covariance matrix of y.
\n", "parameters": ["y"], "funcdef": "def"}, "pyerrors.fits.error_band": {"fullname": "pyerrors.fits.error_band", "modulename": "pyerrors.fits", "qualname": "error_band", "type": "function", "doc": "Returns the error band for an array of sample values x, for given fit function func with optimized parameters beta.
\n", "parameters": ["x", "func", "beta"], "funcdef": "def"}, "pyerrors.fits.ks_test": {"fullname": "pyerrors.fits.ks_test", "modulename": "pyerrors.fits", "qualname": "ks_test", "type": "function", "doc": "Performs a Kolmogorov\u2013Smirnov test for the Q-values of all fit object.
\n\nIf no list is given all Obs in memory are used.
\n\nDisclaimer: The determination of the individual Q-values as well as this function have not been tested yet.
\n", "parameters": ["obs"], "funcdef": "def"}, "pyerrors.fits.fit_general": {"fullname": "pyerrors.fits.fit_general", "modulename": "pyerrors.fits", "qualname": "fit_general", "type": "function", "doc": "Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.
\n\nPlausibility of the results should be checked. To control the numerical differentiation\nthe kwargs of numdifftools.step_generators.MaxStepGenerator can be used.
\n\nfunc has to be of the form
\n\ndef func(a, x):\n y = a[0] + a[1] * x + a[2] * np.sinh(x)\n return y
\n\ny has to be a list of Obs, the dvalues of the Obs are used as yerror for the fit.\nx can either be a list of floats in which case no xerror is assumed, or\na list of Obs, where the dvalues of the Obs are used as xerror for the fit.
\n\nKeyword arguments
\n\nsilent -- If true all output to the console is omitted (default False).\ninitial_guess -- can provide an initial guess for the input parameters. Relevant for non-linear fits\n with many parameters.
\n", "parameters": ["x", "y", "func", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.input": {"fullname": "pyerrors.input", "modulename": "pyerrors.input", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.input.bdio": {"fullname": "pyerrors.input.bdio", "modulename": "pyerrors.input.bdio", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.input.bdio.read_ADerrors": {"fullname": "pyerrors.input.bdio.read_ADerrors", "modulename": "pyerrors.input.bdio", "qualname": "read_ADerrors", "type": "function", "doc": "Extract generic MCMC data from a bdio file
\n\nread_ADerrors requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to
\n\nall: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/
\n\nParameters
\n\n\n
\n", "parameters": ["file_path", "bdio_path", "kwargs"], "funcdef": "def"}, "pyerrors.input.bdio.write_ADerrors": {"fullname": "pyerrors.input.bdio.write_ADerrors", "modulename": "pyerrors.input.bdio", "qualname": "write_ADerrors", "type": "function", "doc": "- file_path -- path to the bdio file
\n- bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
\nWrite Obs to a bdio file according to ADerrors conventions
\n\nread_mesons requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to
\n\nall: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/
\n\nParameters
\n\n\n
\n", "parameters": ["obs_list", "file_path", "bdio_path", "kwargs"], "funcdef": "def"}, "pyerrors.input.bdio.read_mesons": {"fullname": "pyerrors.input.bdio.read_mesons", "modulename": "pyerrors.input.bdio", "qualname": "read_mesons", "type": "function", "doc": "- file_path -- path to the bdio file
\n- bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
\nExtract mesons data from a bdio file and return it as a dictionary
\n\nThe dictionary can be accessed with a tuple consisting of (type, source_position, kappa1, kappa2)
\n\nread_mesons requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to
\n\nall: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/
\n\nParameters
\n\n\n
\n", "parameters": ["file_path", "bdio_path", "kwargs"], "funcdef": "def"}, "pyerrors.input.bdio.read_dSdm": {"fullname": "pyerrors.input.bdio.read_dSdm", "modulename": "pyerrors.input.bdio", "qualname": "read_dSdm", "type": "function", "doc": "- file_path -- path to the bdio file
\n- bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
\n- stop -- stops reading at given configuration number (default None)
\n- alternative_ensemble_name -- Manually overwrite ensemble name
\nExtract dSdm data from a bdio file and return it as a dictionary
\n\nThe dictionary can be accessed with a tuple consisting of (type, kappa)
\n\nread_dSdm requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to
\n\nall: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/
\n\nParameters
\n\n\n
\n", "parameters": ["file_path", "bdio_path", "kwargs"], "funcdef": "def"}, "pyerrors.input.hadrons": {"fullname": "pyerrors.input.hadrons", "modulename": "pyerrors.input.hadrons", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.input.hadrons.read_meson_hd5": {"fullname": "pyerrors.input.hadrons.read_meson_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_meson_hd5", "type": "function", "doc": "- file_path -- path to the bdio file
\n- bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
\n- stop -- stops reading at given configuration number (default None)
\nRead hadrons meson hdf5 file and extract the meson labeled 'meson'
\n\nParameters
\n\n\n
\n", "parameters": ["path", "filestem", "ens_id", "meson", "tree"], "funcdef": "def"}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"fullname": "pyerrors.input.hadrons.read_ExternalLeg_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_ExternalLeg_hd5", "type": "function", "doc": "- path (str):\npath to the files to read
\n- filestem (str):\nnamestem of the files to read
\n- ens_id (str):\nname of the ensemble, required for internal bookkeeping
\n- meson (str):\nlabel of the meson to be extracted, standard value meson_0 which\ncorresponds to the pseudoscalar pseudoscalar two-point function.
\n- tree (str):\nLabel of the upmost directory in the hdf5 file, default 'meson'\nfor outputs of the Meson module. Can be altered to read input\nfrom other modules with similar structures.
\nRead hadrons ExternalLeg hdf5 file and output an array of CObs
\n\nParameters
\n\n\n
\n", "parameters": ["path", "filestem", "ens_id", "order"], "funcdef": "def"}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"fullname": "pyerrors.input.hadrons.read_Bilinear_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_Bilinear_hd5", "type": "function", "doc": "- path -- path to the files to read
\n- filestem -- namestem of the files to read
\n- ens_id -- name of the ensemble, required for internal bookkeeping
\n- order -- order in which the array is to be reshaped,: 'F' for the first index changing fastest (9 4x4 matrices) default.\n'C' for the last index changing fastest (16 3x3 matrices),
\nRead hadrons Bilinear hdf5 file and output an array of CObs
\n\nParameters
\n\n\n
\n", "parameters": ["path", "filestem", "ens_id", "order"], "funcdef": "def"}, "pyerrors.input.misc": {"fullname": "pyerrors.input.misc", "modulename": "pyerrors.input.misc", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.input.misc.read_pbp": {"fullname": "pyerrors.input.misc.read_pbp", "modulename": "pyerrors.input.misc", "qualname": "read_pbp", "type": "function", "doc": "- path -- path to the files to read
\n- filestem -- namestem of the files to read
\n- ens_id -- name of the ensemble, required for internal bookkeeping
\n- order -- order in which the array is to be reshaped,: 'F' for the first index changing fastest (9 4x4 matrices) default.\n'C' for the last index changing fastest (16 3x3 matrices),
\nRead pbp format from given folder structure. Returns a list of length nrw
\n\nKeyword arguments
\n\nr_start -- list which contains the first config to be read for each replicum\nr_stop -- list which contains the last config to be read for each replicum
\n", "parameters": ["path", "prefix", "kwargs"], "funcdef": "def"}, "pyerrors.input.openQCD": {"fullname": "pyerrors.input.openQCD", "modulename": "pyerrors.input.openQCD", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.input.openQCD.read_rwms": {"fullname": "pyerrors.input.openQCD.read_rwms", "modulename": "pyerrors.input.openQCD", "qualname": "read_rwms", "type": "function", "doc": "Read rwms format from given folder structure. Returns a list of length nrw
\n\nAttributes
\n\n\n
\n\n- version -- version of openQCD, default 2.0
\nKeyword arguments
\n\nr_start -- list which contains the first config to be read for each replicum\nr_stop -- list which contains the last config to be read for each replicum\npostfix -- postfix of the file to read, e.g. '.ms1' for openQCD-files
\n", "parameters": ["path", "prefix", "version", "names", "kwargs"], "funcdef": "def"}, "pyerrors.input.openQCD.extract_t0": {"fullname": "pyerrors.input.openQCD.extract_t0", "modulename": "pyerrors.input.openQCD", "qualname": "extract_t0", "type": "function", "doc": "Extract t0 from given .ms.dat files. Returns t0 as Obs.
\n\nIt is assumed that all boundary effects have sufficiently decayed at x0=xmin.\nThe data around the zero crossing of t^2
\n\n- 0.3 is fitted with a linear function\nfrom which the exact root is extracted.\nOnly works with openQCD v 1.2. Parameters
\n\n\n
\n\n- path -- Path to .ms.dat files
\n- prefix -- Ensemble prefix
\n- dtr_read -- Determines how many trajectories should be skipped when reading the ms.dat files.: Corresponds to dtr_cnfg / dtr_ms in the openQCD input file.
\n- xmin -- First timeslice where the boundary effects have sufficiently decayed.
\n- spatial_extent -- spatial extent of the lattice, required for normalization.
\n- fit_range -- Number of data points left and right of the zero crossing to be included in the linear fit. (Default (5)):
\nKeyword arguments
\n\nr_start -- list which contains the first config to be read for each replicum.\nr_stop -- list which contains the last config to be read for each replicum.\nplaquette -- If true extract the plaquette estimate of t0 instead.
\n", "parameters": ["path", "prefix", "dtr_read", "xmin", "spatial_extent", "fit_range", "kwargs"], "funcdef": "def"}, "pyerrors.input.sfcf": {"fullname": "pyerrors.input.sfcf", "modulename": "pyerrors.input.sfcf", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.input.sfcf.read_sfcf": {"fullname": "pyerrors.input.sfcf.read_sfcf", "modulename": "pyerrors.input.sfcf", "qualname": "read_sfcf", "type": "function", "doc": "Read sfcf C format from given folder structure.
\n\nKeyword arguments
\n\nim -- if True, read imaginary instead of real part of the correlation function.\nsingle -- if True, read a boundary-to-boundary correlation function with a single value\nb2b -- if True, read a time-dependent boundary-to-boundary correlation function\nnames -- Alternative labeling for replicas/ensembles. Has to have the appropriate length
\n", "parameters": ["path", "prefix", "name", "kwargs"], "funcdef": "def"}, "pyerrors.input.sfcf.read_sfcf_c": {"fullname": "pyerrors.input.sfcf.read_sfcf_c", "modulename": "pyerrors.input.sfcf", "qualname": "read_sfcf_c", "type": "function", "doc": "Read sfcf c format from given folder structure.
\n\nArguments
\n\nquarks -- Label of the quarks used in the sfcf input file\nnoffset -- Offset of the source (only relevant when wavefunctions are used)\nwf -- ID of wave function\nwf2 -- ID of the second wavefunction (only relevant for boundary-to-boundary correlation functions)
\n\nKeyword arguments
\n\nim -- if True, read imaginary instead of real part of the correlation function.\nb2b -- if True, read a time-dependent boundary-to-boundary correlation function\nnames -- Alternative labeling for replicas/ensembles. Has to have the appropriate length\nens_name : str\n replaces the name of the ensemble
\n", "parameters": ["path", "prefix", "name", "quarks", "noffset", "wf", "wf2", "kwargs"], "funcdef": "def"}, "pyerrors.input.sfcf.read_qtop": {"fullname": "pyerrors.input.sfcf.read_qtop", "modulename": "pyerrors.input.sfcf", "qualname": "read_qtop", "type": "function", "doc": "Read qtop format from given folder structure.
\n\nKeyword arguments
\n\ntarget -- specifies the topological sector to be reweighted to (default 0)\nfull -- if true read the charge instead of the reweighting factor.
\n", "parameters": ["path", "prefix", "kwargs"], "funcdef": "def"}, "pyerrors.jackknifing": {"fullname": "pyerrors.jackknifing", "modulename": "pyerrors.jackknifing", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.jackknifing.Jack": {"fullname": "pyerrors.jackknifing.Jack", "modulename": "pyerrors.jackknifing", "qualname": "Jack", "type": "class", "doc": "\n"}, "pyerrors.jackknifing.Jack.__init__": {"fullname": "pyerrors.jackknifing.Jack.__init__", "modulename": "pyerrors.jackknifing", "qualname": "Jack.__init__", "type": "function", "doc": "\n", "parameters": ["self", "value", "jacks"], "funcdef": "def"}, "pyerrors.jackknifing.Jack.print": {"fullname": "pyerrors.jackknifing.Jack.print", "modulename": "pyerrors.jackknifing", "qualname": "Jack.print", "type": "function", "doc": "Print basic properties of the Jack.
\n", "parameters": ["self", "kwargs"], "funcdef": "def"}, "pyerrors.jackknifing.Jack.plot_tauint": {"fullname": "pyerrors.jackknifing.Jack.plot_tauint", "modulename": "pyerrors.jackknifing", "qualname": "Jack.plot_tauint", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.jackknifing.Jack.plot_history": {"fullname": "pyerrors.jackknifing.Jack.plot_history", "modulename": "pyerrors.jackknifing", "qualname": "Jack.plot_history", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.jackknifing.Jack.dump": {"fullname": "pyerrors.jackknifing.Jack.dump", "modulename": "pyerrors.jackknifing", "qualname": "Jack.dump", "type": "function", "doc": "Dump the Jack to a pickle file 'name'.
\n\nKeyword arguments:\npath -- specifies a custom path for the file (default '.')
\n", "parameters": ["self", "name", "kwargs"], "funcdef": "def"}, "pyerrors.jackknifing.generate_jack": {"fullname": "pyerrors.jackknifing.generate_jack", "modulename": "pyerrors.jackknifing", "qualname": "generate_jack", "type": "function", "doc": "\n", "parameters": ["obs", "kwargs"], "funcdef": "def"}, "pyerrors.jackknifing.derived_jack": {"fullname": "pyerrors.jackknifing.derived_jack", "modulename": "pyerrors.jackknifing", "qualname": "derived_jack", "type": "function", "doc": "Construct a derived Jack according to func(data, **kwargs).
\n\nParameters
\n\n\n
\n\n- func -- arbitrary function of the form func(data, **kwargs). For the automatic differentiation to work,: all numpy functions have to have the autograd wrapper (use 'import autograd.numpy as np').
\n- data -- list of Jacks, e.g. [jack1, jack2, jack3].
\nNotes
\n\nFor simple mathematical operations it can be practical to use anonymous functions.\nFor the ratio of two jacks one can e.g. use
\n\nnew_jack = derived_jack(lambda x : x[0] / x[1], [jack1, jack2])
\n", "parameters": ["func", "data", "kwargs"], "funcdef": "def"}, "pyerrors.linalg": {"fullname": "pyerrors.linalg", "modulename": "pyerrors.linalg", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.linalg.derived_array": {"fullname": "pyerrors.linalg.derived_array", "modulename": "pyerrors.linalg", "qualname": "derived_array", "type": "function", "doc": "Construct a derived Obs according to func(data, **kwargs) of matrix value data\nusing automatic differentiation.
\n\nParameters
\n\n\n
\n\n- func -- arbitrary function of the form func(data, **kwargs). For the: automatic differentiation to work, all numpy functions have to have\nthe autograd wrapper (use 'import autograd.numpy as anp').
\n- data -- list of Obs, e.g. [obs1, obs2, obs3].
\nKeyword arguments
\n\nman_grad -- manually supply a list or an array which contains the jacobian\n of func. Use cautiously, supplying the wrong derivative will\n not be intercepted.
\n", "parameters": ["func", "data", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.matmul": {"fullname": "pyerrors.linalg.matmul", "modulename": "pyerrors.linalg", "qualname": "matmul", "type": "function", "doc": "Matrix multiply all operands.
\n\nSupports real and complex valued matrices and is faster compared to\nstandard multiplication via the @ operator.
\n", "parameters": ["operands"], "funcdef": "def"}, "pyerrors.linalg.inv": {"fullname": "pyerrors.linalg.inv", "modulename": "pyerrors.linalg", "qualname": "inv", "type": "function", "doc": "Inverse of Obs or CObs valued matrices.
\n", "parameters": ["x"], "funcdef": "def"}, "pyerrors.linalg.cholesky": {"fullname": "pyerrors.linalg.cholesky", "modulename": "pyerrors.linalg", "qualname": "cholesky", "type": "function", "doc": "Cholesky decompostion of Obs or CObs valued matrices.
\n", "parameters": ["x"], "funcdef": "def"}, "pyerrors.linalg.scalar_mat_op": {"fullname": "pyerrors.linalg.scalar_mat_op", "modulename": "pyerrors.linalg", "qualname": "scalar_mat_op", "type": "function", "doc": "Computes the matrix to scalar operation op to a given matrix of Obs.
\n", "parameters": ["op", "obs", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.eigh": {"fullname": "pyerrors.linalg.eigh", "modulename": "pyerrors.linalg", "qualname": "eigh", "type": "function", "doc": "Computes the eigenvalues and eigenvectors of a given hermitian matrix of Obs according to np.linalg.eigh.
\n", "parameters": ["obs", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.eig": {"fullname": "pyerrors.linalg.eig", "modulename": "pyerrors.linalg", "qualname": "eig", "type": "function", "doc": "Computes the eigenvalues of a given matrix of Obs according to np.linalg.eig.
\n", "parameters": ["obs", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.pinv": {"fullname": "pyerrors.linalg.pinv", "modulename": "pyerrors.linalg", "qualname": "pinv", "type": "function", "doc": "Computes the Moore-Penrose pseudoinverse of a matrix of Obs.
\n", "parameters": ["obs", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.svd": {"fullname": "pyerrors.linalg.svd", "modulename": "pyerrors.linalg", "qualname": "svd", "type": "function", "doc": "Computes the singular value decomposition of a matrix of Obs.
\n", "parameters": ["obs", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.slogdet": {"fullname": "pyerrors.linalg.slogdet", "modulename": "pyerrors.linalg", "qualname": "slogdet", "type": "function", "doc": "Computes the determinant of a matrix of Obs via np.linalg.slogdet.
\n", "parameters": ["obs", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.grad_eig": {"fullname": "pyerrors.linalg.grad_eig", "modulename": "pyerrors.linalg", "qualname": "grad_eig", "type": "function", "doc": "Gradient of a general square (complex valued) matrix
\n", "parameters": ["ans", "x"], "funcdef": "def"}, "pyerrors.misc": {"fullname": "pyerrors.misc", "modulename": "pyerrors.misc", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.misc.gen_correlated_data": {"fullname": "pyerrors.misc.gen_correlated_data", "modulename": "pyerrors.misc", "qualname": "gen_correlated_data", "type": "function", "doc": "Generate observables with given covariance and autocorrelation times.
\n\nArguments
\n\nmeans -- list containing the mean value of each observable.\ncov -- covariance matrix for the data to be geneated.\nname -- ensemble name for the data to be geneated.\ntau -- can either be a real number or a list with an entry for\n every dataset.\nsamples -- number of samples to be generated for each observable.
\n", "parameters": ["means", "cov", "name", "tau", "samples"], "funcdef": "def"}, "pyerrors.mpm": {"fullname": "pyerrors.mpm", "modulename": "pyerrors.mpm", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.mpm.matrix_pencil_method": {"fullname": "pyerrors.mpm.matrix_pencil_method", "modulename": "pyerrors.mpm", "qualname": "matrix_pencil_method", "type": "function", "doc": "Matrix pencil method to extract k energy levels from data
\n\nImplementation of the matrix pencil method based on\neq. (2.17) of Y. Hua, T. K. Sarkar, IEEE Trans. Acoust. 38, 814-824 (1990)
\n\nParameters
\n\n\n
\n", "parameters": ["corrs", "k", "p", "kwargs"], "funcdef": "def"}, "pyerrors.mpm.matrix_pencil_method_old": {"fullname": "pyerrors.mpm.matrix_pencil_method_old", "modulename": "pyerrors.mpm", "qualname": "matrix_pencil_method_old", "type": "function", "doc": "- data -- can be a list of Obs for the analysis of a single correlator, or a list of lists: of Obs if several correlators are to analyzed at once.
\n- k -- Number of states to extract (default 1).
\n- p -- matrix pencil parameter which filters noise. The optimal value is expected between: len(data)/3 and 2*len(data)/3. The computation is more expensive the closer p is\nto len(data)/2 but could possibly suppress more noise (default len(data)//2).
\nOlder impleentation of the matrix pencil method with pencil p on given data to\n extract energy levels.
\n\nParameters
\n\n\n
\n", "parameters": ["data", "p", "noise_level", "verbose", "kwargs"], "funcdef": "def"}, "pyerrors.npr": {"fullname": "pyerrors.npr", "modulename": "pyerrors.npr", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.npr.Npr_matrix": {"fullname": "pyerrors.npr.Npr_matrix", "modulename": "pyerrors.npr", "qualname": "Npr_matrix", "type": "class", "doc": "- data -- lists of Obs, where the nth entry is considered to be the correlation function: at x0=n+offset.
\n- p -- matrix pencil parameter which corresponds to the number of energy levels to extract.: higher values for p can help decreasing noise.
\n- noise_level -- If this argument is not None an additional prefiltering via singular: value decomposition is performed in which all singular values below 10^(-noise_level)\ntimes the largest singular value are discarded. This increases the computation time.
\n- verbose -- if larger than zero details about the noise filtering are printed to stdout: (default 1)
\nndarray(shape, dtype=float, buffer=None, offset=0,\n strides=None, order=None)
\n\nAn array object represents a multidimensional, homogeneous array\nof fixed-size items. An associated data-type object describes the\nformat of each element in the array (its byte-order, how many bytes it\noccupies in memory, whether it is an integer, a floating point number,\nor something else, etc.)
\n\nArrays should be constructed using
\n\narray
,zeros
orempty
(refer\nto the See Also section below). The parameters given here refer to\na low-level method (ndarray(...)
) for instantiating an array.For more information, refer to the
\n\nnumpy
module and examine the\nmethods and attributes of an array.Parameters
\n\n\n
\n\n- (for the __new__ method; see Notes below)
\n- shape (tuple of ints):\nShape of created array.
\n- dtype (data-type, optional):\nAny object that can be interpreted as a numpy data type.
\n- buffer (object exposing buffer interface, optional):\nUsed to fill the array with data.
\n- offset (int, optional):\nOffset of array data in buffer.
\n- strides (tuple of ints, optional):\nStrides of data in memory.
\n- order ({'C', 'F'}, optional):\nRow-major (C-style) or column-major (Fortran-style) order.
\nAttributes
\n\n\n
\n\n- T (ndarray):\nTranspose of the array.
\n- data (buffer):\nThe array's elements, in memory.
\n- dtype (dtype object):\nDescribes the format of the elements in the array.
\n- flags (dict):\nDictionary containing information related to memory use, e.g.,\n'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc.
\n- flat (numpy.flatiter object):\nFlattened version of the array as an iterator. The iterator\nallows assignments, e.g.,
\nx.flat = 3
(Seendarray.flat
for\nassignment examples; TODO).- imag (ndarray):\nImaginary part of the array.
\n- real (ndarray):\nReal part of the array.
\n- size (int):\nNumber of elements in the array.
\n- itemsize (int):\nThe memory use of each array element in bytes.
\n- nbytes (int):\nThe total number of bytes required to store the array data,\ni.e.,
\nitemsize * size
.- ndim (int):\nThe array's number of dimensions.
\n- shape (tuple of ints):\nShape of the array.
\n- strides (tuple of ints):\nThe step-size required to move from one element to the next in\nmemory. For example, a contiguous
\n(3, 4)
array of type\nint16
in C-order has strides(8, 2)
. This implies that\nto move from element to element in memory requires jumps of 2 bytes.\nTo move from row-to-row, one needs to jump 8 bytes at a time\n(2 * 4
).- ctypes (ctypes object):\nClass containing properties of the array needed for interaction\nwith ctypes.
\n- base (ndarray):\nIf the array is a view into another array, that array is its
\nbase
\n(unless that array is also a view). Thebase
array is where the\narray data is actually stored.See Also
\n\n\n\n
array
: Construct an array.
\nzeros
: Create an array, each element of which is zero.
\nempty
: Create an array, but leave its allocated memory unchanged (i.e.,\nit contains \"garbage\").
\ndtype
: Create a data-type.
\nnumpy.typing.NDArray
: A :term:generic <generic type>
version\nof ndarray.Notes
\n\nThere are two modes of creating an array using
\n\n__new__
:\n
\n\n- If
\nbuffer
is None, then onlyshape
,dtype
, andorder
\nare used.- If
\nbuffer
is an object exposing the buffer interface, then\nall keywords are interpreted.No
\n\n__init__
method is needed because the array is fully initialized\nafter the__new__
method.Examples
\n\nThese examples illustrate the low-level
\n\nndarray
constructor. Refer\nto theSee Also
section above for easier ways of constructing an\nndarray.First mode,
\n\nbuffer
is None:\n\n>>> np.ndarray(shape=(2,2), dtype=float, order='F')\narray([[0.0e+000, 0.0e+000], # random\n [ nan, 2.5e-323]])\n
Second mode:
\n\n\n"}, "pyerrors.npr.Npr_matrix.__init__": {"fullname": "pyerrors.npr.Npr_matrix.__init__", "modulename": "pyerrors.npr", "qualname": "Npr_matrix.__init__", "type": "function", "doc": "\n", "parameters": [], "funcdef": "def"}, "pyerrors.npr.Npr_matrix.g5H": {"fullname": "pyerrors.npr.Npr_matrix.g5H", "modulename": "pyerrors.npr", "qualname": "Npr_matrix.g5H", "type": "variable", "doc": ">>> np.ndarray((2,), buffer=np.array([1,2,3]),\n... offset=np.int_().itemsize,\n... dtype=int) # offset = 1*itemsize, i.e. skip first element\narray([2, 3])\n
Gamma_5 hermitean conjugate
\n\nReturns gamma_5 @ M.T.conj() @ gamma_5 and exchanges in and out going\nmomenta. Works only for 12x12 matrices.
\n"}, "pyerrors.npr.inv_propagator": {"fullname": "pyerrors.npr.inv_propagator", "modulename": "pyerrors.npr", "qualname": "inv_propagator", "type": "function", "doc": "Inverts a 12x12 quark propagator
\n", "parameters": ["prop"], "funcdef": "def"}, "pyerrors.npr.Zq": {"fullname": "pyerrors.npr.Zq", "modulename": "pyerrors.npr", "qualname": "Zq", "type": "function", "doc": "Calculates the quark field renormalization constant Zq
\n\nAttributes:\ninv_prop -- Inverted 12x12 quark propagator\nfermion -- Fermion type for which the tree-level propagator is used\n in the calculation of Zq. Default Wilson.
\n", "parameters": ["inv_prop", "fermion"], "funcdef": "def"}, "pyerrors.obs": {"fullname": "pyerrors.obs", "modulename": "pyerrors.obs", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.obs.Obs": {"fullname": "pyerrors.obs.Obs", "modulename": "pyerrors.obs", "qualname": "Obs", "type": "class", "doc": "Class for a general observable.
\n\nInstances of Obs are the basic objects of a pyerrors error analysis.\nThey are initialized with a list which contains arrays of samples for\ndifferent ensembles/replica and another list of same length which contains\nthe names of the ensembles/replica. Mathematical operations can be\nperformed on instances. The result is another instance of Obs. The error of\nan instance can be computed with the gamma_method. Also contains additional\nmethods for output and visualization of the error calculation.
\n\nAttributes
\n\n\n
\n"}, "pyerrors.obs.Obs.__init__": {"fullname": "pyerrors.obs.Obs.__init__", "modulename": "pyerrors.obs", "qualname": "Obs.__init__", "type": "function", "doc": "- S_global (float):\nStandard value for S (default 2.0)
\n- S_dict (dict):\nDictionary for S values. If an entry for a given ensemble\nexists this overwrites the standard value for that ensemble.
\n- tau_exp_global (float):\nStandard value for tau_exp (default 0.0)
\n- tau_exp_dict (dict):\nDictionary for tau_exp values. If an entry for a given ensemble exists\nthis overwrites the standard value for that ensemble.
\n- N_sigma_global (float):\nStandard value for N_sigma (default 1.0)
\nInitialize Obs object.
\n\nAttributes
\n\n\n
\n", "parameters": ["self", "samples", "names", "idl", "means", "kwargs"], "funcdef": "def"}, "pyerrors.obs.Obs.S_global": {"fullname": "pyerrors.obs.Obs.S_global", "modulename": "pyerrors.obs", "qualname": "Obs.S_global", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.S_dict": {"fullname": "pyerrors.obs.Obs.S_dict", "modulename": "pyerrors.obs", "qualname": "Obs.S_dict", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.tau_exp_global": {"fullname": "pyerrors.obs.Obs.tau_exp_global", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp_global", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.tau_exp_dict": {"fullname": "pyerrors.obs.Obs.tau_exp_dict", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp_dict", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.N_sigma_global": {"fullname": "pyerrors.obs.Obs.N_sigma_global", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma_global", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.filter_eps": {"fullname": "pyerrors.obs.Obs.filter_eps", "modulename": "pyerrors.obs", "qualname": "Obs.filter_eps", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.names": {"fullname": "pyerrors.obs.Obs.names", "modulename": "pyerrors.obs", "qualname": "Obs.names", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.shape": {"fullname": "pyerrors.obs.Obs.shape", "modulename": "pyerrors.obs", "qualname": "Obs.shape", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.r_values": {"fullname": "pyerrors.obs.Obs.r_values", "modulename": "pyerrors.obs", "qualname": "Obs.r_values", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.deltas": {"fullname": "pyerrors.obs.Obs.deltas", "modulename": "pyerrors.obs", "qualname": "Obs.deltas", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.idl": {"fullname": "pyerrors.obs.Obs.idl", "modulename": "pyerrors.obs", "qualname": "Obs.idl", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.is_merged": {"fullname": "pyerrors.obs.Obs.is_merged", "modulename": "pyerrors.obs", "qualname": "Obs.is_merged", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.N": {"fullname": "pyerrors.obs.Obs.N", "modulename": "pyerrors.obs", "qualname": "Obs.N", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.ddvalue": {"fullname": "pyerrors.obs.Obs.ddvalue", "modulename": "pyerrors.obs", "qualname": "Obs.ddvalue", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.reweighted": {"fullname": "pyerrors.obs.Obs.reweighted", "modulename": "pyerrors.obs", "qualname": "Obs.reweighted", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.tag": {"fullname": "pyerrors.obs.Obs.tag", "modulename": "pyerrors.obs", "qualname": "Obs.tag", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.value": {"fullname": "pyerrors.obs.Obs.value", "modulename": "pyerrors.obs", "qualname": "Obs.value", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.dvalue": {"fullname": "pyerrors.obs.Obs.dvalue", "modulename": "pyerrors.obs", "qualname": "Obs.dvalue", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_names": {"fullname": "pyerrors.obs.Obs.e_names", "modulename": "pyerrors.obs", "qualname": "Obs.e_names", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_content": {"fullname": "pyerrors.obs.Obs.e_content", "modulename": "pyerrors.obs", "qualname": "Obs.e_content", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.expand_deltas": {"fullname": "pyerrors.obs.Obs.expand_deltas", "modulename": "pyerrors.obs", "qualname": "Obs.expand_deltas", "type": "function", "doc": "- samples (list):\nlist of numpy arrays containing the Monte Carlo samples
\n- names (list):\nlist of strings labeling the indivdual samples
\n- idl (list, optional):\nlist of ranges or lists on which the samples are defined
\n- means (list, optional):\nlist of mean values for the case that the mean values were\nalready subtracted from the samples
\nExpand deltas defined on idx to a regular, contiguous range, where holes are filled by 0.\n If idx is of type range, the deltas are not changed
\n\nParameters
\n\n\n
\n", "parameters": ["self", "deltas", "idx", "shape"], "funcdef": "def"}, "pyerrors.obs.Obs.calc_gamma": {"fullname": "pyerrors.obs.Obs.calc_gamma", "modulename": "pyerrors.obs", "qualname": "Obs.calc_gamma", "type": "function", "doc": "- deltas -- List of fluctuations
\n- idx -- List or range of configs on which the deltas are defined.
\n- shape -- Number of configs in idx.
\nCalculate Gamma_{AA} from the deltas, which are defined on idx.\n idx is assumed to be a contiguous range (possibly with a stepsize != 1)
\n\nParameters
\n\n\n
\n", "parameters": ["self", "deltas", "idx", "shape", "w_max", "fft"], "funcdef": "def"}, "pyerrors.obs.Obs.gamma_method": {"fullname": "pyerrors.obs.Obs.gamma_method", "modulename": "pyerrors.obs", "qualname": "Obs.gamma_method", "type": "function", "doc": "- deltas -- List of fluctuations
\n- idx -- List or range of configs on which the deltas are defined.
\n- shape -- Number of configs in idx.
\n- w_max -- Upper bound for the summation window
\n- fft -- boolean, which determines whether the fft algorithm is used for: the computation of the autocorrelation function
\nCalculate the error and related properties of the Obs.
\n\nKeyword arguments
\n\nS : float\n specifies a custom value for the parameter S (default 2.0), can be\n a float or an array of floats for different ensembles\ntau_exp : float\n positive value triggers the critical slowing down analysis\n (default 0.0), can be a float or an array of floats for different\n ensembles\nN_sigma : float\n number of standard deviations from zero until the tail is\n attached to the autocorrelation function (default 1)\nfft : bool\n determines whether the fft algorithm is used for the computation\n of the autocorrelation function (default True)
\n", "parameters": ["self", "kwargs"], "funcdef": "def"}, "pyerrors.obs.Obs.print": {"fullname": "pyerrors.obs.Obs.print", "modulename": "pyerrors.obs", "qualname": "Obs.print", "type": "function", "doc": "\n", "parameters": ["self", "level"], "funcdef": "def"}, "pyerrors.obs.Obs.details": {"fullname": "pyerrors.obs.Obs.details", "modulename": "pyerrors.obs", "qualname": "Obs.details", "type": "function", "doc": "Output detailed properties of the Obs.
\n", "parameters": ["self", "ens_content"], "funcdef": "def"}, "pyerrors.obs.Obs.is_zero_within_error": {"fullname": "pyerrors.obs.Obs.is_zero_within_error", "modulename": "pyerrors.obs", "qualname": "Obs.is_zero_within_error", "type": "function", "doc": "Checks whether the observable is zero within 'sigma' standard errors.
\n\nWorks only properly when the gamma method was run.
\n", "parameters": ["self", "sigma"], "funcdef": "def"}, "pyerrors.obs.Obs.is_zero": {"fullname": "pyerrors.obs.Obs.is_zero", "modulename": "pyerrors.obs", "qualname": "Obs.is_zero", "type": "function", "doc": "Checks whether the observable is zero within machine precision.
\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.plot_tauint": {"fullname": "pyerrors.obs.Obs.plot_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.plot_tauint", "type": "function", "doc": "Plot integrated autocorrelation time for each ensemble.
\n", "parameters": ["self", "save"], "funcdef": "def"}, "pyerrors.obs.Obs.plot_rho": {"fullname": "pyerrors.obs.Obs.plot_rho", "modulename": "pyerrors.obs", "qualname": "Obs.plot_rho", "type": "function", "doc": "Plot normalized autocorrelation function time for each ensemble.
\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.plot_rep_dist": {"fullname": "pyerrors.obs.Obs.plot_rep_dist", "modulename": "pyerrors.obs", "qualname": "Obs.plot_rep_dist", "type": "function", "doc": "Plot replica distribution for each ensemble with more than one replicum.
\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.plot_history": {"fullname": "pyerrors.obs.Obs.plot_history", "modulename": "pyerrors.obs", "qualname": "Obs.plot_history", "type": "function", "doc": "Plot derived Monte Carlo history for each ensemble.
\n", "parameters": ["self", "expand"], "funcdef": "def"}, "pyerrors.obs.Obs.plot_piechart": {"fullname": "pyerrors.obs.Obs.plot_piechart", "modulename": "pyerrors.obs", "qualname": "Obs.plot_piechart", "type": "function", "doc": "Plot piechart which shows the fractional contribution of each\nensemble to the error and returns a dictionary containing the fractions.
\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.dump": {"fullname": "pyerrors.obs.Obs.dump", "modulename": "pyerrors.obs", "qualname": "Obs.dump", "type": "function", "doc": "Dump the Obs to a pickle file 'name'.
\n\nKeyword arguments
\n\npath -- specifies a custom path for the file (default '.')
\n", "parameters": ["self", "name", "kwargs"], "funcdef": "def"}, "pyerrors.obs.Obs.sqrt": {"fullname": "pyerrors.obs.Obs.sqrt", "modulename": "pyerrors.obs", "qualname": "Obs.sqrt", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.log": {"fullname": "pyerrors.obs.Obs.log", "modulename": "pyerrors.obs", "qualname": "Obs.log", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.exp": {"fullname": "pyerrors.obs.Obs.exp", "modulename": "pyerrors.obs", "qualname": "Obs.exp", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.sin": {"fullname": "pyerrors.obs.Obs.sin", "modulename": "pyerrors.obs", "qualname": "Obs.sin", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.cos": {"fullname": "pyerrors.obs.Obs.cos", "modulename": "pyerrors.obs", "qualname": "Obs.cos", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.tan": {"fullname": "pyerrors.obs.Obs.tan", "modulename": "pyerrors.obs", "qualname": "Obs.tan", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.arcsin": {"fullname": "pyerrors.obs.Obs.arcsin", "modulename": "pyerrors.obs", "qualname": "Obs.arcsin", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.arccos": {"fullname": "pyerrors.obs.Obs.arccos", "modulename": "pyerrors.obs", "qualname": "Obs.arccos", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.arctan": {"fullname": "pyerrors.obs.Obs.arctan", "modulename": "pyerrors.obs", "qualname": "Obs.arctan", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.sinh": {"fullname": "pyerrors.obs.Obs.sinh", "modulename": "pyerrors.obs", "qualname": "Obs.sinh", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.cosh": {"fullname": "pyerrors.obs.Obs.cosh", "modulename": "pyerrors.obs", "qualname": "Obs.cosh", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.tanh": {"fullname": "pyerrors.obs.Obs.tanh", "modulename": "pyerrors.obs", "qualname": "Obs.tanh", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.arcsinh": {"fullname": "pyerrors.obs.Obs.arcsinh", "modulename": "pyerrors.obs", "qualname": "Obs.arcsinh", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.arccosh": {"fullname": "pyerrors.obs.Obs.arccosh", "modulename": "pyerrors.obs", "qualname": "Obs.arccosh", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.arctanh": {"fullname": "pyerrors.obs.Obs.arctanh", "modulename": "pyerrors.obs", "qualname": "Obs.arctanh", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.sinc": {"fullname": "pyerrors.obs.Obs.sinc", "modulename": "pyerrors.obs", "qualname": "Obs.sinc", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.N_sigma": {"fullname": "pyerrors.obs.Obs.N_sigma", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.S": {"fullname": "pyerrors.obs.Obs.S", "modulename": "pyerrors.obs", "qualname": "Obs.S", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_ddvalue": {"fullname": "pyerrors.obs.Obs.e_ddvalue", "modulename": "pyerrors.obs", "qualname": "Obs.e_ddvalue", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_drho": {"fullname": "pyerrors.obs.Obs.e_drho", "modulename": "pyerrors.obs", "qualname": "Obs.e_drho", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_dtauint": {"fullname": "pyerrors.obs.Obs.e_dtauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_dtauint", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_dvalue": {"fullname": "pyerrors.obs.Obs.e_dvalue", "modulename": "pyerrors.obs", "qualname": "Obs.e_dvalue", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_n_dtauint": {"fullname": "pyerrors.obs.Obs.e_n_dtauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_n_dtauint", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_n_tauint": {"fullname": "pyerrors.obs.Obs.e_n_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_n_tauint", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_rho": {"fullname": "pyerrors.obs.Obs.e_rho", "modulename": "pyerrors.obs", "qualname": "Obs.e_rho", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_tauint": {"fullname": "pyerrors.obs.Obs.e_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_tauint", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_windowsize": {"fullname": "pyerrors.obs.Obs.e_windowsize", "modulename": "pyerrors.obs", "qualname": "Obs.e_windowsize", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.tau_exp": {"fullname": "pyerrors.obs.Obs.tau_exp", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp", "type": "variable", "doc": "\n"}, "pyerrors.obs.CObs": {"fullname": "pyerrors.obs.CObs", "modulename": "pyerrors.obs", "qualname": "CObs", "type": "class", "doc": "Class for a complex valued observable.
\n"}, "pyerrors.obs.CObs.__init__": {"fullname": "pyerrors.obs.CObs.__init__", "modulename": "pyerrors.obs", "qualname": "CObs.__init__", "type": "function", "doc": "\n", "parameters": ["self", "real", "imag"], "funcdef": "def"}, "pyerrors.obs.CObs.tag": {"fullname": "pyerrors.obs.CObs.tag", "modulename": "pyerrors.obs", "qualname": "CObs.tag", "type": "variable", "doc": "\n"}, "pyerrors.obs.CObs.real": {"fullname": "pyerrors.obs.CObs.real", "modulename": "pyerrors.obs", "qualname": "CObs.real", "type": "variable", "doc": "\n"}, "pyerrors.obs.CObs.imag": {"fullname": "pyerrors.obs.CObs.imag", "modulename": "pyerrors.obs", "qualname": "CObs.imag", "type": "variable", "doc": "\n"}, "pyerrors.obs.CObs.gamma_method": {"fullname": "pyerrors.obs.CObs.gamma_method", "modulename": "pyerrors.obs", "qualname": "CObs.gamma_method", "type": "function", "doc": "Executes the gamma_method for the real and the imaginary part.
\n", "parameters": ["self", "kwargs"], "funcdef": "def"}, "pyerrors.obs.CObs.is_zero": {"fullname": "pyerrors.obs.CObs.is_zero", "modulename": "pyerrors.obs", "qualname": "CObs.is_zero", "type": "function", "doc": "Checks whether both real and imaginary part are zero within machine precision.
\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.CObs.conjugate": {"fullname": "pyerrors.obs.CObs.conjugate", "modulename": "pyerrors.obs", "qualname": "CObs.conjugate", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.merge_idx": {"fullname": "pyerrors.obs.merge_idx", "modulename": "pyerrors.obs", "qualname": "merge_idx", "type": "function", "doc": "Returns the union of all lists in idl
\n\nParameters
\n\n\n
\n", "parameters": ["idl"], "funcdef": "def"}, "pyerrors.obs.expand_deltas_for_merge": {"fullname": "pyerrors.obs.expand_deltas_for_merge", "modulename": "pyerrors.obs", "qualname": "expand_deltas_for_merge", "type": "function", "doc": "- idl -- List of lists or ranges.
\nExpand deltas defined on idx to the list of configs that is defined by new_idx.\n New, empy entries are filled by 0. If idx and new_idx are of type range, the smallest\n common divisor of the step sizes is used as new step size.
\n\nParameters
\n\n\n
\n", "parameters": ["deltas", "idx", "shape", "new_idx"], "funcdef": "def"}, "pyerrors.obs.filter_zeroes": {"fullname": "pyerrors.obs.filter_zeroes", "modulename": "pyerrors.obs", "qualname": "filter_zeroes", "type": "function", "doc": "- deltas (list):\nList of fluctuations
\n- idx (list):\nList or range of configs on which the deltas are defined.\nHas to be a subset of new_idx.
\n- shape (list):\nNumber of configs in idx.
\n- new_idx (list):\nList of configs that defines the new range.
\nFilter out all configurations with vanishing fluctuation such that they do not\n contribute to the error estimate anymore. Returns the new names, deltas and\n idl according to the filtering.\n A fluctuation is considered to be vanishing, if it is smaller than eps times\n the mean of the absolute values of all deltas in one list.
\n\nParameters
\n\n\n
\n\n- names -- List of names
\n- deltas -- Dict lists of fluctuations
\n- idx -- Dict of lists or ranges of configs on which the deltas are defined.: Has to be a subset of new_idx.
\nOptional parameters
\n\neps -- Prefactor that enters the filter criterion.
\n", "parameters": ["names", "deltas", "idl", "eps"], "funcdef": "def"}, "pyerrors.obs.derived_observable": {"fullname": "pyerrors.obs.derived_observable", "modulename": "pyerrors.obs", "qualname": "derived_observable", "type": "function", "doc": "Construct a derived Obs according to func(data, **kwargs) using automatic differentiation.
\n\nParameters
\n\n\n
\n\n- func (object):\narbitrary function of the form func(data, **kwargs). For the\nautomatic differentiation to work, all numpy functions have to have\nthe autograd wrapper (use 'import autograd.numpy as anp').
\n- data (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
\nKeyword arguments
\n\nnum_grad : bool\n if True, numerical derivatives are used instead of autograd\n (default False). To control the numerical differentiation the\n kwargs of numdifftools.step_generators.MaxStepGenerator\n can be used.\nman_grad : list\n manually supply a list or an array which contains the jacobian\n of func. Use cautiously, supplying the wrong derivative will\n not be intercepted.
\n\nNotes
\n\nFor simple mathematical operations it can be practical to use anonymous\nfunctions. For the ratio of two observables one can e.g. use
\n\nnew_obs = derived_observable(lambda x: x[0] / x[1], [obs1, obs2])
\n", "parameters": ["func", "data", "kwargs"], "funcdef": "def"}, "pyerrors.obs.reduce_deltas": {"fullname": "pyerrors.obs.reduce_deltas", "modulename": "pyerrors.obs", "qualname": "reduce_deltas", "type": "function", "doc": "Extract deltas defined on idx_old on all configs of idx_new.
\n\nParameters
\n\n\n
\n", "parameters": ["deltas", "idx_old", "idx_new"], "funcdef": "def"}, "pyerrors.obs.reweight": {"fullname": "pyerrors.obs.reweight", "modulename": "pyerrors.obs", "qualname": "reweight", "type": "function", "doc": "- deltas -- List of fluctuations
\n- idx_old -- List or range of configs on which the deltas are defined
\n- idx_new -- List of configs for which we want to extract the deltas.: Has to be a subset of idx_old.
\nReweight a list of observables.
\n\nParameters
\n\n\n
\n\n- weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
\n- obs (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
\nKeyword arguments
\n\nall_configs : bool\n if True, the reweighted observables are normalized by the average of\n the reweighting factor on all configurations in weight.idl and not\n on the configurations in obs[i].idl.
\n", "parameters": ["weight", "obs", "kwargs"], "funcdef": "def"}, "pyerrors.obs.correlate": {"fullname": "pyerrors.obs.correlate", "modulename": "pyerrors.obs", "qualname": "correlate", "type": "function", "doc": "Correlate two observables.
\n\nAttributes:
\n\nobs_a : Obs\n First observable\nobs_b : Obs\n Second observable
\n\nKeep in mind to only correlate primary observables which have not been reweighted\nyet. The reweighting has to be applied after correlating the observables.\nCurrently only works if ensembles are identical. This is not really necessary.
\n", "parameters": ["obs_a", "obs_b"], "funcdef": "def"}, "pyerrors.obs.covariance": {"fullname": "pyerrors.obs.covariance", "modulename": "pyerrors.obs", "qualname": "covariance", "type": "function", "doc": "Calculates the covariance of two observables.
\n\ncovariance(obs, obs) is equal to obs.dvalue ** 2\nThe gamma method has to be applied first to both observables.
\n\nIf abs(covariance(obs1, obs2)) > obs1.dvalue * obs2.dvalue, the covariance\nis constrained to the maximum value in order to make sure that covariance\nmatrices are positive semidefinite.
\n\nKeyword arguments
\n\ncorrelation -- if true the correlation instead of the covariance is\n returned (default False)
\n", "parameters": ["obs1", "obs2", "correlation", "kwargs"], "funcdef": "def"}, "pyerrors.obs.covariance2": {"fullname": "pyerrors.obs.covariance2", "modulename": "pyerrors.obs", "qualname": "covariance2", "type": "function", "doc": "Alternative implementation of the covariance of two observables.
\n\ncovariance(obs, obs) is equal to obs.dvalue ** 2\nThe gamma method has to be applied first to both observables.
\n\nIf abs(covariance(obs1, obs2)) > obs1.dvalue * obs2.dvalue, the covariance\nis constrained to the maximum value in order to make sure that covariance\nmatrices are positive semidefinite.
\n\nKeyword arguments
\n\ncorrelation -- if true the correlation instead of the covariance is\n returned (default False)
\n", "parameters": ["obs1", "obs2", "correlation", "kwargs"], "funcdef": "def"}, "pyerrors.obs.covariance3": {"fullname": "pyerrors.obs.covariance3", "modulename": "pyerrors.obs", "qualname": "covariance3", "type": "function", "doc": "Another alternative implementation of the covariance of two observables.
\n\ncovariance2(obs, obs) is equal to obs.dvalue ** 2\nCurrently only works if ensembles are identical.\nThe gamma method has to be applied first to both observables.
\n\nIf abs(covariance2(obs1, obs2)) > obs1.dvalue * obs2.dvalue, the covariance\nis constrained to the maximum value in order to make sure that covariance\nmatrices are positive semidefinite.
\n\nKeyword arguments
\n\ncorrelation -- if true the correlation instead of the covariance is\n returned (default False)\nplot -- if true, the integrated autocorrelation time for each ensemble is\n plotted.
\n", "parameters": ["obs1", "obs2", "correlation", "kwargs"], "funcdef": "def"}, "pyerrors.obs.pseudo_Obs": {"fullname": "pyerrors.obs.pseudo_Obs", "modulename": "pyerrors.obs", "qualname": "pseudo_Obs", "type": "function", "doc": "Generate a pseudo Obs with given value, dvalue and name
\n\nThe standard number of samples is a 1000. This can be adjusted.
\n", "parameters": ["value", "dvalue", "name", "samples"], "funcdef": "def"}, "pyerrors.obs.dump_object": {"fullname": "pyerrors.obs.dump_object", "modulename": "pyerrors.obs", "qualname": "dump_object", "type": "function", "doc": "Dump object into pickle file.
\n\nKeyword arguments
\n\npath -- specifies a custom path for the file (default '.')
\n", "parameters": ["obj", "name", "kwargs"], "funcdef": "def"}, "pyerrors.obs.load_object": {"fullname": "pyerrors.obs.load_object", "modulename": "pyerrors.obs", "qualname": "load_object", "type": "function", "doc": "Load object from pickle file.
\n", "parameters": ["path"], "funcdef": "def"}, "pyerrors.obs.merge_obs": {"fullname": "pyerrors.obs.merge_obs", "modulename": "pyerrors.obs", "qualname": "merge_obs", "type": "function", "doc": "Combine all observables in list_of_obs into one new observable
\n\nIt is not possible to combine obs which are based on the same replicum
\n", "parameters": ["list_of_obs"], "funcdef": "def"}, "pyerrors.roots": {"fullname": "pyerrors.roots", "modulename": "pyerrors.roots", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.roots.find_root": {"fullname": "pyerrors.roots.find_root", "modulename": "pyerrors.roots", "qualname": "find_root", "type": "function", "doc": "Finds the root of the function func(x, d) where d is an Obs.
\n\nParameters
\n\n\n
\n", "parameters": ["d", "func", "guess", "kwargs"], "funcdef": "def"}, "pyerrors.version": {"fullname": "pyerrors.version", "modulename": "pyerrors.version", "qualname": "", "type": "module", "doc": "\n"}}, "docInfo": {"pyerrors": {"qualname": 0, "fullname": 1, "doc": 186}, "pyerrors.correlators": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.correlators.Corr": {"qualname": 1, "fullname": 3, "doc": 51}, "pyerrors.correlators.Corr.__init__": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.reweighted": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.gamma_method": {"qualname": 2, "fullname": 4, "doc": 5}, "pyerrors.correlators.Corr.projected": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.sum": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.smearing": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.plottable": {"qualname": 2, "fullname": 4, "doc": 16}, "pyerrors.correlators.Corr.symmetric": {"qualname": 2, "fullname": 4, "doc": 4}, "pyerrors.correlators.Corr.anti_symmetric": {"qualname": 2, "fullname": 4, "doc": 5}, "pyerrors.correlators.Corr.smearing_symmetric": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.GEVP": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.Eigenvalue": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.roll": {"qualname": 2, "fullname": 4, "doc": 10}, "pyerrors.correlators.Corr.reverse": {"qualname": 2, "fullname": 4, "doc": 4}, "pyerrors.correlators.Corr.correlate": {"qualname": 2, "fullname": 4, "doc": 5}, "pyerrors.correlators.Corr.reweight": {"qualname": 2, "fullname": 4, "doc": 30}, "pyerrors.correlators.Corr.T_symmetry": {"qualname": 2, "fullname": 4, "doc": 21}, "pyerrors.correlators.Corr.deriv": {"qualname": 2, "fullname": 4, "doc": 18}, "pyerrors.correlators.Corr.second_deriv": {"qualname": 2, "fullname": 4, "doc": 6}, "pyerrors.correlators.Corr.m_eff": {"qualname": 2, "fullname": 4, "doc": 60}, "pyerrors.correlators.Corr.fit": {"qualname": 2, "fullname": 4, "doc": 32}, "pyerrors.correlators.Corr.plateau": {"qualname": 2, "fullname": 4, "doc": 34}, "pyerrors.correlators.Corr.set_prange": {"qualname": 2, "fullname": 4, "doc": 5}, "pyerrors.correlators.Corr.show": {"qualname": 2, "fullname": 4, "doc": 56}, "pyerrors.correlators.Corr.dump": {"qualname": 2, "fullname": 4, "doc": 9}, "pyerrors.correlators.Corr.print": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.sqrt": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.log": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.exp": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.sin": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.cos": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.tan": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.sinh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.cosh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.tanh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.arcsin": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.arccos": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.arctan": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.arcsinh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.arccosh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.arctanh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.dirac": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.dirac.Grid_gamma": {"qualname": 1, "fullname": 3, "doc": 5}, "pyerrors.fits": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.fits.Fit_result": {"qualname": 1, "fullname": 3, "doc": 13}, "pyerrors.fits.Fit_result.__init__": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.fits.Fit_result.gamma_method": {"qualname": 2, "fullname": 4, "doc": 5}, "pyerrors.fits.least_squares": {"qualname": 1, "fullname": 3, "doc": 179}, "pyerrors.fits.standard_fit": {"qualname": 1, "fullname": 3, "doc": 0}, "pyerrors.fits.odr_fit": {"qualname": 1, "fullname": 3, "doc": 0}, "pyerrors.fits.total_least_squares": {"qualname": 1, "fullname": 3, "doc": 118}, "pyerrors.fits.prior_fit": {"qualname": 1, "fullname": 3, "doc": 0}, "pyerrors.fits.fit_lin": {"qualname": 1, "fullname": 3, "doc": 33}, "pyerrors.fits.qqplot": {"qualname": 1, "fullname": 3, "doc": 12}, "pyerrors.fits.residual_plot": {"qualname": 1, "fullname": 3, "doc": 8}, "pyerrors.fits.covariance_matrix": {"qualname": 1, "fullname": 3, "doc": 4}, "pyerrors.fits.error_band": {"qualname": 1, "fullname": 3, "doc": 14}, "pyerrors.fits.ks_test": {"qualname": 1, "fullname": 3, "doc": 20}, "pyerrors.fits.fit_general": {"qualname": 1, "fullname": 3, "doc": 79}, "pyerrors.input": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.input.bdio": {"qualname": 0, "fullname": 3, "doc": 0}, "pyerrors.input.bdio.read_ADerrors": {"qualname": 1, "fullname": 4, "doc": 46}, "pyerrors.input.bdio.write_ADerrors": {"qualname": 1, "fullname": 4, "doc": 47}, "pyerrors.input.bdio.read_mesons": {"qualname": 1, "fullname": 4, "doc": 68}, "pyerrors.input.bdio.read_dSdm": {"qualname": 1, "fullname": 4, "doc": 61}, "pyerrors.input.hadrons": {"qualname": 0, "fullname": 3, "doc": 0}, "pyerrors.input.hadrons.read_meson_hd5": {"qualname": 1, "fullname": 4, "doc": 59}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"qualname": 1, "fullname": 4, "doc": 44}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"qualname": 1, "fullname": 4, "doc": 44}, "pyerrors.input.misc": {"qualname": 0, "fullname": 3, "doc": 0}, "pyerrors.input.misc.read_pbp": {"qualname": 1, "fullname": 4, "doc": 28}, "pyerrors.input.openQCD": {"qualname": 0, "fullname": 3, "doc": 0}, "pyerrors.input.openQCD.read_rwms": {"qualname": 1, "fullname": 4, "doc": 44}, "pyerrors.input.openQCD.extract_t0": {"qualname": 1, "fullname": 4, "doc": 108}, "pyerrors.input.sfcf": {"qualname": 0, "fullname": 3, "doc": 0}, "pyerrors.input.sfcf.read_sfcf": {"qualname": 1, "fullname": 4, "doc": 42}, "pyerrors.input.sfcf.read_sfcf_c": {"qualname": 1, "fullname": 4, "doc": 65}, "pyerrors.input.sfcf.read_qtop": {"qualname": 1, "fullname": 4, "doc": 22}, "pyerrors.jackknifing": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.jackknifing.Jack": {"qualname": 1, "fullname": 3, "doc": 0}, "pyerrors.jackknifing.Jack.__init__": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.jackknifing.Jack.print": {"qualname": 2, "fullname": 4, "doc": 4}, "pyerrors.jackknifing.Jack.plot_tauint": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.jackknifing.Jack.plot_history": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.jackknifing.Jack.dump": {"qualname": 2, "fullname": 4, "doc": 13}, "pyerrors.jackknifing.generate_jack": {"qualname": 1, "fullname": 3, "doc": 0}, "pyerrors.jackknifing.derived_jack": {"qualname": 1, "fullname": 3, "doc": 55}, "pyerrors.linalg": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.linalg.derived_array": {"qualname": 1, "fullname": 3, "doc": 55}, "pyerrors.linalg.matmul": {"qualname": 1, "fullname": 3, "doc": 14}, "pyerrors.linalg.inv": {"qualname": 1, "fullname": 3, "doc": 5}, "pyerrors.linalg.cholesky": {"qualname": 1, "fullname": 3, "doc": 6}, "pyerrors.linalg.scalar_mat_op": {"qualname": 1, "fullname": 3, "doc": 8}, "pyerrors.linalg.eigh": {"qualname": 1, "fullname": 3, "doc": 11}, "pyerrors.linalg.eig": {"qualname": 1, "fullname": 3, "doc": 9}, "pyerrors.linalg.pinv": {"qualname": 1, "fullname": 3, "doc": 6}, "pyerrors.linalg.svd": {"qualname": 1, "fullname": 3, "doc": 6}, "pyerrors.linalg.slogdet": {"qualname": 1, "fullname": 3, "doc": 8}, "pyerrors.linalg.grad_eig": {"qualname": 1, "fullname": 3, "doc": 6}, "pyerrors.misc": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.misc.gen_correlated_data": {"qualname": 1, "fullname": 3, "doc": 36}, "pyerrors.mpm": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.mpm.matrix_pencil_method": {"qualname": 1, "fullname": 3, "doc": 72}, "pyerrors.mpm.matrix_pencil_method_old": {"qualname": 1, "fullname": 3, "doc": 70}, "pyerrors.npr": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.npr.Npr_matrix": {"qualname": 1, "fullname": 3, "doc": 425}, "pyerrors.npr.Npr_matrix.__init__": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.npr.Npr_matrix.g5H": {"qualname": 2, "fullname": 4, "doc": 16}, "pyerrors.npr.inv_propagator": {"qualname": 1, "fullname": 3, "doc": 4}, "pyerrors.npr.Zq": {"qualname": 1, "fullname": 3, "doc": 23}, "pyerrors.obs": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.obs.Obs": {"qualname": 1, "fullname": 3, "doc": 94}, "pyerrors.obs.Obs.__init__": {"qualname": 2, "fullname": 4, "doc": 40}, "pyerrors.obs.Obs.S_global": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.S_dict": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.tau_exp_global": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.tau_exp_dict": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.N_sigma_global": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.filter_eps": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.names": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.shape": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.r_values": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.deltas": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.idl": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.is_merged": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.N": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.ddvalue": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.reweighted": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.tag": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.value": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.dvalue": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_names": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_content": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.expand_deltas": {"qualname": 2, "fullname": 4, "doc": 29}, "pyerrors.obs.Obs.calc_gamma": {"qualname": 2, "fullname": 4, "doc": 41}, "pyerrors.obs.Obs.gamma_method": {"qualname": 2, "fullname": 4, "doc": 64}, "pyerrors.obs.Obs.print": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.details": {"qualname": 2, "fullname": 4, "doc": 4}, "pyerrors.obs.Obs.is_zero_within_error": {"qualname": 2, "fullname": 4, "doc": 13}, "pyerrors.obs.Obs.is_zero": {"qualname": 2, "fullname": 4, "doc": 7}, "pyerrors.obs.Obs.plot_tauint": {"qualname": 2, "fullname": 4, "doc": 6}, "pyerrors.obs.Obs.plot_rho": {"qualname": 2, "fullname": 4, "doc": 7}, "pyerrors.obs.Obs.plot_rep_dist": {"qualname": 2, "fullname": 4, "doc": 8}, "pyerrors.obs.Obs.plot_history": {"qualname": 2, "fullname": 4, "doc": 7}, "pyerrors.obs.Obs.plot_piechart": {"qualname": 2, "fullname": 4, "doc": 12}, "pyerrors.obs.Obs.dump": {"qualname": 2, "fullname": 4, "doc": 13}, "pyerrors.obs.Obs.sqrt": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.log": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.exp": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.sin": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.cos": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.tan": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.arcsin": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.arccos": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.arctan": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.sinh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.cosh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.tanh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.arcsinh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.arccosh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.arctanh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.sinc": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.N_sigma": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.S": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_ddvalue": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_drho": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_dtauint": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_dvalue": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_n_dtauint": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_n_tauint": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_rho": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_tauint": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_windowsize": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.tau_exp": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.CObs": {"qualname": 1, "fullname": 3, "doc": 4}, "pyerrors.obs.CObs.__init__": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.CObs.tag": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.CObs.real": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.CObs.imag": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.CObs.gamma_method": {"qualname": 2, "fullname": 4, "doc": 5}, "pyerrors.obs.CObs.is_zero": {"qualname": 2, "fullname": 4, "doc": 10}, "pyerrors.obs.CObs.conjugate": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.merge_idx": {"qualname": 1, "fullname": 3, "doc": 9}, "pyerrors.obs.expand_deltas_for_merge": {"qualname": 1, "fullname": 3, "doc": 52}, "pyerrors.obs.filter_zeroes": {"qualname": 1, "fullname": 3, "doc": 53}, "pyerrors.obs.derived_observable": {"qualname": 1, "fullname": 3, "doc": 95}, "pyerrors.obs.reduce_deltas": {"qualname": 1, "fullname": 3, "doc": 24}, "pyerrors.obs.reweight": {"qualname": 1, "fullname": 3, "doc": 40}, "pyerrors.obs.correlate": {"qualname": 1, "fullname": 3, "doc": 28}, "pyerrors.obs.covariance": {"qualname": 1, "fullname": 3, "doc": 44}, "pyerrors.obs.covariance2": {"qualname": 1, "fullname": 3, "doc": 45}, "pyerrors.obs.covariance3": {"qualname": 1, "fullname": 3, "doc": 58}, "pyerrors.obs.pseudo_Obs": {"qualname": 1, "fullname": 3, "doc": 12}, "pyerrors.obs.dump_object": {"qualname": 1, "fullname": 3, "doc": 12}, "pyerrors.obs.load_object": {"qualname": 1, "fullname": 3, "doc": 4}, "pyerrors.obs.merge_obs": {"qualname": 1, "fullname": 3, "doc": 12}, "pyerrors.roots": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.roots.find_root": {"qualname": 1, "fullname": 3, "doc": 25}, "pyerrors.version": {"qualname": 0, "fullname": 2, "doc": 0}}, "length": 202, "save": true}, "index": {"qualname": {"root": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.sum": {"tf": 1}, "pyerrors.correlators.Corr.smearing": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.smearing_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}}, "df": 42, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}}, "df": 2}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"2": {"docs": {"pyerrors.obs.covariance2": {"tf": 1}}, "df": 1}, "3": {"docs": {"pyerrors.obs.covariance3": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.fits.covariance_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "b": {"docs": {"pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 8}, "n": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 1}}}}}}}}}}, "_": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "_": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.jackknifing.Jack.__init__": {"tf": 1}, "pyerrors.npr.Npr_matrix.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 6}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}, "d": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.obs.CObs.real": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.reduce_deltas": {"tf": 1}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}}, "_": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1}}}}}}, "g": {"5": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 4}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.jackknifing.generate_jack": {"tf": 1}}, "df": 1}}}}}}}}}}, "_": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.grad_eig": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.jackknifing.Jack.print": {"tf": 1}, "pyerrors.obs.Obs.print": {"tf": 1}}, "df": 3}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.prior_fit": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}, "_": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.jackknifing.Jack.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}}, "df": 2}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.jackknifing.Jack.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 2}}}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.plot_rho": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {"pyerrors.obs.Obs.S": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.sum": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.smearing": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.smearing_symmetric": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.shape": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}}, "df": 2}, "c": {"docs": {"pyerrors.obs.Obs.sinc": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.standard_fit": {"tf": 1}}, "df": 1}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.linalg.scalar_mat_op": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.svd": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.linalg.slogdet": {"tf": 1}}, "df": 1}}}}}}, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.S_dict": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.expand_deltas": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "t": {"0": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}}}}}}}, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.Obs.e_names": {"tf": 1}}, "df": 1}}, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_n_tauint": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_content": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.e_ddvalue": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_drho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_dtauint": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.e_dvalue": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_rho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_tauint": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 1}}}}}}}}}, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.Obs.tau_exp_global": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {"pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.deltas": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.dump_object": {"tf": 1}}, "df": 1}}}}}}}}}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.ddvalue": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.dvalue": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.obs.merge_idx": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}}, "df": 3}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.filter_eps": {"tf": 1}}, "df": 1}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.load_object": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.odr_fit": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {"pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.filter_eps": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.shape": {"tf": 1}, "pyerrors.obs.Obs.r_values": {"tf": 1}, "pyerrors.obs.Obs.deltas": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}, "pyerrors.obs.Obs.is_merged": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}, "pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.print": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.Obs.sinc": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 63}}, "q": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}}, "k": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.jackknifing.Jack": {"tf": 1}, "pyerrors.jackknifing.Jack.__init__": {"tf": 1}, "pyerrors.jackknifing.Jack.print": {"tf": 1}, "pyerrors.jackknifing.Jack.plot_tauint": {"tf": 1}, "pyerrors.jackknifing.Jack.plot_history": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}}, "df": 6}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.npr.inv_propagator": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.idl": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.Obs.is_merged": {"tf": 1}}, "df": 1}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2, "_": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.CObs.imag": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {"pyerrors.obs.Obs.N": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.npr.Npr_matrix.__init__": {"tf": 1}, "pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 3}}}}}}}}}, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.N_sigma": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.names": {"tf": 1}}, "df": 1}}}}, "z": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.npr.Zq": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.value": {"tf": 1}}, "df": 1}}}}}}, "fullname": {"root": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.sum": {"tf": 1}, "pyerrors.correlators.Corr.smearing": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.smearing_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.dirac": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.standard_fit": {"tf": 1}, "pyerrors.fits.odr_fit": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.prior_fit": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.covariance_matrix": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.jackknifing": {"tf": 1}, "pyerrors.jackknifing.Jack": {"tf": 1}, "pyerrors.jackknifing.Jack.__init__": {"tf": 1}, "pyerrors.jackknifing.Jack.print": {"tf": 1}, "pyerrors.jackknifing.Jack.plot_tauint": {"tf": 1}, "pyerrors.jackknifing.Jack.plot_history": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.jackknifing.generate_jack": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}, "pyerrors.misc": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.npr": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.npr.Npr_matrix.__init__": {"tf": 1}, "pyerrors.npr.Npr_matrix.g5H": {"tf": 1}, "pyerrors.npr.inv_propagator": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1}, "pyerrors.obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.filter_eps": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.shape": {"tf": 1}, "pyerrors.obs.Obs.r_values": {"tf": 1}, "pyerrors.obs.Obs.deltas": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}, "pyerrors.obs.Obs.is_merged": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}, "pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.print": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.Obs.sinc": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}, "pyerrors.obs.merge_idx": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reduce_deltas": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1}, "pyerrors.obs.load_object": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.version": {"tf": 1}}, "df": 202}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.jackknifing.Jack.print": {"tf": 1}, "pyerrors.obs.Obs.print": {"tf": 1}}, "df": 3}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.prior_fit": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}, "_": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.jackknifing.Jack.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}}, "df": 2}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.jackknifing.Jack.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 2}}}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.plot_rho": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.sum": {"tf": 1}, "pyerrors.correlators.Corr.smearing": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.smearing_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}}, "df": 42, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.sum": {"tf": 1}, "pyerrors.correlators.Corr.smearing": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.smearing_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 44}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}}, "df": 2}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"2": {"docs": {"pyerrors.obs.covariance2": {"tf": 1}}, "df": 1}, "3": {"docs": {"pyerrors.obs.covariance3": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.fits.covariance_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "b": {"docs": {"pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 8}, "n": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 1}}}}}}}}}}, "_": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "_": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.jackknifing.Jack.__init__": {"tf": 1}, "pyerrors.npr.Npr_matrix.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 6}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}, "d": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.obs.CObs.real": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.reduce_deltas": {"tf": 1}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}, "_": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1}}}}}}, "g": {"5": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 4}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.jackknifing.generate_jack": {"tf": 1}}, "df": 1}}}}}}}}}}, "_": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.grad_eig": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {"pyerrors.obs.Obs.S": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.sum": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.smearing": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.smearing_symmetric": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.shape": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}}, "df": 2}, "c": {"docs": {"pyerrors.obs.Obs.sinc": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.standard_fit": {"tf": 1}}, "df": 1}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 4}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.linalg.scalar_mat_op": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.svd": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.linalg.slogdet": {"tf": 1}}, "df": 1}}}}}}, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.S_dict": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.expand_deltas": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "t": {"0": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}}}}}}}, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.Obs.e_names": {"tf": 1}}, "df": 1}}, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_n_tauint": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_content": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.e_ddvalue": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_drho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_dtauint": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.e_dvalue": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_rho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_tauint": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 1}}}}}}}}}, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.Obs.tau_exp_global": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {"pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.deltas": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.dump_object": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.dirac": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.ddvalue": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.dvalue": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.misc": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.mpm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 3}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.obs.merge_idx": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.standard_fit": {"tf": 1}, "pyerrors.fits.odr_fit": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.prior_fit": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.covariance_matrix": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 17, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}}, "df": 3}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.filter_eps": {"tf": 1}}, "df": 1}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.load_object": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}}, "df": 12}}}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.odr_fit": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}}}}}, "b": {"docs": {"pyerrors.obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.filter_eps": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.shape": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.r_values": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.deltas": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.idl": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_merged": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.ddvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweighted": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tag": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.value": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_content": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.print": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.details": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sqrt": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.log": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.exp": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sinc": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_drho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}, "pyerrors.obs.merge_idx": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reduce_deltas": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1}, "pyerrors.obs.load_object": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 86}}, "q": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}}, "k": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input": {"tf": 1}, "pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 19}}}, "v": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.npr.inv_propagator": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.idl": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.Obs.is_merged": {"tf": 1}}, "df": 1}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2, "_": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.CObs.imag": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 5}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 4}}}}}}, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.jackknifing.Jack": {"tf": 1}, "pyerrors.jackknifing.Jack.__init__": {"tf": 1}, "pyerrors.jackknifing.Jack.print": {"tf": 1}, "pyerrors.jackknifing.Jack.plot_tauint": {"tf": 1}, "pyerrors.jackknifing.Jack.plot_history": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}}, "df": 6, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.jackknifing": {"tf": 1}, "pyerrors.jackknifing.Jack": {"tf": 1}, "pyerrors.jackknifing.Jack.__init__": {"tf": 1}, "pyerrors.jackknifing.Jack.print": {"tf": 1}, "pyerrors.jackknifing.Jack.plot_tauint": {"tf": 1}, "pyerrors.jackknifing.Jack.plot_history": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.jackknifing.generate_jack": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}}, "df": 9}}}}}}}}, "n": {"docs": {"pyerrors.obs.Obs.N": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.npr": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.npr.Npr_matrix.__init__": {"tf": 1}, "pyerrors.npr.Npr_matrix.g5H": {"tf": 1}, "pyerrors.npr.inv_propagator": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1}}, "df": 6, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.npr.Npr_matrix.__init__": {"tf": 1}, "pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 3}}}}}}}}}, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.N_sigma": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.names": {"tf": 1}}, "df": 1}}}}, "z": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.npr.Zq": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.value": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.version": {"tf": 1}}, "df": 1}}}}}}}}}, "doc": {"root": {"0": {"1": {"2": {"8": {"9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 9, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"0": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "1": {"0": {"0": {"0": {"docs": {"pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}, "2": {"docs": {}, "df": 0, "x": {"1": {"2": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1}, "pyerrors.npr.inv_propagator": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "6": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 2}, "7": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "9": {"9": {"0": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 9, "*": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "2": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 12, "*": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, ")": {"docs": {}, "df": 0, "/": {"3": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}, "3": {"2": {"3": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2}}, "df": 2, "x": {"3": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "4": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 3, "x": {"4": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "5": {"0": {"0": {"docs": {}, "df": 0, "(": {"4": {"0": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "2": {"2": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"8": {"0": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"8": {"docs": {}, "df": 0, "(": {"2": {"3": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1, "(": {"0": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "8": {"1": {"4": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"4": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}, "9": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "p": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.7320508075688772}}, "df": 2, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1.7320508075688772}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.merge_idx": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reduce_deltas": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 32}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.jackknifing.Jack.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.dump_object": {"tf": 1.4142135623730951}}, "df": 12}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.npr.inv_propagator": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1.4142135623730951}}, "df": 3}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.jackknifing.Jack.print": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 4}}, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.jackknifing.Jack.print": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 6}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 2}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 7}}}}}, "n": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.7320508075688772}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}}, "df": 10, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 2, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}}, "df": 1}}, "l": {"docs": {"pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1}, "pyerrors.obs.load_object": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 4}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 9, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 9}}}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 2}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.4142135623730951}, "pyerrors.obs.reduce_deltas": {"tf": 1.4142135623730951}}, "df": 9}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}}, "df": 2}}}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}}, "df": 16, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}}}}, "_": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 3}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 6}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 4}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 12}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "_": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 3.1622776601683795}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {"pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1.4142135623730951}}, "df": 1}}, "c": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 5, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 12}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "v": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.covariance_matrix": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2}, "pyerrors.obs.covariance2": {"tf": 2}, "pyerrors.obs.covariance3": {"tf": 2}}, "df": 6, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"2": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.covariance3": {"tf": 1}}, "df": 1}}}}, "docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}}, "df": 2}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1}}, "df": 8, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance2": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}}, "df": 23}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 6}}}}}}}}, "b": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}}, "df": 5}, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 12}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 3}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1.4142135623730951}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 2}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.reduce_deltas": {"tf": 1.7320508075688772}}, "df": 8, "u": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}}, "df": 5}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": null}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 2}}, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 2}}}, "j": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "(": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1}}, "df": 7}}, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 5}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 3}}}, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 8}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 3}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}}, "df": 5}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "(": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1, "+": {"1": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "p": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 2.23606797749979}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 2}}}}}}, "_": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.covariance_matrix": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.4142135623730951}}, "df": 18}, "c": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.npr.Npr_matrix.g5H": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 10}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 5}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}, "x": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3}}}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 3}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 2}, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 3}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 13}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 4}, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2.8284271247461903}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.6457513110645907}}, "df": 2, "_": {"0": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "y": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 2.6457513110645907}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 2.6457513110645907}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}}, "df": 4, "i": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 2}}, "d": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}}, "df": 1}}}, "s": {"1": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}}, "df": 1}}, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}}, "df": 1, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 3.1622776601683795}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 16, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}}, "df": 4, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 7}}}}}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.filter_zeroes": {"tf": 1.4142135623730951}}, "df": 3, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 5}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 3}}, "t": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 6}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.expand_deltas": {"tf": 2}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1.7320508075688772}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1.7320508075688772}, "pyerrors.obs.filter_zeroes": {"tf": 2}, "pyerrors.obs.reduce_deltas": {"tf": 2}}, "df": 5, "_": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 3}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}, "f": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1.4142135623730951}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 2}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.reduce_deltas": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 8}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 2}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1}}, "df": 26}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 6, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}}, "df": 1, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 2.6457513110645907}}, "df": 1, "=": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1}}, "df": 4}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance2": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance3": {"tf": 1.7320508075688772}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 7}}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}, "b": {"2": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 2}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 5}, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.jackknifing.Jack.print": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 9, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 3}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 2}}, "df": 3}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}}, "df": 4, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}}}}, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, ")": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 3}}, "df": 1, "=": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 2.449489742783178}}, "df": 1}}}}, "g": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 9, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 9, "_": {"5": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 3}}}}}}, "{": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 9}, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 5}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 19}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.linalg.grad_eig": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 4}, "o": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, ":": {"1": {"0": {"0": {"9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"5": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 5.830951894845301}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 10, "'": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}, "(": {"docs": {}, "df": 0, "[": {"2": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "[": {"0": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1}}, "df": 22}}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 4}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 7}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 6}}}}}}}}}, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}, "c": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 5, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 5}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 7}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 6}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 4}}, "n": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 3}}, "z": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.npr.Zq": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 14}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4}}}}, "g": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}}, "df": 1}}, "[": {"0": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}, "1": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}, "2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 1}}}}, "(": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"2": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"1": {"docs": {"pyerrors.obs.covariance3": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"1": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "/": {"0": {"3": {"0": {"6": {"0": {"1": {"7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 6}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}}, "df": 4}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 2}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.fit_lin": {"tf": 1.7320508075688772}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 2}, "pyerrors.input.misc.read_pbp": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 3}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_idx": {"tf": 1.7320508075688772}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 2.8284271247461903}, "pyerrors.obs.filter_zeroes": {"tf": 2}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.obs.reduce_deltas": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}}, "df": 29, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 2, "(": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "w": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.load_object": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 6}}}, "(": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, ")": {"docs": {}, "df": 0, "/": {"2": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "3": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "/": {"2": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}}}, "v": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.npr.Zq": {"tf": 1}}, "df": 4}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "f": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 3, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Zq": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 2}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 1.7320508075688772}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 14, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}, "_": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 12}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 1}}, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.dump_object": {"tf": 1.4142135623730951}, "pyerrors.obs.load_object": {"tf": 1}}, "df": 16, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}}, "df": 1}}}, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 3}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1.7320508075688772}}, "df": 3}}}, "l": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 3}}, "x": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.npr.Zq": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 6, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 8}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 5}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 3}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 7}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}}, "df": 2}}, "r": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 2.6457513110645907}}, "df": 7}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 5}, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1.7320508075688772}, "pyerrors.obs.reduce_deltas": {"tf": 1}}, "df": 5}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 8, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 2}, "pyerrors.jackknifing.derived_jack": {"tf": 1.7320508075688772}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 2}}, "df": 17}}}}, "(": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 4}, "a": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 3, "i": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}}, "df": 2}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "s": {"docs": {"pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}}, "df": 2, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 2}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 2}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "t": {"docs": {"pyerrors.obs.expand_deltas_for_merge": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.reduce_deltas": {"tf": 1}}, "df": 3}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2}, "g": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.linalg.slogdet": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3, "i": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.7320508075688772}}, "df": 3}}}}, "l": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "(": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}, "x": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 4}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 2}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1.4142135623730951}}, "df": 2}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.23606797749979}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 8}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "r": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.23606797749979}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 6, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 2}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 2}}, "df": 1, "s": {"docs": {}, "df": 0, "=": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 6}}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1.4142135623730951}}, "df": 2, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 2}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 2.23606797749979}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 6}}, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 3}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 4}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2.23606797749979}}, "df": 3}, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}, "t": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3}}}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1.4142135623730951}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 1}}, "r": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1}}, "df": 7}}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 3, "i": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}}, "df": 4}}, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, ",": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}}}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.scalar_mat_op": {"tf": 1}}, "df": 1}}}}}, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}}, "df": 2}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.grad_eig": {"tf": 1}}, "df": 1}}}}, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1}}}}}}, "t": {"0": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 4, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}}, "df": 16}}, "a": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2}}, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 5}}}}, "u": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 12, "s": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.plottable": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 6}}}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 12}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.npr.Zq": {"tf": 1}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 7}}}, "h": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}, "/": {"2": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}, "^": {"2": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 1, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1.4142135623730951}}, "df": 4, "e": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 4}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.4142135623730951}}, "df": 2, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.jackknifing.derived_jack": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 2}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 9}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 14}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 2}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}}}, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2}}, "df": 7}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1.7320508075688772}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 14, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 3}}}}}}, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {"pyerrors.obs.expand_deltas_for_merge": {"tf": 1.7320508075688772}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 3, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.obs.expand_deltas_for_merge": {"tf": 2}, "pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 3.4641016151377544}}, "df": 1, "(": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "x": {"0": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2, "=": {"0": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "+": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}}}}}}}, "1": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 2}, "2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1.7320508075688772}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 10, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}, "[": {"0": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}, "1": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.covariance_matrix": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 8, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"1": {"6": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 3.1622776601683795}}, "df": 3, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 3}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "g": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1, "r": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 2}}}, "_": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 7}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}}, "df": 3}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}}, "df": 2}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 7, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 8}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "c": {"docs": {"pyerrors.obs.Obs": {"tf": 2}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.npr.inv_propagator": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1}}, "df": 2}}}, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.npr.Zq": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 6}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 5}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}, "m": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}, "d": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.merge_idx": {"tf": 1.4142135623730951}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}}, "df": 5}, "x": {"docs": {"pyerrors.obs.Obs.expand_deltas": {"tf": 2}, "pyerrors.obs.Obs.calc_gamma": {"tf": 2}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 2}, "pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 4, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.reduce_deltas": {"tf": 1.7320508075688772}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.obs.reduce_deltas": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 8, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}, "d": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.misc.read_pbp": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_qtop": {"tf": 1.4142135623730951}}, "df": 11, "_": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 2}, "pyerrors.input.sfcf.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 2}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.covariance_matrix": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.npr.Npr_matrix.g5H": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.merge_idx": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 23}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 5}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 3}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}}, "df": 5}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.Obs.expand_deltas": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 5}}, "a": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2}}, "df": 3}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 9}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.npr.Zq": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 4}}, "w": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_idx": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1.7320508075688772}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.reduce_deltas": {"tf": 1}}, "df": 9}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}}, "df": 4, "p": {"docs": {"pyerrors.linalg.scalar_mat_op": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 7, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 4}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.obs.Obs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 5}}}}}, "b": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.fit_lin": {"tf": 2.23606797749979}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance2": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}, "pyerrors.obs.pseudo_Obs": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 37, "s": {"1": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 6}, "2": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance2": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}}, "df": 6}, "3": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 2.23606797749979}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance2": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}}, "df": 14}}}, "[": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 2}}, "_": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}, "b": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}, "j": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1}, "pyerrors.obs.load_object": {"tf": 1}}, "df": 14}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "n": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 8, "c": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 10}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 2.449489742783178}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 7, "=": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2}}, "df": 2, "=": {"0": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 2}, "pyerrors.obs.Obs": {"tf": 2.6457513110645907}, "pyerrors.obs.Obs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 28}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}, "pyerrors.jackknifing.derived_jack": {"tf": 1.7320508075688772}, "pyerrors.linalg.derived_array": {"tf": 1.7320508075688772}, "pyerrors.npr.Npr_matrix": {"tf": 2.449489742783178}, "pyerrors.npr.Zq": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 2.6457513110645907}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 21}, "p": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.merge_idx": {"tf": 1}}, "df": 1}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 8}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.npr.Npr_matrix.g5H": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 10}}}, "l": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "y": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.reduce_deltas": {"tf": 1}}, "df": 1}}}, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Zq": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 3}}}}}, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 1}}}}}, "k": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 1, "e": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1}}, "df": 21}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "\u2013": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"1": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {"pyerrors.fits.ks_test": {"tf": 1.4142135623730951}}, "df": 1, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}, "pyerrors.npr.inv_propagator": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1.4142135623730951}}, "df": 3}}}}, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 3}}}}}, "d": {"docs": {}, "df": 0, "f": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.expand_deltas": {"tf": 1}}, "df": 1}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 7}}}, "q": {"docs": {"pyerrors.npr.Zq": {"tf": 1.4142135623730951}}, "df": 1}}, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"1": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.jackknifing.Jack.print": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1.7320508075688772}}, "df": 3}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "_": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "_": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "_": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}, "pipeline": ["trimmer", "stopWordFilter", "stemmer"], "_isPrebuiltIndex": true}; + /** pdoc search index */const docs = {"version": "0.9.5", "fields": ["qualname", "fullname", "doc"], "ref": "fullname", "documentStore": {"docs": {"pyerrors": {"fullname": "pyerrors", "modulename": "pyerrors", "qualname": "", "type": "module", "doc": "- d -- Obs passed to the function.
\n- func -- Function to be minimized. Any numpy functions have to use the autograd.numpy wrapper
\n- guess -- Initial guess for the minimization.
\nWhat is pyerrors?
\n\n\n\n
pyerrors
is a python package for error computation and propagation of Markov chain Monte Carlo data.\nIt is based on the gamma method arXiv:hep-lat/0306017. Some of its features are:\n
\n\n- automatic differentiation as suggested in arXiv:1809.01289 (partly based on the autograd package)
\n- treatment of slow modes in the simulation as suggested in arXiv:1009.5228
\n- coherent error propagation for data from different Markov chains
\n- non-linear fits with x- and y-errors and exact linear error propagation based on automatic differentiation as introduced in [arXiv:1809.01289]
\n- real and complex matrix operations and their error propagation based on automatic differentiation (cholesky decomposition, calculation of eigenvalues and eigenvectors, singular value decomposition...)
\nGetting started
\n\n\n\nimport numpy as np\nimport pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name'])\nmy_new_obs = 2 * np.log(my_obs) / my_obs\nmy_new_obs.gamma_method()\nmy_new_obs.details()\nprint(my_new_obs)\n
The
\n\nObs
class\n\n
pyerrors.obs.Obs
\n\nimport pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name'])\n
Multiple ensembles/replica
\n\nIrregular Monte Carlo chains
\n\nError propagation
\n\nAutomatic differentiation, cite Alberto,
\n\nnumpy overloaded
\n\n\n\nimport numpy as np\nimport pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name'])\nmy_new_obs = 2 * np.log(my_obs) / my_obs\nmy_new_obs.gamma_method()\nmy_new_obs.details()\n
Error estimation
\n\n\n\n
pyerrors.obs.Obs.gamma_method
$\\delta_i\\delta_j$
\n\nExponential tails
\n\nCovariance
\n\nCorrelators
\n\n\n\n
pyerrors.correlators.Corr
Optimization / fits / roots
\n\n\n\n
pyerrors.fits
\npyerrors.roots
Complex observables
\n\n\n\n
pyerrors.obs.CObs
Matrix operations
\n\n\n\n
pyerrors.linalg
Input
\n\n\n"}, "pyerrors.correlators": {"fullname": "pyerrors.correlators", "modulename": "pyerrors.correlators", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.correlators.Corr": {"fullname": "pyerrors.correlators.Corr", "modulename": "pyerrors.correlators", "qualname": "Corr", "type": "class", "doc": "
pyerrors.input
The class for a correlator (time dependent sequence of pe.Obs).
\n\nEverything, this class does, can be achieved using lists or arrays of Obs.\nBut it is simply more convenient to have a dedicated object for correlators.\nOne often wants to add or multiply correlators of the same length at every timeslice and it is inconvinient\nto iterate over all timeslices for every operation. This is especially true, when dealing with smearing matrices.
\n\nThe correlator can have two types of content: An Obs at every timeslice OR a GEVP\nsmearing matrix at every timeslice. Other dependency (eg. spacial) are not supported.
\n"}, "pyerrors.correlators.Corr.__init__": {"fullname": "pyerrors.correlators.Corr.__init__", "modulename": "pyerrors.correlators", "qualname": "Corr.__init__", "type": "function", "doc": "\n", "parameters": ["self", "data_input", "padding_front", "padding_back", "prange"], "funcdef": "def"}, "pyerrors.correlators.Corr.reweighted": {"fullname": "pyerrors.correlators.Corr.reweighted", "modulename": "pyerrors.correlators", "qualname": "Corr.reweighted", "type": "variable", "doc": "\n"}, "pyerrors.correlators.Corr.gamma_method": {"fullname": "pyerrors.correlators.Corr.gamma_method", "modulename": "pyerrors.correlators", "qualname": "Corr.gamma_method", "type": "function", "doc": "Apply the gamma method to the content of the Corr.
\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.projected": {"fullname": "pyerrors.correlators.Corr.projected", "modulename": "pyerrors.correlators", "qualname": "Corr.projected", "type": "function", "doc": "\n", "parameters": ["self", "vector_l", "vector_r"], "funcdef": "def"}, "pyerrors.correlators.Corr.sum": {"fullname": "pyerrors.correlators.Corr.sum", "modulename": "pyerrors.correlators", "qualname": "Corr.sum", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.smearing": {"fullname": "pyerrors.correlators.Corr.smearing", "modulename": "pyerrors.correlators", "qualname": "Corr.smearing", "type": "function", "doc": "\n", "parameters": ["self", "i", "j"], "funcdef": "def"}, "pyerrors.correlators.Corr.plottable": {"fullname": "pyerrors.correlators.Corr.plottable", "modulename": "pyerrors.correlators", "qualname": "Corr.plottable", "type": "function", "doc": "Outputs the correlator in a plotable format.
\n\nOutputs three lists containing the timeslice index, the value on each\ntimeslice and the error on each timeslice.
\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.symmetric": {"fullname": "pyerrors.correlators.Corr.symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.symmetric", "type": "function", "doc": "Symmetrize the correlator around x0=0.
\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.anti_symmetric": {"fullname": "pyerrors.correlators.Corr.anti_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.anti_symmetric", "type": "function", "doc": "Anti-symmetrize the correlator around x0=0.
\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.smearing_symmetric": {"fullname": "pyerrors.correlators.Corr.smearing_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.smearing_symmetric", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.GEVP": {"fullname": "pyerrors.correlators.Corr.GEVP", "modulename": "pyerrors.correlators", "qualname": "Corr.GEVP", "type": "function", "doc": "\n", "parameters": ["self", "t0", "ts", "state"], "funcdef": "def"}, "pyerrors.correlators.Corr.Eigenvalue": {"fullname": "pyerrors.correlators.Corr.Eigenvalue", "modulename": "pyerrors.correlators", "qualname": "Corr.Eigenvalue", "type": "function", "doc": "\n", "parameters": ["self", "t0", "state"], "funcdef": "def"}, "pyerrors.correlators.Corr.roll": {"fullname": "pyerrors.correlators.Corr.roll", "modulename": "pyerrors.correlators", "qualname": "Corr.roll", "type": "function", "doc": "Periodically shift the correlator by dt timeslices
\n\nParameters
\n\n\n
\n", "parameters": ["self", "dt"], "funcdef": "def"}, "pyerrors.correlators.Corr.reverse": {"fullname": "pyerrors.correlators.Corr.reverse", "modulename": "pyerrors.correlators", "qualname": "Corr.reverse", "type": "function", "doc": "- dt (int):\nnumber of timeslices
\nReverse the time ordering of the Corr
\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.correlate": {"fullname": "pyerrors.correlators.Corr.correlate", "modulename": "pyerrors.correlators", "qualname": "Corr.correlate", "type": "function", "doc": "Correlate the correlator with another correlator or Obs
\n", "parameters": ["self", "partner"], "funcdef": "def"}, "pyerrors.correlators.Corr.reweight": {"fullname": "pyerrors.correlators.Corr.reweight", "modulename": "pyerrors.correlators", "qualname": "Corr.reweight", "type": "function", "doc": "Reweight the correlator.
\n\nParameters
\n\n\n
\n", "parameters": ["self", "weight", "kwargs"], "funcdef": "def"}, "pyerrors.correlators.Corr.T_symmetry": {"fullname": "pyerrors.correlators.Corr.T_symmetry", "modulename": "pyerrors.correlators", "qualname": "Corr.T_symmetry", "type": "function", "doc": "- weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
\n- all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl.
\nReturn the time symmetry average of the correlator and its partner
\n\nParameters
\n\n\n
\n", "parameters": ["self", "partner", "parity"], "funcdef": "def"}, "pyerrors.correlators.Corr.deriv": {"fullname": "pyerrors.correlators.Corr.deriv", "modulename": "pyerrors.correlators", "qualname": "Corr.deriv", "type": "function", "doc": "- partner (Corr):\nTime symmetry partner of the Corr
\n- partity (int):\nParity quantum number of the correlator, can be +1 or -1
\nReturn the first derivative of the correlator with respect to x0.
\n\nParameters
\n\n\n
\n", "parameters": ["self", "symmetric"], "funcdef": "def"}, "pyerrors.correlators.Corr.second_deriv": {"fullname": "pyerrors.correlators.Corr.second_deriv", "modulename": "pyerrors.correlators", "qualname": "Corr.second_deriv", "type": "function", "doc": "- symmetric (bool):\ndecides whether symmertic of simple finite differences are used. Default: True
\nReturn the second derivative of the correlator with respect to x0.
\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.m_eff": {"fullname": "pyerrors.correlators.Corr.m_eff", "modulename": "pyerrors.correlators", "qualname": "Corr.m_eff", "type": "function", "doc": "Returns the effective mass of the correlator as correlator object
\n\nParameters
\n\n\n
\n", "parameters": ["self", "variant", "guess"], "funcdef": "def"}, "pyerrors.correlators.Corr.fit": {"fullname": "pyerrors.correlators.Corr.fit", "modulename": "pyerrors.correlators", "qualname": "Corr.fit", "type": "function", "doc": "- variant (str):\nlog: uses the standard effective mass log(C(t) / C(t+1))\ncosh : Use periodicitiy of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m.\nsinh : Use anti-periodicitiy of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m.\nSee, e.g., arXiv:1205.5380
\n- guess (float):\nguess for the root finder, only relevant for the root variant
\nFits function to the data
\n\nParameters
\n\n\n
\n", "parameters": ["self", "function", "fitrange", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.correlators.Corr.plateau": {"fullname": "pyerrors.correlators.Corr.plateau", "modulename": "pyerrors.correlators", "qualname": "Corr.plateau", "type": "function", "doc": "- function (obj):\nfunction to fit to the data. See fits.least_squares for details.
\n- fitrange (list):\nRange in which the function is to be fitted to the data.\nIf not specified, self.prange or all timeslices are used.
\n- silent (bool):\nDecides whether output is printed to the standard output.
\nExtract a plateu value from a Corr object
\n\nParameters
\n\n\n
\n", "parameters": ["self", "plateau_range", "method"], "funcdef": "def"}, "pyerrors.correlators.Corr.set_prange": {"fullname": "pyerrors.correlators.Corr.set_prange", "modulename": "pyerrors.correlators", "qualname": "Corr.set_prange", "type": "function", "doc": "- plateau_range (list):\nlist with two entries, indicating the first and the last timeslice\nof the plateau region.
\n- method (str):\nmethod to extract the plateau.\n 'fit' fits a constant to the plateau region\n 'avg', 'average' or 'mean' just average over the given timeslices.
\nSets the attribute prange of the Corr object.
\n", "parameters": ["self", "prange"], "funcdef": "def"}, "pyerrors.correlators.Corr.show": {"fullname": "pyerrors.correlators.Corr.show", "modulename": "pyerrors.correlators", "qualname": "Corr.show", "type": "function", "doc": "Plots the correlator, uses tag as label if available.
\n\nParameters
\n\n\n
\n", "parameters": ["self", "x_range", "comp", "y_range", "logscale", "plateau", "fit_res", "ylabel", "save"], "funcdef": "def"}, "pyerrors.correlators.Corr.dump": {"fullname": "pyerrors.correlators.Corr.dump", "modulename": "pyerrors.correlators", "qualname": "Corr.dump", "type": "function", "doc": "- x_range (list):\nlist of two values, determining the range of the x-axis e.g. [4, 8]
\n- comp (Corr or list of Corr):\nCorrelator or list of correlators which are plotted for comparison.
\n- logscale (bool):\nSets y-axis to logscale
\n- plateau (Obs):\nplateau to be visualized in the figure
\n- fit_res (Fit_result):\nFit_result object to be visualized
\n- ylabel (str):\nLabel for the y-axis
\n- save (str):\npath to file in which the figure should be saved
\nDumps the Corr into a pickel file
\n\nParameters
\n\n\n
\n", "parameters": ["self", "filename"], "funcdef": "def"}, "pyerrors.correlators.Corr.print": {"fullname": "pyerrors.correlators.Corr.print", "modulename": "pyerrors.correlators", "qualname": "Corr.print", "type": "function", "doc": "\n", "parameters": ["self", "range"], "funcdef": "def"}, "pyerrors.correlators.Corr.sqrt": {"fullname": "pyerrors.correlators.Corr.sqrt", "modulename": "pyerrors.correlators", "qualname": "Corr.sqrt", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.log": {"fullname": "pyerrors.correlators.Corr.log", "modulename": "pyerrors.correlators", "qualname": "Corr.log", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.exp": {"fullname": "pyerrors.correlators.Corr.exp", "modulename": "pyerrors.correlators", "qualname": "Corr.exp", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.sin": {"fullname": "pyerrors.correlators.Corr.sin", "modulename": "pyerrors.correlators", "qualname": "Corr.sin", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.cos": {"fullname": "pyerrors.correlators.Corr.cos", "modulename": "pyerrors.correlators", "qualname": "Corr.cos", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.tan": {"fullname": "pyerrors.correlators.Corr.tan", "modulename": "pyerrors.correlators", "qualname": "Corr.tan", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.sinh": {"fullname": "pyerrors.correlators.Corr.sinh", "modulename": "pyerrors.correlators", "qualname": "Corr.sinh", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.cosh": {"fullname": "pyerrors.correlators.Corr.cosh", "modulename": "pyerrors.correlators", "qualname": "Corr.cosh", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.tanh": {"fullname": "pyerrors.correlators.Corr.tanh", "modulename": "pyerrors.correlators", "qualname": "Corr.tanh", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.arcsin": {"fullname": "pyerrors.correlators.Corr.arcsin", "modulename": "pyerrors.correlators", "qualname": "Corr.arcsin", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.arccos": {"fullname": "pyerrors.correlators.Corr.arccos", "modulename": "pyerrors.correlators", "qualname": "Corr.arccos", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.arctan": {"fullname": "pyerrors.correlators.Corr.arctan", "modulename": "pyerrors.correlators", "qualname": "Corr.arctan", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.arcsinh": {"fullname": "pyerrors.correlators.Corr.arcsinh", "modulename": "pyerrors.correlators", "qualname": "Corr.arcsinh", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.arccosh": {"fullname": "pyerrors.correlators.Corr.arccosh", "modulename": "pyerrors.correlators", "qualname": "Corr.arccosh", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.correlators.Corr.arctanh": {"fullname": "pyerrors.correlators.Corr.arctanh", "modulename": "pyerrors.correlators", "qualname": "Corr.arctanh", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.dirac": {"fullname": "pyerrors.dirac", "modulename": "pyerrors.dirac", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.dirac.Grid_gamma": {"fullname": "pyerrors.dirac.Grid_gamma", "modulename": "pyerrors.dirac", "qualname": "Grid_gamma", "type": "function", "doc": "- filename (str):\nName of the file
\nReturns gamma matrix in Grid labeling.
\n", "parameters": ["gamma_tag"], "funcdef": "def"}, "pyerrors.fits": {"fullname": "pyerrors.fits", "modulename": "pyerrors.fits", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.fits.Fit_result": {"fullname": "pyerrors.fits.Fit_result", "modulename": "pyerrors.fits", "qualname": "Fit_result", "type": "class", "doc": "Represents fit results.
\n\nAttributes
\n\n\n
\n"}, "pyerrors.fits.Fit_result.__init__": {"fullname": "pyerrors.fits.Fit_result.__init__", "modulename": "pyerrors.fits", "qualname": "Fit_result.__init__", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.fits.Fit_result.gamma_method": {"fullname": "pyerrors.fits.Fit_result.gamma_method", "modulename": "pyerrors.fits", "qualname": "Fit_result.gamma_method", "type": "function", "doc": "- fit_parameters (list):\nresults for the individual fit parameters,\nalso accesible via indices.
\nApply the gamma method to all fit parameters
\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.fits.least_squares": {"fullname": "pyerrors.fits.least_squares", "modulename": "pyerrors.fits", "qualname": "least_squares", "type": "function", "doc": "Performs a non-linear fit to y = func(x).
\n\nParameters
\n\n\n
\n", "parameters": ["x", "y", "func", "priors", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.fits.standard_fit": {"fullname": "pyerrors.fits.standard_fit", "modulename": "pyerrors.fits", "qualname": "standard_fit", "type": "function", "doc": "\n", "parameters": ["x", "y", "func", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.fits.odr_fit": {"fullname": "pyerrors.fits.odr_fit", "modulename": "pyerrors.fits", "qualname": "odr_fit", "type": "function", "doc": "\n", "parameters": ["x", "y", "func", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.fits.total_least_squares": {"fullname": "pyerrors.fits.total_least_squares", "modulename": "pyerrors.fits", "qualname": "total_least_squares", "type": "function", "doc": "- x (list):\nlist of floats.
\n- y (list):\nlist of Obs.
\n- \n
func (object):\nfit function, has to be of the form
\n\ndef func(a, x):\n return a[0] + a[1] * x + a[2] * anp.sinh(x)
\n\nFor multiple x values func can be of the form
\n\ndef func(a, x):\n (x1, x2) = x\n return a[0] * x1 ** 2 + a[1] * x2
\n\nIt is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work
- priors (list, optional):\npriors has to be a list with an entry for every parameter in the fit. The entries can either be\nObs (e.g. results from a previous fit) or strings containing a value and an error formatted like\n0.548(23), 500(40) or 0.5(0.4)\nIt is important for the subsequent error estimation that the e_tag for the gamma method is large\nenough.
\n- silent (bool, optional):\nIf true all output to the console is omitted (default False).
\n- initial_guess (list):\ncan provide an initial guess for the input parameters. Relevant for\n non-linear fits with many parameters.
\n- method (str):\ncan be used to choose an alternative method for the minimization of chisquare.\nThe possible methods are the ones which can be used for scipy.optimize.minimize and\nmigrad of iminuit. If no method is specified, Levenberg-Marquard is used.\nReliable alternatives are migrad, Powell and Nelder-Mead.
\n- resplot (bool):\nIf true, a plot which displays fit, data and residuals is generated (default False).
\n- qqplot (bool):\nIf true, a quantile-quantile plot of the fit result is generated (default False).
\n- expected_chisquare (bool):\nIf true prints the expected chisquare which is\ncorrected by effects caused by correlated input data.\nThis can take a while as the full correlation matrix\nhas to be calculated (default False).
\nPerforms a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.
\n\nParameters
\n\n\n
\n", "parameters": ["x", "y", "func", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.fits.prior_fit": {"fullname": "pyerrors.fits.prior_fit", "modulename": "pyerrors.fits", "qualname": "prior_fit", "type": "function", "doc": "\n", "parameters": ["x", "y", "func", "priors", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.fits.fit_lin": {"fullname": "pyerrors.fits.fit_lin", "modulename": "pyerrors.fits", "qualname": "fit_lin", "type": "function", "doc": "- x (list):\nlist of Obs, or a tuple of lists of Obs
\n- y (list):\nlist of Obs. The dvalues of the Obs are used as x- and yerror for the fit.
\n- \n
func (object):\nfunc has to be of the form
\n\ndef func(a, x):\n y = a[0] + a[1] * x + a[2] * anp.sinh(x)\n return y
\n\nFor multiple x values func can be of the form
\n\ndef func(a, x):\n (x1, x2) = x\n return a[0] * x1 ** 2 + a[1] * x2
\n\nIt is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.
- silent (bool, optional):\nIf true all output to the console is omitted (default False).
\n- Based on the orthogonal distance regression module of scipy
\n- initial_guess (list):\ncan provide an initial guess for the input parameters. Relevant for non-linear\nfits with many parameters.
\n- expected_chisquare (bool):\nIf true prints the expected chisquare which is\ncorrected by effects caused by correlated input data.\nThis can take a while as the full correlation matrix\nhas to be calculated (default False).
\nPerforms a linear fit to y = n + m * x and returns two Obs n, m.
\n\ny has to be a list of Obs, the dvalues of the Obs are used as yerror for the fit.\nx can either be a list of floats in which case no xerror is assumed, or\na list of Obs, where the dvalues of the Obs are used as xerror for the fit.
\n", "parameters": ["x", "y", "kwargs"], "funcdef": "def"}, "pyerrors.fits.qqplot": {"fullname": "pyerrors.fits.qqplot", "modulename": "pyerrors.fits", "qualname": "qqplot", "type": "function", "doc": "Generates a quantile-quantile plot of the fit result which can be used to\ncheck if the residuals of the fit are gaussian distributed.
\n", "parameters": ["x", "o_y", "func", "p"], "funcdef": "def"}, "pyerrors.fits.residual_plot": {"fullname": "pyerrors.fits.residual_plot", "modulename": "pyerrors.fits", "qualname": "residual_plot", "type": "function", "doc": "Generates a plot which compares the fit to the data and displays the corresponding residuals
\n", "parameters": ["x", "y", "func", "fit_res"], "funcdef": "def"}, "pyerrors.fits.covariance_matrix": {"fullname": "pyerrors.fits.covariance_matrix", "modulename": "pyerrors.fits", "qualname": "covariance_matrix", "type": "function", "doc": "Returns the covariance matrix of y.
\n", "parameters": ["y"], "funcdef": "def"}, "pyerrors.fits.error_band": {"fullname": "pyerrors.fits.error_band", "modulename": "pyerrors.fits", "qualname": "error_band", "type": "function", "doc": "Returns the error band for an array of sample values x, for given fit function func with optimized parameters beta.
\n", "parameters": ["x", "func", "beta"], "funcdef": "def"}, "pyerrors.fits.ks_test": {"fullname": "pyerrors.fits.ks_test", "modulename": "pyerrors.fits", "qualname": "ks_test", "type": "function", "doc": "Performs a Kolmogorov\u2013Smirnov test for the Q-values of all fit object.
\n\nIf no list is given all Obs in memory are used.
\n\nDisclaimer: The determination of the individual Q-values as well as this function have not been tested yet.
\n", "parameters": ["obs"], "funcdef": "def"}, "pyerrors.fits.fit_general": {"fullname": "pyerrors.fits.fit_general", "modulename": "pyerrors.fits", "qualname": "fit_general", "type": "function", "doc": "Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.
\n\nPlausibility of the results should be checked. To control the numerical differentiation\nthe kwargs of numdifftools.step_generators.MaxStepGenerator can be used.
\n\nfunc has to be of the form
\n\ndef func(a, x):\n y = a[0] + a[1] * x + a[2] * np.sinh(x)\n return y
\n\ny has to be a list of Obs, the dvalues of the Obs are used as yerror for the fit.\nx can either be a list of floats in which case no xerror is assumed, or\na list of Obs, where the dvalues of the Obs are used as xerror for the fit.
\n\nKeyword arguments
\n\nsilent -- If true all output to the console is omitted (default False).\ninitial_guess -- can provide an initial guess for the input parameters. Relevant for non-linear fits\n with many parameters.
\n", "parameters": ["x", "y", "func", "silent", "kwargs"], "funcdef": "def"}, "pyerrors.input": {"fullname": "pyerrors.input", "modulename": "pyerrors.input", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.input.bdio": {"fullname": "pyerrors.input.bdio", "modulename": "pyerrors.input.bdio", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.input.bdio.read_ADerrors": {"fullname": "pyerrors.input.bdio.read_ADerrors", "modulename": "pyerrors.input.bdio", "qualname": "read_ADerrors", "type": "function", "doc": "Extract generic MCMC data from a bdio file
\n\nread_ADerrors requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to
\n\nall: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/
\n\nParameters
\n\n\n
\n", "parameters": ["file_path", "bdio_path", "kwargs"], "funcdef": "def"}, "pyerrors.input.bdio.write_ADerrors": {"fullname": "pyerrors.input.bdio.write_ADerrors", "modulename": "pyerrors.input.bdio", "qualname": "write_ADerrors", "type": "function", "doc": "- file_path -- path to the bdio file
\n- bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
\nWrite Obs to a bdio file according to ADerrors conventions
\n\nread_mesons requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to
\n\nall: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/
\n\nParameters
\n\n\n
\n", "parameters": ["obs_list", "file_path", "bdio_path", "kwargs"], "funcdef": "def"}, "pyerrors.input.bdio.read_mesons": {"fullname": "pyerrors.input.bdio.read_mesons", "modulename": "pyerrors.input.bdio", "qualname": "read_mesons", "type": "function", "doc": "- file_path -- path to the bdio file
\n- bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
\nExtract mesons data from a bdio file and return it as a dictionary
\n\nThe dictionary can be accessed with a tuple consisting of (type, source_position, kappa1, kappa2)
\n\nread_mesons requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to
\n\nall: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/
\n\nParameters
\n\n\n
\n", "parameters": ["file_path", "bdio_path", "kwargs"], "funcdef": "def"}, "pyerrors.input.bdio.read_dSdm": {"fullname": "pyerrors.input.bdio.read_dSdm", "modulename": "pyerrors.input.bdio", "qualname": "read_dSdm", "type": "function", "doc": "- file_path -- path to the bdio file
\n- bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
\n- stop -- stops reading at given configuration number (default None)
\n- alternative_ensemble_name -- Manually overwrite ensemble name
\nExtract dSdm data from a bdio file and return it as a dictionary
\n\nThe dictionary can be accessed with a tuple consisting of (type, kappa)
\n\nread_dSdm requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to
\n\nall: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/
\n\nParameters
\n\n\n
\n", "parameters": ["file_path", "bdio_path", "kwargs"], "funcdef": "def"}, "pyerrors.input.hadrons": {"fullname": "pyerrors.input.hadrons", "modulename": "pyerrors.input.hadrons", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.input.hadrons.read_meson_hd5": {"fullname": "pyerrors.input.hadrons.read_meson_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_meson_hd5", "type": "function", "doc": "- file_path -- path to the bdio file
\n- bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
\n- stop -- stops reading at given configuration number (default None)
\nRead hadrons meson hdf5 file and extract the meson labeled 'meson'
\n\nParameters
\n\n\n
\n", "parameters": ["path", "filestem", "ens_id", "meson", "tree"], "funcdef": "def"}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"fullname": "pyerrors.input.hadrons.read_ExternalLeg_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_ExternalLeg_hd5", "type": "function", "doc": "- path (str):\npath to the files to read
\n- filestem (str):\nnamestem of the files to read
\n- ens_id (str):\nname of the ensemble, required for internal bookkeeping
\n- meson (str):\nlabel of the meson to be extracted, standard value meson_0 which\ncorresponds to the pseudoscalar pseudoscalar two-point function.
\n- tree (str):\nLabel of the upmost directory in the hdf5 file, default 'meson'\nfor outputs of the Meson module. Can be altered to read input\nfrom other modules with similar structures.
\nRead hadrons ExternalLeg hdf5 file and output an array of CObs
\n\nParameters
\n\n\n
\n", "parameters": ["path", "filestem", "ens_id", "order"], "funcdef": "def"}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"fullname": "pyerrors.input.hadrons.read_Bilinear_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_Bilinear_hd5", "type": "function", "doc": "- path -- path to the files to read
\n- filestem -- namestem of the files to read
\n- ens_id -- name of the ensemble, required for internal bookkeeping
\n- order -- order in which the array is to be reshaped,: 'F' for the first index changing fastest (9 4x4 matrices) default.\n'C' for the last index changing fastest (16 3x3 matrices),
\nRead hadrons Bilinear hdf5 file and output an array of CObs
\n\nParameters
\n\n\n
\n", "parameters": ["path", "filestem", "ens_id", "order"], "funcdef": "def"}, "pyerrors.input.misc": {"fullname": "pyerrors.input.misc", "modulename": "pyerrors.input.misc", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.input.misc.read_pbp": {"fullname": "pyerrors.input.misc.read_pbp", "modulename": "pyerrors.input.misc", "qualname": "read_pbp", "type": "function", "doc": "- path -- path to the files to read
\n- filestem -- namestem of the files to read
\n- ens_id -- name of the ensemble, required for internal bookkeeping
\n- order -- order in which the array is to be reshaped,: 'F' for the first index changing fastest (9 4x4 matrices) default.\n'C' for the last index changing fastest (16 3x3 matrices),
\nRead pbp format from given folder structure. Returns a list of length nrw
\n\nKeyword arguments
\n\nr_start -- list which contains the first config to be read for each replicum\nr_stop -- list which contains the last config to be read for each replicum
\n", "parameters": ["path", "prefix", "kwargs"], "funcdef": "def"}, "pyerrors.input.openQCD": {"fullname": "pyerrors.input.openQCD", "modulename": "pyerrors.input.openQCD", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.input.openQCD.read_rwms": {"fullname": "pyerrors.input.openQCD.read_rwms", "modulename": "pyerrors.input.openQCD", "qualname": "read_rwms", "type": "function", "doc": "Read rwms format from given folder structure. Returns a list of length nrw
\n\nParameters
\n\n\n
\n", "parameters": ["path", "prefix", "version", "names", "kwargs"], "funcdef": "def"}, "pyerrors.input.openQCD.extract_t0": {"fullname": "pyerrors.input.openQCD.extract_t0", "modulename": "pyerrors.input.openQCD", "qualname": "extract_t0", "type": "function", "doc": "- version (str):\nversion of openQCD, default 2.0
\n- r_start (list):\nlist which contains the first config to be read for each replicum
\n- r_stop (list):\nlist which contains the last config to be read for each replicum
\n- postfix (str):\npostfix of the file to read, e.g. '.ms1' for openQCD-files
\nExtract t0 from given .ms.dat files. Returns t0 as Obs.
\n\nIt is assumed that all boundary effects have sufficiently decayed at x0=xmin.\nThe data around the zero crossing of t^2
\n\n- 0.3 is fitted with a linear function\nfrom which the exact root is extracted.\nOnly works with openQCD v 1.2. Parameters
\n\n\n
\n", "parameters": ["path", "prefix", "dtr_read", "xmin", "spatial_extent", "fit_range", "kwargs"], "funcdef": "def"}, "pyerrors.input.sfcf": {"fullname": "pyerrors.input.sfcf", "modulename": "pyerrors.input.sfcf", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.input.sfcf.read_sfcf": {"fullname": "pyerrors.input.sfcf.read_sfcf", "modulename": "pyerrors.input.sfcf", "qualname": "read_sfcf", "type": "function", "doc": "- path (str):\nPath to .ms.dat files
\n- prefix (str):\nEnsemble prefix
\n- dtr_read (int):\nDetermines how many trajectories should be skipped when reading the ms.dat files.\nCorresponds to dtr_cnfg / dtr_ms in the openQCD input file.
\n- xmin (int):\nFirst timeslice where the boundary effects have sufficiently decayed.
\n- spatial_extent (int):\nspatial extent of the lattice, required for normalization.
\n- fit_range (int):\nNumber of data points left and right of the zero crossing to be included in the linear fit. (Default: 5)
\n- r_start (list):\nlist which contains the first config to be read for each replicum.
\n- r_stop (list):\nlist which contains the last config to be read for each replicum.
\n- plaquette (bool):\nIf true extract the plaquette estimate of t0 instead.
\nRead sfcf C format from given folder structure.
\n\nParameters
\n\n\n
\n", "parameters": ["path", "prefix", "name", "kwargs"], "funcdef": "def"}, "pyerrors.input.sfcf.read_sfcf_c": {"fullname": "pyerrors.input.sfcf.read_sfcf_c", "modulename": "pyerrors.input.sfcf", "qualname": "read_sfcf_c", "type": "function", "doc": "- im -- if True, read imaginary instead of real part of the correlation function.
\n- single -- if True, read a boundary-to-boundary correlation function with a single value
\n- b2b -- if True, read a time-dependent boundary-to-boundary correlation function
\n- names -- Alternative labeling for replicas/ensembles. Has to have the appropriate length
\nRead sfcf c format from given folder structure.
\n\nParameters
\n\n\n
\n", "parameters": ["path", "prefix", "name", "quarks", "noffset", "wf", "wf2", "kwargs"], "funcdef": "def"}, "pyerrors.input.sfcf.read_qtop": {"fullname": "pyerrors.input.sfcf.read_qtop", "modulename": "pyerrors.input.sfcf", "qualname": "read_qtop", "type": "function", "doc": "- quarks -- Label of the quarks used in the sfcf input file
\n- noffset -- Offset of the source (only relevant when wavefunctions are used)
\n- wf -- ID of wave function
\n- wf2 -- ID of the second wavefunction (only relevant for boundary-to-boundary correlation functions)
\n- im -- if True, read imaginary instead of real part of the correlation function.
\n- b2b -- if True, read a time-dependent boundary-to-boundary correlation function
\n- names -- Alternative labeling for replicas/ensembles. Has to have the appropriate length
\n- ens_name (str):\nreplaces the name of the ensemble
\nRead qtop format from given folder structure.
\n\nParameters
\n\n\n
\n", "parameters": ["path", "prefix", "kwargs"], "funcdef": "def"}, "pyerrors.jackknifing": {"fullname": "pyerrors.jackknifing", "modulename": "pyerrors.jackknifing", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.jackknifing.Jack": {"fullname": "pyerrors.jackknifing.Jack", "modulename": "pyerrors.jackknifing", "qualname": "Jack", "type": "class", "doc": "\n"}, "pyerrors.jackknifing.Jack.__init__": {"fullname": "pyerrors.jackknifing.Jack.__init__", "modulename": "pyerrors.jackknifing", "qualname": "Jack.__init__", "type": "function", "doc": "\n", "parameters": ["self", "value", "jacks"], "funcdef": "def"}, "pyerrors.jackknifing.Jack.print": {"fullname": "pyerrors.jackknifing.Jack.print", "modulename": "pyerrors.jackknifing", "qualname": "Jack.print", "type": "function", "doc": "- target -- specifies the topological sector to be reweighted to (default 0)
\n- full -- if true read the charge instead of the reweighting factor.
\nPrint basic properties of the Jack.
\n", "parameters": ["self", "kwargs"], "funcdef": "def"}, "pyerrors.jackknifing.Jack.plot_tauint": {"fullname": "pyerrors.jackknifing.Jack.plot_tauint", "modulename": "pyerrors.jackknifing", "qualname": "Jack.plot_tauint", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.jackknifing.Jack.plot_history": {"fullname": "pyerrors.jackknifing.Jack.plot_history", "modulename": "pyerrors.jackknifing", "qualname": "Jack.plot_history", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.jackknifing.Jack.dump": {"fullname": "pyerrors.jackknifing.Jack.dump", "modulename": "pyerrors.jackknifing", "qualname": "Jack.dump", "type": "function", "doc": "Dump the Jack to a pickle file 'name'.
\n\nKeyword arguments:\npath -- specifies a custom path for the file (default '.')
\n", "parameters": ["self", "name", "kwargs"], "funcdef": "def"}, "pyerrors.jackknifing.generate_jack": {"fullname": "pyerrors.jackknifing.generate_jack", "modulename": "pyerrors.jackknifing", "qualname": "generate_jack", "type": "function", "doc": "\n", "parameters": ["obs", "kwargs"], "funcdef": "def"}, "pyerrors.jackknifing.derived_jack": {"fullname": "pyerrors.jackknifing.derived_jack", "modulename": "pyerrors.jackknifing", "qualname": "derived_jack", "type": "function", "doc": "Construct a derived Jack according to func(data, **kwargs).
\n\nParameters
\n\n\n
\n\n- func -- arbitrary function of the form func(data, **kwargs). For the automatic differentiation to work,: all numpy functions have to have the autograd wrapper (use 'import autograd.numpy as np').
\n- data -- list of Jacks, e.g. [jack1, jack2, jack3].
\nNotes
\n\nFor simple mathematical operations it can be practical to use anonymous functions.\nFor the ratio of two jacks one can e.g. use
\n\nnew_jack = derived_jack(lambda x : x[0] / x[1], [jack1, jack2])
\n", "parameters": ["func", "data", "kwargs"], "funcdef": "def"}, "pyerrors.linalg": {"fullname": "pyerrors.linalg", "modulename": "pyerrors.linalg", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.linalg.derived_array": {"fullname": "pyerrors.linalg.derived_array", "modulename": "pyerrors.linalg", "qualname": "derived_array", "type": "function", "doc": "Construct a derived Obs according to func(data, **kwargs) of matrix value data\nusing automatic differentiation.
\n\nParameters
\n\n\n
\n", "parameters": ["func", "data", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.matmul": {"fullname": "pyerrors.linalg.matmul", "modulename": "pyerrors.linalg", "qualname": "matmul", "type": "function", "doc": "- func -- arbitrary function of the form func(data, **kwargs). For the: automatic differentiation to work, all numpy functions have to have\nthe autograd wrapper (use 'import autograd.numpy as anp').
\n- data -- list of Obs, e.g. [obs1, obs2, obs3].
\n- man_grad -- manually supply a list or an array which contains the jacobian: of func. Use cautiously, supplying the wrong derivative will\nnot be intercepted.
\nMatrix multiply all operands.
\n\nSupports real and complex valued matrices and is faster compared to\nstandard multiplication via the @ operator.
\n", "parameters": ["operands"], "funcdef": "def"}, "pyerrors.linalg.inv": {"fullname": "pyerrors.linalg.inv", "modulename": "pyerrors.linalg", "qualname": "inv", "type": "function", "doc": "Inverse of Obs or CObs valued matrices.
\n", "parameters": ["x"], "funcdef": "def"}, "pyerrors.linalg.cholesky": {"fullname": "pyerrors.linalg.cholesky", "modulename": "pyerrors.linalg", "qualname": "cholesky", "type": "function", "doc": "Cholesky decompostion of Obs or CObs valued matrices.
\n", "parameters": ["x"], "funcdef": "def"}, "pyerrors.linalg.scalar_mat_op": {"fullname": "pyerrors.linalg.scalar_mat_op", "modulename": "pyerrors.linalg", "qualname": "scalar_mat_op", "type": "function", "doc": "Computes the matrix to scalar operation op to a given matrix of Obs.
\n", "parameters": ["op", "obs", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.eigh": {"fullname": "pyerrors.linalg.eigh", "modulename": "pyerrors.linalg", "qualname": "eigh", "type": "function", "doc": "Computes the eigenvalues and eigenvectors of a given hermitian matrix of Obs according to np.linalg.eigh.
\n", "parameters": ["obs", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.eig": {"fullname": "pyerrors.linalg.eig", "modulename": "pyerrors.linalg", "qualname": "eig", "type": "function", "doc": "Computes the eigenvalues of a given matrix of Obs according to np.linalg.eig.
\n", "parameters": ["obs", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.pinv": {"fullname": "pyerrors.linalg.pinv", "modulename": "pyerrors.linalg", "qualname": "pinv", "type": "function", "doc": "Computes the Moore-Penrose pseudoinverse of a matrix of Obs.
\n", "parameters": ["obs", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.svd": {"fullname": "pyerrors.linalg.svd", "modulename": "pyerrors.linalg", "qualname": "svd", "type": "function", "doc": "Computes the singular value decomposition of a matrix of Obs.
\n", "parameters": ["obs", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.slogdet": {"fullname": "pyerrors.linalg.slogdet", "modulename": "pyerrors.linalg", "qualname": "slogdet", "type": "function", "doc": "Computes the determinant of a matrix of Obs via np.linalg.slogdet.
\n", "parameters": ["obs", "kwargs"], "funcdef": "def"}, "pyerrors.linalg.grad_eig": {"fullname": "pyerrors.linalg.grad_eig", "modulename": "pyerrors.linalg", "qualname": "grad_eig", "type": "function", "doc": "Gradient of a general square (complex valued) matrix
\n", "parameters": ["ans", "x"], "funcdef": "def"}, "pyerrors.misc": {"fullname": "pyerrors.misc", "modulename": "pyerrors.misc", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.misc.gen_correlated_data": {"fullname": "pyerrors.misc.gen_correlated_data", "modulename": "pyerrors.misc", "qualname": "gen_correlated_data", "type": "function", "doc": "Generate observables with given covariance and autocorrelation times.
\n\nParameters
\n\n\n
\n", "parameters": ["means", "cov", "name", "tau", "samples"], "funcdef": "def"}, "pyerrors.mpm": {"fullname": "pyerrors.mpm", "modulename": "pyerrors.mpm", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.mpm.matrix_pencil_method": {"fullname": "pyerrors.mpm.matrix_pencil_method", "modulename": "pyerrors.mpm", "qualname": "matrix_pencil_method", "type": "function", "doc": "- means -- list containing the mean value of each observable.
\n- cov -- covariance matrix for the data to be geneated.
\n- name -- ensemble name for the data to be geneated.
\n- tau -- can either be a real number or a list with an entry for: every dataset.
\n- samples -- number of samples to be generated for each observable.
\nMatrix pencil method to extract k energy levels from data
\n\nImplementation of the matrix pencil method based on\neq. (2.17) of Y. Hua, T. K. Sarkar, IEEE Trans. Acoust. 38, 814-824 (1990)
\n\nParameters
\n\n\n
\n", "parameters": ["corrs", "k", "p", "kwargs"], "funcdef": "def"}, "pyerrors.mpm.matrix_pencil_method_old": {"fullname": "pyerrors.mpm.matrix_pencil_method_old", "modulename": "pyerrors.mpm", "qualname": "matrix_pencil_method_old", "type": "function", "doc": "- data -- can be a list of Obs for the analysis of a single correlator, or a list of lists: of Obs if several correlators are to analyzed at once.
\n- k -- Number of states to extract (default 1).
\n- p -- matrix pencil parameter which filters noise. The optimal value is expected between: len(data)/3 and 2*len(data)/3. The computation is more expensive the closer p is\nto len(data)/2 but could possibly suppress more noise (default len(data)//2).
\nOlder impleentation of the matrix pencil method with pencil p on given data to\n extract energy levels.
\n\nParameters
\n\n\n
\n", "parameters": ["data", "p", "noise_level", "verbose", "kwargs"], "funcdef": "def"}, "pyerrors.npr": {"fullname": "pyerrors.npr", "modulename": "pyerrors.npr", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.npr.Npr_matrix": {"fullname": "pyerrors.npr.Npr_matrix", "modulename": "pyerrors.npr", "qualname": "Npr_matrix", "type": "class", "doc": "- data -- lists of Obs, where the nth entry is considered to be the correlation function: at x0=n+offset.
\n- p -- matrix pencil parameter which corresponds to the number of energy levels to extract.: higher values for p can help decreasing noise.
\n- noise_level -- If this argument is not None an additional prefiltering via singular: value decomposition is performed in which all singular values below 10^(-noise_level)\ntimes the largest singular value are discarded. This increases the computation time.
\n- verbose -- if larger than zero details about the noise filtering are printed to stdout: (default 1)
\nndarray(shape, dtype=float, buffer=None, offset=0,\n strides=None, order=None)
\n\nAn array object represents a multidimensional, homogeneous array\nof fixed-size items. An associated data-type object describes the\nformat of each element in the array (its byte-order, how many bytes it\noccupies in memory, whether it is an integer, a floating point number,\nor something else, etc.)
\n\nArrays should be constructed using
\n\narray
,zeros
orempty
(refer\nto the See Also section below). The parameters given here refer to\na low-level method (ndarray(...)
) for instantiating an array.For more information, refer to the
\n\nnumpy
module and examine the\nmethods and attributes of an array.Parameters
\n\n\n
\n\n- (for the __new__ method; see Notes below)
\n- shape (tuple of ints):\nShape of created array.
\n- dtype (data-type, optional):\nAny object that can be interpreted as a numpy data type.
\n- buffer (object exposing buffer interface, optional):\nUsed to fill the array with data.
\n- offset (int, optional):\nOffset of array data in buffer.
\n- strides (tuple of ints, optional):\nStrides of data in memory.
\n- order ({'C', 'F'}, optional):\nRow-major (C-style) or column-major (Fortran-style) order.
\nAttributes
\n\n\n
\n\n- T (ndarray):\nTranspose of the array.
\n- data (buffer):\nThe array's elements, in memory.
\n- dtype (dtype object):\nDescribes the format of the elements in the array.
\n- flags (dict):\nDictionary containing information related to memory use, e.g.,\n'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc.
\n- flat (numpy.flatiter object):\nFlattened version of the array as an iterator. The iterator\nallows assignments, e.g.,
\nx.flat = 3
(Seendarray.flat
for\nassignment examples; TODO).- imag (ndarray):\nImaginary part of the array.
\n- real (ndarray):\nReal part of the array.
\n- size (int):\nNumber of elements in the array.
\n- itemsize (int):\nThe memory use of each array element in bytes.
\n- nbytes (int):\nThe total number of bytes required to store the array data,\ni.e.,
\nitemsize * size
.- ndim (int):\nThe array's number of dimensions.
\n- shape (tuple of ints):\nShape of the array.
\n- strides (tuple of ints):\nThe step-size required to move from one element to the next in\nmemory. For example, a contiguous
\n(3, 4)
array of type\nint16
in C-order has strides(8, 2)
. This implies that\nto move from element to element in memory requires jumps of 2 bytes.\nTo move from row-to-row, one needs to jump 8 bytes at a time\n(2 * 4
).- ctypes (ctypes object):\nClass containing properties of the array needed for interaction\nwith ctypes.
\n- base (ndarray):\nIf the array is a view into another array, that array is its
\nbase
\n(unless that array is also a view). Thebase
array is where the\narray data is actually stored.See Also
\n\n\n\n
array
: Construct an array.
\nzeros
: Create an array, each element of which is zero.
\nempty
: Create an array, but leave its allocated memory unchanged (i.e.,\nit contains \"garbage\").
\ndtype
: Create a data-type.
\nnumpy.typing.NDArray
: A :term:generic <generic type>
version\nof ndarray.Notes
\n\nThere are two modes of creating an array using
\n\n__new__
:\n
\n\n- If
\nbuffer
is None, then onlyshape
,dtype
, andorder
\nare used.- If
\nbuffer
is an object exposing the buffer interface, then\nall keywords are interpreted.No
\n\n__init__
method is needed because the array is fully initialized\nafter the__new__
method.Examples
\n\nThese examples illustrate the low-level
\n\nndarray
constructor. Refer\nto theSee Also
section above for easier ways of constructing an\nndarray.First mode,
\n\nbuffer
is None:\n\n>>> np.ndarray(shape=(2,2), dtype=float, order='F')\narray([[0.0e+000, 0.0e+000], # random\n [ nan, 2.5e-323]])\n
Second mode:
\n\n\n"}, "pyerrors.npr.Npr_matrix.__init__": {"fullname": "pyerrors.npr.Npr_matrix.__init__", "modulename": "pyerrors.npr", "qualname": "Npr_matrix.__init__", "type": "function", "doc": "\n", "parameters": [], "funcdef": "def"}, "pyerrors.npr.Npr_matrix.g5H": {"fullname": "pyerrors.npr.Npr_matrix.g5H", "modulename": "pyerrors.npr", "qualname": "Npr_matrix.g5H", "type": "variable", "doc": ">>> np.ndarray((2,), buffer=np.array([1,2,3]),\n... offset=np.int_().itemsize,\n... dtype=int) # offset = 1*itemsize, i.e. skip first element\narray([2, 3])\n
Gamma_5 hermitean conjugate
\n\nReturns gamma_5 @ M.T.conj() @ gamma_5 and exchanges in and out going\nmomenta. Works only for 12x12 matrices.
\n"}, "pyerrors.npr.inv_propagator": {"fullname": "pyerrors.npr.inv_propagator", "modulename": "pyerrors.npr", "qualname": "inv_propagator", "type": "function", "doc": "Inverts a 12x12 quark propagator
\n", "parameters": ["prop"], "funcdef": "def"}, "pyerrors.npr.Zq": {"fullname": "pyerrors.npr.Zq", "modulename": "pyerrors.npr", "qualname": "Zq", "type": "function", "doc": "Calculates the quark field renormalization constant Zq
\n\nParameters
\n\n\n
\n", "parameters": ["inv_prop", "fermion"], "funcdef": "def"}, "pyerrors.obs": {"fullname": "pyerrors.obs", "modulename": "pyerrors.obs", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.obs.Obs": {"fullname": "pyerrors.obs.Obs", "modulename": "pyerrors.obs", "qualname": "Obs", "type": "class", "doc": "- inv_prop (array):\nInverted 12x12 quark propagator
\n- fermion (str):\nFermion type for which the tree-level propagator is used\n in the calculation of Zq. Default Wilson.
\nClass for a general observable.
\n\nInstances of Obs are the basic objects of a pyerrors error analysis.\nThey are initialized with a list which contains arrays of samples for\ndifferent ensembles/replica and another list of same length which contains\nthe names of the ensembles/replica. Mathematical operations can be\nperformed on instances. The result is another instance of Obs. The error of\nan instance can be computed with the gamma_method. Also contains additional\nmethods for output and visualization of the error calculation.
\n\nAttributes
\n\n\n
\n"}, "pyerrors.obs.Obs.__init__": {"fullname": "pyerrors.obs.Obs.__init__", "modulename": "pyerrors.obs", "qualname": "Obs.__init__", "type": "function", "doc": "- S_global (float):\nStandard value for S (default 2.0)
\n- S_dict (dict):\nDictionary for S values. If an entry for a given ensemble\nexists this overwrites the standard value for that ensemble.
\n- tau_exp_global (float):\nStandard value for tau_exp (default 0.0)
\n- tau_exp_dict (dict):\nDictionary for tau_exp values. If an entry for a given ensemble exists\nthis overwrites the standard value for that ensemble.
\n- N_sigma_global (float):\nStandard value for N_sigma (default 1.0)
\nInitialize Obs object.
\n\nParameters
\n\n\n
\n", "parameters": ["self", "samples", "names", "idl", "means", "kwargs"], "funcdef": "def"}, "pyerrors.obs.Obs.S_global": {"fullname": "pyerrors.obs.Obs.S_global", "modulename": "pyerrors.obs", "qualname": "Obs.S_global", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.S_dict": {"fullname": "pyerrors.obs.Obs.S_dict", "modulename": "pyerrors.obs", "qualname": "Obs.S_dict", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.tau_exp_global": {"fullname": "pyerrors.obs.Obs.tau_exp_global", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp_global", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.tau_exp_dict": {"fullname": "pyerrors.obs.Obs.tau_exp_dict", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp_dict", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.N_sigma_global": {"fullname": "pyerrors.obs.Obs.N_sigma_global", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma_global", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.filter_eps": {"fullname": "pyerrors.obs.Obs.filter_eps", "modulename": "pyerrors.obs", "qualname": "Obs.filter_eps", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.names": {"fullname": "pyerrors.obs.Obs.names", "modulename": "pyerrors.obs", "qualname": "Obs.names", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.shape": {"fullname": "pyerrors.obs.Obs.shape", "modulename": "pyerrors.obs", "qualname": "Obs.shape", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.r_values": {"fullname": "pyerrors.obs.Obs.r_values", "modulename": "pyerrors.obs", "qualname": "Obs.r_values", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.deltas": {"fullname": "pyerrors.obs.Obs.deltas", "modulename": "pyerrors.obs", "qualname": "Obs.deltas", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.idl": {"fullname": "pyerrors.obs.Obs.idl", "modulename": "pyerrors.obs", "qualname": "Obs.idl", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.is_merged": {"fullname": "pyerrors.obs.Obs.is_merged", "modulename": "pyerrors.obs", "qualname": "Obs.is_merged", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.N": {"fullname": "pyerrors.obs.Obs.N", "modulename": "pyerrors.obs", "qualname": "Obs.N", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.ddvalue": {"fullname": "pyerrors.obs.Obs.ddvalue", "modulename": "pyerrors.obs", "qualname": "Obs.ddvalue", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.reweighted": {"fullname": "pyerrors.obs.Obs.reweighted", "modulename": "pyerrors.obs", "qualname": "Obs.reweighted", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.tag": {"fullname": "pyerrors.obs.Obs.tag", "modulename": "pyerrors.obs", "qualname": "Obs.tag", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.value": {"fullname": "pyerrors.obs.Obs.value", "modulename": "pyerrors.obs", "qualname": "Obs.value", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.dvalue": {"fullname": "pyerrors.obs.Obs.dvalue", "modulename": "pyerrors.obs", "qualname": "Obs.dvalue", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_names": {"fullname": "pyerrors.obs.Obs.e_names", "modulename": "pyerrors.obs", "qualname": "Obs.e_names", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_content": {"fullname": "pyerrors.obs.Obs.e_content", "modulename": "pyerrors.obs", "qualname": "Obs.e_content", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.gamma_method": {"fullname": "pyerrors.obs.Obs.gamma_method", "modulename": "pyerrors.obs", "qualname": "Obs.gamma_method", "type": "function", "doc": "- samples (list):\nlist of numpy arrays containing the Monte Carlo samples
\n- names (list):\nlist of strings labeling the indivdual samples
\n- idl (list, optional):\nlist of ranges or lists on which the samples are defined
\n- means (list, optional):\nlist of mean values for the case that the mean values were\nalready subtracted from the samples
\nCalculate the error and related properties of the Obs.
\n\nParameters
\n\n\n
\n", "parameters": ["self", "kwargs"], "funcdef": "def"}, "pyerrors.obs.Obs.expand_deltas": {"fullname": "pyerrors.obs.Obs.expand_deltas", "modulename": "pyerrors.obs", "qualname": "Obs.expand_deltas", "type": "function", "doc": "- S (float):\nspecifies a custom value for the parameter S (default 2.0), can be\na float or an array of floats for different ensembles
\n- tau_exp (float):\npositive value triggers the critical slowing down analysis\n(default 0.0), can be a float or an array of floats for different\nensembles
\n- N_sigma (float):\nnumber of standard deviations from zero until the tail is\nattached to the autocorrelation function (default 1)
\n- fft (bool):\ndetermines whether the fft algorithm is used for the computation\nof the autocorrelation function (default True)
\nExpand deltas defined on idx to a regular, contiguous range, where holes are filled by 0.\n If idx is of type range, the deltas are not changed
\n\nParameters
\n\n\n
\n", "parameters": ["self", "deltas", "idx", "shape"], "funcdef": "def"}, "pyerrors.obs.Obs.calc_gamma": {"fullname": "pyerrors.obs.Obs.calc_gamma", "modulename": "pyerrors.obs", "qualname": "Obs.calc_gamma", "type": "function", "doc": "- deltas -- List of fluctuations
\n- idx -- List or range of configs on which the deltas are defined.
\n- shape -- Number of configs in idx.
\nCalculate Gamma_{AA} from the deltas, which are defined on idx.\n idx is assumed to be a contiguous range (possibly with a stepsize != 1)
\n\nParameters
\n\n\n
\n", "parameters": ["self", "deltas", "idx", "shape", "w_max", "fft"], "funcdef": "def"}, "pyerrors.obs.Obs.print": {"fullname": "pyerrors.obs.Obs.print", "modulename": "pyerrors.obs", "qualname": "Obs.print", "type": "function", "doc": "\n", "parameters": ["self", "level"], "funcdef": "def"}, "pyerrors.obs.Obs.details": {"fullname": "pyerrors.obs.Obs.details", "modulename": "pyerrors.obs", "qualname": "Obs.details", "type": "function", "doc": "- deltas -- List of fluctuations
\n- idx -- List or range of configs on which the deltas are defined.
\n- shape -- Number of configs in idx.
\n- w_max -- Upper bound for the summation window
\n- fft -- boolean, which determines whether the fft algorithm is used for: the computation of the autocorrelation function
\nOutput detailed properties of the Obs.
\n", "parameters": ["self", "ens_content"], "funcdef": "def"}, "pyerrors.obs.Obs.is_zero_within_error": {"fullname": "pyerrors.obs.Obs.is_zero_within_error", "modulename": "pyerrors.obs", "qualname": "Obs.is_zero_within_error", "type": "function", "doc": "Checks whether the observable is zero within 'sigma' standard errors.
\n\nWorks only properly when the gamma method was run.
\n", "parameters": ["self", "sigma"], "funcdef": "def"}, "pyerrors.obs.Obs.is_zero": {"fullname": "pyerrors.obs.Obs.is_zero", "modulename": "pyerrors.obs", "qualname": "Obs.is_zero", "type": "function", "doc": "Checks whether the observable is zero within machine precision.
\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.plot_tauint": {"fullname": "pyerrors.obs.Obs.plot_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.plot_tauint", "type": "function", "doc": "Plot integrated autocorrelation time for each ensemble.
\n", "parameters": ["self", "save"], "funcdef": "def"}, "pyerrors.obs.Obs.plot_rho": {"fullname": "pyerrors.obs.Obs.plot_rho", "modulename": "pyerrors.obs", "qualname": "Obs.plot_rho", "type": "function", "doc": "Plot normalized autocorrelation function time for each ensemble.
\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.plot_rep_dist": {"fullname": "pyerrors.obs.Obs.plot_rep_dist", "modulename": "pyerrors.obs", "qualname": "Obs.plot_rep_dist", "type": "function", "doc": "Plot replica distribution for each ensemble with more than one replicum.
\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.plot_history": {"fullname": "pyerrors.obs.Obs.plot_history", "modulename": "pyerrors.obs", "qualname": "Obs.plot_history", "type": "function", "doc": "Plot derived Monte Carlo history for each ensemble.
\n", "parameters": ["self", "expand"], "funcdef": "def"}, "pyerrors.obs.Obs.plot_piechart": {"fullname": "pyerrors.obs.Obs.plot_piechart", "modulename": "pyerrors.obs", "qualname": "Obs.plot_piechart", "type": "function", "doc": "Plot piechart which shows the fractional contribution of each\nensemble to the error and returns a dictionary containing the fractions.
\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.dump": {"fullname": "pyerrors.obs.Obs.dump", "modulename": "pyerrors.obs", "qualname": "Obs.dump", "type": "function", "doc": "Dump the Obs to a pickle file 'name'.
\n\nParameters
\n\n\n
\n", "parameters": ["self", "name", "kwargs"], "funcdef": "def"}, "pyerrors.obs.Obs.sqrt": {"fullname": "pyerrors.obs.Obs.sqrt", "modulename": "pyerrors.obs", "qualname": "Obs.sqrt", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.log": {"fullname": "pyerrors.obs.Obs.log", "modulename": "pyerrors.obs", "qualname": "Obs.log", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.exp": {"fullname": "pyerrors.obs.Obs.exp", "modulename": "pyerrors.obs", "qualname": "Obs.exp", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.sin": {"fullname": "pyerrors.obs.Obs.sin", "modulename": "pyerrors.obs", "qualname": "Obs.sin", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.cos": {"fullname": "pyerrors.obs.Obs.cos", "modulename": "pyerrors.obs", "qualname": "Obs.cos", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.tan": {"fullname": "pyerrors.obs.Obs.tan", "modulename": "pyerrors.obs", "qualname": "Obs.tan", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.arcsin": {"fullname": "pyerrors.obs.Obs.arcsin", "modulename": "pyerrors.obs", "qualname": "Obs.arcsin", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.arccos": {"fullname": "pyerrors.obs.Obs.arccos", "modulename": "pyerrors.obs", "qualname": "Obs.arccos", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.arctan": {"fullname": "pyerrors.obs.Obs.arctan", "modulename": "pyerrors.obs", "qualname": "Obs.arctan", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.sinh": {"fullname": "pyerrors.obs.Obs.sinh", "modulename": "pyerrors.obs", "qualname": "Obs.sinh", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.cosh": {"fullname": "pyerrors.obs.Obs.cosh", "modulename": "pyerrors.obs", "qualname": "Obs.cosh", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.tanh": {"fullname": "pyerrors.obs.Obs.tanh", "modulename": "pyerrors.obs", "qualname": "Obs.tanh", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.arcsinh": {"fullname": "pyerrors.obs.Obs.arcsinh", "modulename": "pyerrors.obs", "qualname": "Obs.arcsinh", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.arccosh": {"fullname": "pyerrors.obs.Obs.arccosh", "modulename": "pyerrors.obs", "qualname": "Obs.arccosh", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.arctanh": {"fullname": "pyerrors.obs.Obs.arctanh", "modulename": "pyerrors.obs", "qualname": "Obs.arctanh", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.sinc": {"fullname": "pyerrors.obs.Obs.sinc", "modulename": "pyerrors.obs", "qualname": "Obs.sinc", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.Obs.N_sigma": {"fullname": "pyerrors.obs.Obs.N_sigma", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.S": {"fullname": "pyerrors.obs.Obs.S", "modulename": "pyerrors.obs", "qualname": "Obs.S", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_ddvalue": {"fullname": "pyerrors.obs.Obs.e_ddvalue", "modulename": "pyerrors.obs", "qualname": "Obs.e_ddvalue", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_drho": {"fullname": "pyerrors.obs.Obs.e_drho", "modulename": "pyerrors.obs", "qualname": "Obs.e_drho", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_dtauint": {"fullname": "pyerrors.obs.Obs.e_dtauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_dtauint", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_dvalue": {"fullname": "pyerrors.obs.Obs.e_dvalue", "modulename": "pyerrors.obs", "qualname": "Obs.e_dvalue", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_n_dtauint": {"fullname": "pyerrors.obs.Obs.e_n_dtauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_n_dtauint", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_n_tauint": {"fullname": "pyerrors.obs.Obs.e_n_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_n_tauint", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_rho": {"fullname": "pyerrors.obs.Obs.e_rho", "modulename": "pyerrors.obs", "qualname": "Obs.e_rho", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_tauint": {"fullname": "pyerrors.obs.Obs.e_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_tauint", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_windowsize": {"fullname": "pyerrors.obs.Obs.e_windowsize", "modulename": "pyerrors.obs", "qualname": "Obs.e_windowsize", "type": "variable", "doc": "\n"}, "pyerrors.obs.Obs.tau_exp": {"fullname": "pyerrors.obs.Obs.tau_exp", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp", "type": "variable", "doc": "\n"}, "pyerrors.obs.CObs": {"fullname": "pyerrors.obs.CObs", "modulename": "pyerrors.obs", "qualname": "CObs", "type": "class", "doc": "- path (str):\nspecifies a custom path for the file (default '.')
\nClass for a complex valued observable.
\n"}, "pyerrors.obs.CObs.__init__": {"fullname": "pyerrors.obs.CObs.__init__", "modulename": "pyerrors.obs", "qualname": "CObs.__init__", "type": "function", "doc": "\n", "parameters": ["self", "real", "imag"], "funcdef": "def"}, "pyerrors.obs.CObs.tag": {"fullname": "pyerrors.obs.CObs.tag", "modulename": "pyerrors.obs", "qualname": "CObs.tag", "type": "variable", "doc": "\n"}, "pyerrors.obs.CObs.real": {"fullname": "pyerrors.obs.CObs.real", "modulename": "pyerrors.obs", "qualname": "CObs.real", "type": "variable", "doc": "\n"}, "pyerrors.obs.CObs.imag": {"fullname": "pyerrors.obs.CObs.imag", "modulename": "pyerrors.obs", "qualname": "CObs.imag", "type": "variable", "doc": "\n"}, "pyerrors.obs.CObs.gamma_method": {"fullname": "pyerrors.obs.CObs.gamma_method", "modulename": "pyerrors.obs", "qualname": "CObs.gamma_method", "type": "function", "doc": "Executes the gamma_method for the real and the imaginary part.
\n", "parameters": ["self", "kwargs"], "funcdef": "def"}, "pyerrors.obs.CObs.is_zero": {"fullname": "pyerrors.obs.CObs.is_zero", "modulename": "pyerrors.obs", "qualname": "CObs.is_zero", "type": "function", "doc": "Checks whether both real and imaginary part are zero within machine precision.
\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.CObs.conjugate": {"fullname": "pyerrors.obs.CObs.conjugate", "modulename": "pyerrors.obs", "qualname": "CObs.conjugate", "type": "function", "doc": "\n", "parameters": ["self"], "funcdef": "def"}, "pyerrors.obs.merge_idx": {"fullname": "pyerrors.obs.merge_idx", "modulename": "pyerrors.obs", "qualname": "merge_idx", "type": "function", "doc": "Returns the union of all lists in idl
\n\nParameters
\n\n\n
\n", "parameters": ["idl"], "funcdef": "def"}, "pyerrors.obs.expand_deltas_for_merge": {"fullname": "pyerrors.obs.expand_deltas_for_merge", "modulename": "pyerrors.obs", "qualname": "expand_deltas_for_merge", "type": "function", "doc": "- idl (list):\nList of lists or ranges.
\nExpand deltas defined on idx to the list of configs that is defined by new_idx.\n New, empy entries are filled by 0. If idx and new_idx are of type range, the smallest\n common divisor of the step sizes is used as new step size.
\n\nParameters
\n\n\n
\n", "parameters": ["deltas", "idx", "shape", "new_idx"], "funcdef": "def"}, "pyerrors.obs.filter_zeroes": {"fullname": "pyerrors.obs.filter_zeroes", "modulename": "pyerrors.obs", "qualname": "filter_zeroes", "type": "function", "doc": "- deltas (list):\nList of fluctuations
\n- idx (list):\nList or range of configs on which the deltas are defined.\nHas to be a subset of new_idx.
\n- shape (list):\nNumber of configs in idx.
\n- new_idx (list):\nList of configs that defines the new range.
\nFilter out all configurations with vanishing fluctuation such that they do not\n contribute to the error estimate anymore. Returns the new names, deltas and\n idl according to the filtering.\n A fluctuation is considered to be vanishing, if it is smaller than eps times\n the mean of the absolute values of all deltas in one list.
\n\nParameters
\n\n\n
\n", "parameters": ["names", "deltas", "idl", "eps"], "funcdef": "def"}, "pyerrors.obs.derived_observable": {"fullname": "pyerrors.obs.derived_observable", "modulename": "pyerrors.obs", "qualname": "derived_observable", "type": "function", "doc": "- names (list):\nList of names
\n- deltas (dict):\nDict lists of fluctuations
\n- idx (dict):\nDict of lists or ranges of configs on which the deltas are defined.\nHas to be a subset of new_idx.
\n- eps (float):\nPrefactor that enters the filter criterion.
\nConstruct a derived Obs according to func(data, **kwargs) using automatic differentiation.
\n\nParameters
\n\n\n
\n\n- func (object):\narbitrary function of the form func(data, **kwargs). For the\nautomatic differentiation to work, all numpy functions have to have\nthe autograd wrapper (use 'import autograd.numpy as anp').
\n- data (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
\n- num_grad (bool):\nif True, numerical derivatives are used instead of autograd\n(default False). To control the numerical differentiation the\nkwargs of numdifftools.step_generators.MaxStepGenerator\ncan be used.
\n- man_grad (list):\nmanually supply a list or an array which contains the jacobian\nof func. Use cautiously, supplying the wrong derivative will\nnot be intercepted.
\nNotes
\n\nFor simple mathematical operations it can be practical to use anonymous\nfunctions. For the ratio of two observables one can e.g. use
\n\nnew_obs = derived_observable(lambda x: x[0] / x[1], [obs1, obs2])
\n", "parameters": ["func", "data", "kwargs"], "funcdef": "def"}, "pyerrors.obs.reduce_deltas": {"fullname": "pyerrors.obs.reduce_deltas", "modulename": "pyerrors.obs", "qualname": "reduce_deltas", "type": "function", "doc": "Extract deltas defined on idx_old on all configs of idx_new.
\n\nParameters
\n\n\n
\n", "parameters": ["deltas", "idx_old", "idx_new"], "funcdef": "def"}, "pyerrors.obs.reweight": {"fullname": "pyerrors.obs.reweight", "modulename": "pyerrors.obs", "qualname": "reweight", "type": "function", "doc": "- deltas (list):\nList of fluctuations
\n- idx_old (list):\nList or range of configs on which the deltas are defined
\n- idx_new (list):\nList of configs for which we want to extract the deltas.\nHas to be a subset of idx_old.
\nReweight a list of observables.
\n\nParameters
\n\n\n
\n", "parameters": ["weight", "obs", "kwargs"], "funcdef": "def"}, "pyerrors.obs.correlate": {"fullname": "pyerrors.obs.correlate", "modulename": "pyerrors.obs", "qualname": "correlate", "type": "function", "doc": "- weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
\n- obs (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
\n- all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl.
\nCorrelate two observables.
\n\nParameters
\n\n\n
\n", "parameters": ["obs_a", "obs_b"], "funcdef": "def"}, "pyerrors.obs.covariance": {"fullname": "pyerrors.obs.covariance", "modulename": "pyerrors.obs", "qualname": "covariance", "type": "function", "doc": "- obs_a (Obs):\nFirst observable
\n- obs_b (Obs):\nSecond observable
\n- Keep in mind to only correlate primary observables which have not been reweighted
\n- yet. The reweighting has to be applied after correlating the observables.
\n- Currently only works if ensembles are identical. This is not really necessary.
\nCalculates the covariance of two observables.
\n\ncovariance(obs, obs) is equal to obs.dvalue ** 2\nThe gamma method has to be applied first to both observables.
\n\nIf abs(covariance(obs1, obs2)) > obs1.dvalue * obs2.dvalue, the covariance\nis constrained to the maximum value in order to make sure that covariance\nmatrices are positive semidefinite.
\n\nParameters
\n\n\n
\n", "parameters": ["obs1", "obs2", "correlation", "kwargs"], "funcdef": "def"}, "pyerrors.obs.covariance2": {"fullname": "pyerrors.obs.covariance2", "modulename": "pyerrors.obs", "qualname": "covariance2", "type": "function", "doc": "- correlation (bool):\nif true the correlation instead of the covariance is\nreturned (default False)
\nAlternative implementation of the covariance of two observables.
\n\ncovariance(obs, obs) is equal to obs.dvalue ** 2\nThe gamma method has to be applied first to both observables.
\n\nIf abs(covariance(obs1, obs2)) > obs1.dvalue * obs2.dvalue, the covariance\nis constrained to the maximum value in order to make sure that covariance\nmatrices are positive semidefinite.
\n\nKeyword arguments
\n\ncorrelation -- if true the correlation instead of the covariance is\n returned (default False)
\n", "parameters": ["obs1", "obs2", "correlation", "kwargs"], "funcdef": "def"}, "pyerrors.obs.covariance3": {"fullname": "pyerrors.obs.covariance3", "modulename": "pyerrors.obs", "qualname": "covariance3", "type": "function", "doc": "Another alternative implementation of the covariance of two observables.
\n\ncovariance2(obs, obs) is equal to obs.dvalue ** 2\nCurrently only works if ensembles are identical.\nThe gamma method has to be applied first to both observables.
\n\nIf abs(covariance2(obs1, obs2)) > obs1.dvalue * obs2.dvalue, the covariance\nis constrained to the maximum value in order to make sure that covariance\nmatrices are positive semidefinite.
\n\nKeyword arguments
\n\ncorrelation -- if true the correlation instead of the covariance is\n returned (default False)\nplot -- if true, the integrated autocorrelation time for each ensemble is\n plotted.
\n", "parameters": ["obs1", "obs2", "correlation", "kwargs"], "funcdef": "def"}, "pyerrors.obs.pseudo_Obs": {"fullname": "pyerrors.obs.pseudo_Obs", "modulename": "pyerrors.obs", "qualname": "pseudo_Obs", "type": "function", "doc": "Generate a pseudo Obs with given value, dvalue and name
\n\nThe standard number of samples is a 1000. This can be adjusted.
\n", "parameters": ["value", "dvalue", "name", "samples"], "funcdef": "def"}, "pyerrors.obs.dump_object": {"fullname": "pyerrors.obs.dump_object", "modulename": "pyerrors.obs", "qualname": "dump_object", "type": "function", "doc": "Dump object into pickle file.
\n\nParameters
\n\n\n
\n", "parameters": ["obj", "name", "kwargs"], "funcdef": "def"}, "pyerrors.obs.load_object": {"fullname": "pyerrors.obs.load_object", "modulename": "pyerrors.obs", "qualname": "load_object", "type": "function", "doc": "- obj (object):\nobject to be saved in the pickle file
\n- name (str):\nname of the file
\n- path (str):\nspecifies a custom path for the file (default '.')
\nLoad object from pickle file.
\n", "parameters": ["path"], "funcdef": "def"}, "pyerrors.obs.merge_obs": {"fullname": "pyerrors.obs.merge_obs", "modulename": "pyerrors.obs", "qualname": "merge_obs", "type": "function", "doc": "Combine all observables in list_of_obs into one new observable
\n\nParameters
\n\n\n
\n", "parameters": ["list_of_obs"], "funcdef": "def"}, "pyerrors.roots": {"fullname": "pyerrors.roots", "modulename": "pyerrors.roots", "qualname": "", "type": "module", "doc": "\n"}, "pyerrors.roots.find_root": {"fullname": "pyerrors.roots.find_root", "modulename": "pyerrors.roots", "qualname": "find_root", "type": "function", "doc": "- list_of_obs (list):\nlist of the Obs object to be combined
\n- It is not possible to combine obs which are based on the same replicum
\nFinds the root of the function func(x, d) where d is an Obs.
\n\nParameters
\n\n\n
\n", "parameters": ["d", "func", "guess", "kwargs"], "funcdef": "def"}, "pyerrors.version": {"fullname": "pyerrors.version", "modulename": "pyerrors.version", "qualname": "", "type": "module", "doc": "\n"}}, "docInfo": {"pyerrors": {"qualname": 0, "fullname": 1, "doc": 186}, "pyerrors.correlators": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.correlators.Corr": {"qualname": 1, "fullname": 3, "doc": 51}, "pyerrors.correlators.Corr.__init__": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.reweighted": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.gamma_method": {"qualname": 2, "fullname": 4, "doc": 5}, "pyerrors.correlators.Corr.projected": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.sum": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.smearing": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.plottable": {"qualname": 2, "fullname": 4, "doc": 16}, "pyerrors.correlators.Corr.symmetric": {"qualname": 2, "fullname": 4, "doc": 4}, "pyerrors.correlators.Corr.anti_symmetric": {"qualname": 2, "fullname": 4, "doc": 5}, "pyerrors.correlators.Corr.smearing_symmetric": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.GEVP": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.Eigenvalue": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.roll": {"qualname": 2, "fullname": 4, "doc": 10}, "pyerrors.correlators.Corr.reverse": {"qualname": 2, "fullname": 4, "doc": 4}, "pyerrors.correlators.Corr.correlate": {"qualname": 2, "fullname": 4, "doc": 5}, "pyerrors.correlators.Corr.reweight": {"qualname": 2, "fullname": 4, "doc": 28}, "pyerrors.correlators.Corr.T_symmetry": {"qualname": 2, "fullname": 4, "doc": 21}, "pyerrors.correlators.Corr.deriv": {"qualname": 2, "fullname": 4, "doc": 18}, "pyerrors.correlators.Corr.second_deriv": {"qualname": 2, "fullname": 4, "doc": 6}, "pyerrors.correlators.Corr.m_eff": {"qualname": 2, "fullname": 4, "doc": 60}, "pyerrors.correlators.Corr.fit": {"qualname": 2, "fullname": 4, "doc": 32}, "pyerrors.correlators.Corr.plateau": {"qualname": 2, "fullname": 4, "doc": 34}, "pyerrors.correlators.Corr.set_prange": {"qualname": 2, "fullname": 4, "doc": 5}, "pyerrors.correlators.Corr.show": {"qualname": 2, "fullname": 4, "doc": 56}, "pyerrors.correlators.Corr.dump": {"qualname": 2, "fullname": 4, "doc": 9}, "pyerrors.correlators.Corr.print": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.sqrt": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.log": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.exp": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.sin": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.cos": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.tan": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.sinh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.cosh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.tanh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.arcsin": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.arccos": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.arctan": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.arcsinh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.arccosh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.correlators.Corr.arctanh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.dirac": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.dirac.Grid_gamma": {"qualname": 1, "fullname": 3, "doc": 5}, "pyerrors.fits": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.fits.Fit_result": {"qualname": 1, "fullname": 3, "doc": 13}, "pyerrors.fits.Fit_result.__init__": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.fits.Fit_result.gamma_method": {"qualname": 2, "fullname": 4, "doc": 5}, "pyerrors.fits.least_squares": {"qualname": 1, "fullname": 3, "doc": 182}, "pyerrors.fits.standard_fit": {"qualname": 1, "fullname": 3, "doc": 0}, "pyerrors.fits.odr_fit": {"qualname": 1, "fullname": 3, "doc": 0}, "pyerrors.fits.total_least_squares": {"qualname": 1, "fullname": 3, "doc": 119}, "pyerrors.fits.prior_fit": {"qualname": 1, "fullname": 3, "doc": 0}, "pyerrors.fits.fit_lin": {"qualname": 1, "fullname": 3, "doc": 33}, "pyerrors.fits.qqplot": {"qualname": 1, "fullname": 3, "doc": 12}, "pyerrors.fits.residual_plot": {"qualname": 1, "fullname": 3, "doc": 8}, "pyerrors.fits.covariance_matrix": {"qualname": 1, "fullname": 3, "doc": 4}, "pyerrors.fits.error_band": {"qualname": 1, "fullname": 3, "doc": 14}, "pyerrors.fits.ks_test": {"qualname": 1, "fullname": 3, "doc": 20}, "pyerrors.fits.fit_general": {"qualname": 1, "fullname": 3, "doc": 79}, "pyerrors.input": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.input.bdio": {"qualname": 0, "fullname": 3, "doc": 0}, "pyerrors.input.bdio.read_ADerrors": {"qualname": 1, "fullname": 4, "doc": 46}, "pyerrors.input.bdio.write_ADerrors": {"qualname": 1, "fullname": 4, "doc": 47}, "pyerrors.input.bdio.read_mesons": {"qualname": 1, "fullname": 4, "doc": 68}, "pyerrors.input.bdio.read_dSdm": {"qualname": 1, "fullname": 4, "doc": 61}, "pyerrors.input.hadrons": {"qualname": 0, "fullname": 3, "doc": 0}, "pyerrors.input.hadrons.read_meson_hd5": {"qualname": 1, "fullname": 4, "doc": 59}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"qualname": 1, "fullname": 4, "doc": 44}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"qualname": 1, "fullname": 4, "doc": 44}, "pyerrors.input.misc": {"qualname": 0, "fullname": 3, "doc": 0}, "pyerrors.input.misc.read_pbp": {"qualname": 1, "fullname": 4, "doc": 28}, "pyerrors.input.openQCD": {"qualname": 0, "fullname": 3, "doc": 0}, "pyerrors.input.openQCD.read_rwms": {"qualname": 1, "fullname": 4, "doc": 46}, "pyerrors.input.openQCD.extract_t0": {"qualname": 1, "fullname": 4, "doc": 115}, "pyerrors.input.sfcf": {"qualname": 0, "fullname": 3, "doc": 0}, "pyerrors.input.sfcf.read_sfcf": {"qualname": 1, "fullname": 4, "doc": 41}, "pyerrors.input.sfcf.read_sfcf_c": {"qualname": 1, "fullname": 4, "doc": 63}, "pyerrors.input.sfcf.read_qtop": {"qualname": 1, "fullname": 4, "doc": 21}, "pyerrors.jackknifing": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.jackknifing.Jack": {"qualname": 1, "fullname": 3, "doc": 0}, "pyerrors.jackknifing.Jack.__init__": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.jackknifing.Jack.print": {"qualname": 2, "fullname": 4, "doc": 4}, "pyerrors.jackknifing.Jack.plot_tauint": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.jackknifing.Jack.plot_history": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.jackknifing.Jack.dump": {"qualname": 2, "fullname": 4, "doc": 13}, "pyerrors.jackknifing.generate_jack": {"qualname": 1, "fullname": 3, "doc": 0}, "pyerrors.jackknifing.derived_jack": {"qualname": 1, "fullname": 3, "doc": 55}, "pyerrors.linalg": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.linalg.derived_array": {"qualname": 1, "fullname": 3, "doc": 53}, "pyerrors.linalg.matmul": {"qualname": 1, "fullname": 3, "doc": 14}, "pyerrors.linalg.inv": {"qualname": 1, "fullname": 3, "doc": 5}, "pyerrors.linalg.cholesky": {"qualname": 1, "fullname": 3, "doc": 6}, "pyerrors.linalg.scalar_mat_op": {"qualname": 1, "fullname": 3, "doc": 8}, "pyerrors.linalg.eigh": {"qualname": 1, "fullname": 3, "doc": 11}, "pyerrors.linalg.eig": {"qualname": 1, "fullname": 3, "doc": 9}, "pyerrors.linalg.pinv": {"qualname": 1, "fullname": 3, "doc": 6}, "pyerrors.linalg.svd": {"qualname": 1, "fullname": 3, "doc": 6}, "pyerrors.linalg.slogdet": {"qualname": 1, "fullname": 3, "doc": 8}, "pyerrors.linalg.grad_eig": {"qualname": 1, "fullname": 3, "doc": 6}, "pyerrors.misc": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.misc.gen_correlated_data": {"qualname": 1, "fullname": 3, "doc": 36}, "pyerrors.mpm": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.mpm.matrix_pencil_method": {"qualname": 1, "fullname": 3, "doc": 72}, "pyerrors.mpm.matrix_pencil_method_old": {"qualname": 1, "fullname": 3, "doc": 70}, "pyerrors.npr": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.npr.Npr_matrix": {"qualname": 1, "fullname": 3, "doc": 425}, "pyerrors.npr.Npr_matrix.__init__": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.npr.Npr_matrix.g5H": {"qualname": 2, "fullname": 4, "doc": 16}, "pyerrors.npr.inv_propagator": {"qualname": 1, "fullname": 3, "doc": 4}, "pyerrors.npr.Zq": {"qualname": 1, "fullname": 3, "doc": 25}, "pyerrors.obs": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.obs.Obs": {"qualname": 1, "fullname": 3, "doc": 94}, "pyerrors.obs.Obs.__init__": {"qualname": 2, "fullname": 4, "doc": 40}, "pyerrors.obs.Obs.S_global": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.S_dict": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.tau_exp_global": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.tau_exp_dict": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.N_sigma_global": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.filter_eps": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.names": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.shape": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.r_values": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.deltas": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.idl": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.is_merged": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.N": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.ddvalue": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.reweighted": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.tag": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.value": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.dvalue": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_names": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_content": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.gamma_method": {"qualname": 2, "fullname": 4, "doc": 63}, "pyerrors.obs.Obs.expand_deltas": {"qualname": 2, "fullname": 4, "doc": 29}, "pyerrors.obs.Obs.calc_gamma": {"qualname": 2, "fullname": 4, "doc": 41}, "pyerrors.obs.Obs.print": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.details": {"qualname": 2, "fullname": 4, "doc": 4}, "pyerrors.obs.Obs.is_zero_within_error": {"qualname": 2, "fullname": 4, "doc": 13}, "pyerrors.obs.Obs.is_zero": {"qualname": 2, "fullname": 4, "doc": 7}, "pyerrors.obs.Obs.plot_tauint": {"qualname": 2, "fullname": 4, "doc": 6}, "pyerrors.obs.Obs.plot_rho": {"qualname": 2, "fullname": 4, "doc": 7}, "pyerrors.obs.Obs.plot_rep_dist": {"qualname": 2, "fullname": 4, "doc": 8}, "pyerrors.obs.Obs.plot_history": {"qualname": 2, "fullname": 4, "doc": 7}, "pyerrors.obs.Obs.plot_piechart": {"qualname": 2, "fullname": 4, "doc": 12}, "pyerrors.obs.Obs.dump": {"qualname": 2, "fullname": 4, "doc": 13}, "pyerrors.obs.Obs.sqrt": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.log": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.exp": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.sin": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.cos": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.tan": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.arcsin": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.arccos": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.arctan": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.sinh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.cosh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.tanh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.arcsinh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.arccosh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.arctanh": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.sinc": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.N_sigma": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.S": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_ddvalue": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_drho": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_dtauint": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_dvalue": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_n_dtauint": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_n_tauint": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_rho": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_tauint": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.e_windowsize": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.Obs.tau_exp": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.CObs": {"qualname": 1, "fullname": 3, "doc": 4}, "pyerrors.obs.CObs.__init__": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.CObs.tag": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.CObs.real": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.CObs.imag": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.CObs.gamma_method": {"qualname": 2, "fullname": 4, "doc": 5}, "pyerrors.obs.CObs.is_zero": {"qualname": 2, "fullname": 4, "doc": 10}, "pyerrors.obs.CObs.conjugate": {"qualname": 2, "fullname": 4, "doc": 0}, "pyerrors.obs.merge_idx": {"qualname": 1, "fullname": 3, "doc": 10}, "pyerrors.obs.expand_deltas_for_merge": {"qualname": 1, "fullname": 3, "doc": 52}, "pyerrors.obs.filter_zeroes": {"qualname": 1, "fullname": 3, "doc": 55}, "pyerrors.obs.derived_observable": {"qualname": 1, "fullname": 3, "doc": 93}, "pyerrors.obs.reduce_deltas": {"qualname": 1, "fullname": 3, "doc": 27}, "pyerrors.obs.reweight": {"qualname": 1, "fullname": 3, "doc": 38}, "pyerrors.obs.correlate": {"qualname": 1, "fullname": 3, "doc": 28}, "pyerrors.obs.covariance": {"qualname": 1, "fullname": 3, "doc": 44}, "pyerrors.obs.covariance2": {"qualname": 1, "fullname": 3, "doc": 45}, "pyerrors.obs.covariance3": {"qualname": 1, "fullname": 3, "doc": 58}, "pyerrors.obs.pseudo_Obs": {"qualname": 1, "fullname": 3, "doc": 12}, "pyerrors.obs.dump_object": {"qualname": 1, "fullname": 3, "doc": 22}, "pyerrors.obs.load_object": {"qualname": 1, "fullname": 3, "doc": 4}, "pyerrors.obs.merge_obs": {"qualname": 1, "fullname": 3, "doc": 19}, "pyerrors.roots": {"qualname": 0, "fullname": 2, "doc": 0}, "pyerrors.roots.find_root": {"qualname": 1, "fullname": 3, "doc": 25}, "pyerrors.version": {"qualname": 0, "fullname": 2, "doc": 0}}, "length": 202, "save": true}, "index": {"qualname": {"root": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.sum": {"tf": 1}, "pyerrors.correlators.Corr.smearing": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.smearing_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}}, "df": 42, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}}, "df": 2}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"2": {"docs": {"pyerrors.obs.covariance2": {"tf": 1}}, "df": 1}, "3": {"docs": {"pyerrors.obs.covariance3": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.fits.covariance_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "b": {"docs": {"pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 8}, "n": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 1}}}}}}}}}}, "_": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "_": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.jackknifing.Jack.__init__": {"tf": 1}, "pyerrors.npr.Npr_matrix.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 6}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}, "d": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.obs.CObs.real": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.reduce_deltas": {"tf": 1}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}}, "_": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1}}}}}}, "g": {"5": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 4}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.jackknifing.generate_jack": {"tf": 1}}, "df": 1}}}}}}}}}}, "_": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.grad_eig": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.jackknifing.Jack.print": {"tf": 1}, "pyerrors.obs.Obs.print": {"tf": 1}}, "df": 3}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.prior_fit": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}, "_": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.jackknifing.Jack.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}}, "df": 2}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.jackknifing.Jack.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 2}}}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.plot_rho": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {"pyerrors.obs.Obs.S": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.sum": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.smearing": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.smearing_symmetric": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.shape": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}}, "df": 2}, "c": {"docs": {"pyerrors.obs.Obs.sinc": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.standard_fit": {"tf": 1}}, "df": 1}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.linalg.scalar_mat_op": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.svd": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.linalg.slogdet": {"tf": 1}}, "df": 1}}}}}}, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.S_dict": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.expand_deltas": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "t": {"0": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}}}}}}}, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.Obs.e_names": {"tf": 1}}, "df": 1}}, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_n_tauint": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_content": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.e_ddvalue": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_drho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_dtauint": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.e_dvalue": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_rho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_tauint": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 1}}}}}}}}}, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.Obs.tau_exp_global": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {"pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.deltas": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.dump_object": {"tf": 1}}, "df": 1}}}}}}}}}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.ddvalue": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.dvalue": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.obs.merge_idx": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}}, "df": 3}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.filter_eps": {"tf": 1}}, "df": 1}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.load_object": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.odr_fit": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {"pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.filter_eps": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.shape": {"tf": 1}, "pyerrors.obs.Obs.r_values": {"tf": 1}, "pyerrors.obs.Obs.deltas": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}, "pyerrors.obs.Obs.is_merged": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}, "pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.Obs.print": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.Obs.sinc": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 63}}, "q": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}}, "k": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.jackknifing.Jack": {"tf": 1}, "pyerrors.jackknifing.Jack.__init__": {"tf": 1}, "pyerrors.jackknifing.Jack.print": {"tf": 1}, "pyerrors.jackknifing.Jack.plot_tauint": {"tf": 1}, "pyerrors.jackknifing.Jack.plot_history": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}}, "df": 6}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.npr.inv_propagator": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.idl": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.Obs.is_merged": {"tf": 1}}, "df": 1}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2, "_": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.CObs.imag": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {"pyerrors.obs.Obs.N": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.npr.Npr_matrix.__init__": {"tf": 1}, "pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 3}}}}}}}}}, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.N_sigma": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.names": {"tf": 1}}, "df": 1}}}}, "z": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.npr.Zq": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.value": {"tf": 1}}, "df": 1}}}}}}, "fullname": {"root": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.sum": {"tf": 1}, "pyerrors.correlators.Corr.smearing": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.smearing_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.dirac": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.standard_fit": {"tf": 1}, "pyerrors.fits.odr_fit": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.prior_fit": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.covariance_matrix": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.jackknifing": {"tf": 1}, "pyerrors.jackknifing.Jack": {"tf": 1}, "pyerrors.jackknifing.Jack.__init__": {"tf": 1}, "pyerrors.jackknifing.Jack.print": {"tf": 1}, "pyerrors.jackknifing.Jack.plot_tauint": {"tf": 1}, "pyerrors.jackknifing.Jack.plot_history": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.jackknifing.generate_jack": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}, "pyerrors.misc": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.npr": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.npr.Npr_matrix.__init__": {"tf": 1}, "pyerrors.npr.Npr_matrix.g5H": {"tf": 1}, "pyerrors.npr.inv_propagator": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1}, "pyerrors.obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.filter_eps": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.shape": {"tf": 1}, "pyerrors.obs.Obs.r_values": {"tf": 1}, "pyerrors.obs.Obs.deltas": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}, "pyerrors.obs.Obs.is_merged": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}, "pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.Obs.print": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.Obs.sinc": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}, "pyerrors.obs.merge_idx": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reduce_deltas": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1}, "pyerrors.obs.load_object": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.version": {"tf": 1}}, "df": 202}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.jackknifing.Jack.print": {"tf": 1}, "pyerrors.obs.Obs.print": {"tf": 1}}, "df": 3}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.prior_fit": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}, "_": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.jackknifing.Jack.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}}, "df": 2}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.jackknifing.Jack.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 2}}}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.plot_rho": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.sum": {"tf": 1}, "pyerrors.correlators.Corr.smearing": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.smearing_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}}, "df": 42, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.sum": {"tf": 1}, "pyerrors.correlators.Corr.smearing": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.smearing_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 44}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}}, "df": 2}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"2": {"docs": {"pyerrors.obs.covariance2": {"tf": 1}}, "df": 1}, "3": {"docs": {"pyerrors.obs.covariance3": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.fits.covariance_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "b": {"docs": {"pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 8}, "n": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 1}}}}}}}}}}, "_": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "_": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.jackknifing.Jack.__init__": {"tf": 1}, "pyerrors.npr.Npr_matrix.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 6}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}, "d": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.obs.CObs.real": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.reduce_deltas": {"tf": 1}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}, "_": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1}}}}}}, "g": {"5": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 4}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.jackknifing.generate_jack": {"tf": 1}}, "df": 1}}}}}}}}}}, "_": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.grad_eig": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {"pyerrors.obs.Obs.S": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.sum": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.smearing": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.smearing_symmetric": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.shape": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}}, "df": 2}, "c": {"docs": {"pyerrors.obs.Obs.sinc": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.standard_fit": {"tf": 1}}, "df": 1}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 4}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.linalg.scalar_mat_op": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.svd": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.linalg.slogdet": {"tf": 1}}, "df": 1}}}}}}, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.S_dict": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.expand_deltas": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "t": {"0": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}}}}}}}, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.Obs.e_names": {"tf": 1}}, "df": 1}}, "_": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_n_tauint": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_content": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.e_ddvalue": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_drho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_dtauint": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.e_dvalue": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_rho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_tauint": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 1}}}}}}}}}, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.Obs.tau_exp_global": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {"pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.deltas": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.dump_object": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.dirac": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.ddvalue": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.dvalue": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.misc": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.mpm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 3}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.obs.merge_idx": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.standard_fit": {"tf": 1}, "pyerrors.fits.odr_fit": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.prior_fit": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.covariance_matrix": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 17, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}}, "df": 3}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.filter_eps": {"tf": 1}}, "df": 1}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.load_object": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}}, "df": 12}}}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.odr_fit": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}}}}}, "b": {"docs": {"pyerrors.obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.filter_eps": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.shape": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.r_values": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.deltas": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.idl": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_merged": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.ddvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweighted": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tag": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.value": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_content": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.print": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.details": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sqrt": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.log": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.exp": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sinc": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_drho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}, "pyerrors.obs.merge_idx": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reduce_deltas": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1}, "pyerrors.obs.load_object": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 86}}, "q": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}}, "k": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input": {"tf": 1}, "pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 19}}}, "v": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.npr.inv_propagator": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.idl": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.Obs.is_merged": {"tf": 1}}, "df": 1}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2, "_": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.CObs.imag": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 5}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 4}}}}}}, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.jackknifing.Jack": {"tf": 1}, "pyerrors.jackknifing.Jack.__init__": {"tf": 1}, "pyerrors.jackknifing.Jack.print": {"tf": 1}, "pyerrors.jackknifing.Jack.plot_tauint": {"tf": 1}, "pyerrors.jackknifing.Jack.plot_history": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}}, "df": 6, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.jackknifing": {"tf": 1}, "pyerrors.jackknifing.Jack": {"tf": 1}, "pyerrors.jackknifing.Jack.__init__": {"tf": 1}, "pyerrors.jackknifing.Jack.print": {"tf": 1}, "pyerrors.jackknifing.Jack.plot_tauint": {"tf": 1}, "pyerrors.jackknifing.Jack.plot_history": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.jackknifing.generate_jack": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}}, "df": 9}}}}}}}}, "n": {"docs": {"pyerrors.obs.Obs.N": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.npr": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.npr.Npr_matrix.__init__": {"tf": 1}, "pyerrors.npr.Npr_matrix.g5H": {"tf": 1}, "pyerrors.npr.inv_propagator": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1}}, "df": 6, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.npr.Npr_matrix.__init__": {"tf": 1}, "pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 3}}}}}}}}}, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.N_sigma": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.names": {"tf": 1}}, "df": 1}}}}, "z": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.npr.Zq": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.value": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.version": {"tf": 1}}, "df": 1}}}}}}}}}, "doc": {"root": {"0": {"1": {"2": {"8": {"9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 9, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"0": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "1": {"0": {"0": {"0": {"docs": {"pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}, "2": {"docs": {}, "df": 0, "x": {"1": {"2": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1}, "pyerrors.npr.inv_propagator": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "6": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 2}, "7": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "9": {"9": {"0": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 9, "*": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "2": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 12, "*": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, ")": {"docs": {}, "df": 0, "/": {"3": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}, "3": {"2": {"3": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2}}, "df": 2, "x": {"3": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "4": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 3, "x": {"4": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "5": {"0": {"0": {"docs": {}, "df": 0, "(": {"4": {"0": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "2": {"2": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"8": {"0": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"8": {"docs": {}, "df": 0, "(": {"2": {"3": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1, "(": {"0": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "8": {"1": {"4": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"4": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}, "9": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "p": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.7320508075688772}}, "df": 2, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1.7320508075688772}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 2}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.npr.Zq": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.merge_idx": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reduce_deltas": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 50}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.jackknifing.Jack.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.dump_object": {"tf": 1.4142135623730951}}, "df": 12}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.npr.inv_propagator": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1.4142135623730951}}, "df": 3}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.jackknifing.Jack.print": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 4}}, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.jackknifing.Jack.print": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 6}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 2}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 7}}}}}, "n": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.7320508075688772}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}}, "df": 10, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 2, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}}, "df": 1}}, "l": {"docs": {"pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1.4142135623730951}, "pyerrors.obs.load_object": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 4}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 9, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 9}}}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 2}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.4142135623730951}, "pyerrors.obs.reduce_deltas": {"tf": 1.4142135623730951}}, "df": 9}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}}, "df": 2}}}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}}, "df": 16, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}}}}, "_": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 3}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 6}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 4}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 12}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "_": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 3.1622776601683795}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {"pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1.4142135623730951}}, "df": 1}}, "c": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 5, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 12}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1.7320508075688772}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "v": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.covariance_matrix": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2}, "pyerrors.obs.covariance2": {"tf": 2}, "pyerrors.obs.covariance3": {"tf": 2}}, "df": 6, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"2": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.covariance3": {"tf": 1}}, "df": 1}}}}, "docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}}, "df": 2}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1}}, "df": 8, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance2": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}}, "df": 23}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 6}}}}}}}}, "b": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}}, "df": 5}, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 12}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 3}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1.4142135623730951}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 2}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.reduce_deltas": {"tf": 1.7320508075688772}}, "df": 8, "u": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}}, "df": 5}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": null}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 2}}, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 2}}}, "j": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "(": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1}}, "df": 7}}, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 5}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 3}}}, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 8}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 3}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}}, "df": 5}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "(": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1, "+": {"1": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "p": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 2.23606797749979}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 2}}}}}}, "_": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.covariance_matrix": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.4142135623730951}}, "df": 18}, "c": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.npr.Npr_matrix.g5H": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 10}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 5}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}, "x": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3}}}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 3}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 2}, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 3}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 13}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 4}, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2.8284271247461903}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.6457513110645907}}, "df": 2, "_": {"0": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "y": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 2.6457513110645907}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 2.6457513110645907}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}}, "df": 4, "i": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 2}}, "d": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}}, "df": 1}}}, "s": {"1": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}}, "df": 1}}, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}}, "df": 1, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 3.1622776601683795}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 16, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}}, "df": 4, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 7}}}}}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.filter_zeroes": {"tf": 2}}, "df": 3, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 5}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 3}}, "t": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 6}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.expand_deltas": {"tf": 2}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1.7320508075688772}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1.7320508075688772}, "pyerrors.obs.filter_zeroes": {"tf": 2}, "pyerrors.obs.reduce_deltas": {"tf": 2}}, "df": 5, "_": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 3}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}, "f": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1.4142135623730951}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 2}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.reduce_deltas": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 8}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 2}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1}}, "df": 26}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 6, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}}, "df": 1, "r": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 2.6457513110645907}}, "df": 1, "=": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1}}, "df": 4}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance2": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance3": {"tf": 1.7320508075688772}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 7}}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}, "b": {"2": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 2}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 5}, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.jackknifing.Jack.print": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 11, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 3}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 2}}, "df": 3}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}}, "df": 4, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}}}}, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, ")": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 3}}, "df": 1, "=": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 2.449489742783178}}, "df": 1}}}}, "g": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 9, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 9, "_": {"5": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 3}}}}}}, "{": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 9}, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 5}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 19}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.linalg.grad_eig": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 4}, "o": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, ":": {"1": {"0": {"0": {"9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"5": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 5.830951894845301}, "pyerrors.npr.Zq": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 11, "'": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}, "(": {"docs": {}, "df": 0, "[": {"2": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "[": {"0": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 6}}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 4}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 7}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 6}}}}}}}}}, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}, "c": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 5, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 2}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 5}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 7}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 6}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 4}}, "n": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 3}}, "z": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4}}}}, "g": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 4}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}}, "df": 1}}, "[": {"0": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}, "1": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}, "2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 1}}}}, "(": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"2": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"1": {"docs": {"pyerrors.obs.covariance3": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"1": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "/": {"0": {"3": {"0": {"6": {"0": {"1": {"7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 6}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}}, "df": 4}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 2}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.fit_lin": {"tf": 1.7320508075688772}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 2}, "pyerrors.input.misc.read_pbp": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 3}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_idx": {"tf": 2}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 2.8284271247461903}, "pyerrors.obs.filter_zeroes": {"tf": 2.23606797749979}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.obs.reduce_deltas": {"tf": 2.449489742783178}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}}, "df": 30, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 2, "(": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "(": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "w": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.load_object": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 6}}}, "(": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, ")": {"docs": {}, "df": 0, "/": {"2": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "3": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "/": {"2": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}}}, "v": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.npr.Zq": {"tf": 1}}, "df": 4}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "f": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 3, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Zq": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 2}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 1.7320508075688772}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 14, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}, "_": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 12}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 1}}, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.dump_object": {"tf": 2}, "pyerrors.obs.load_object": {"tf": 1}}, "df": 16, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}}, "df": 1}}}, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 3}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1.7320508075688772}}, "df": 3}}}, "l": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 3}}, "x": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.npr.Zq": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 6, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 8}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 5}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 3}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 7}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}}, "df": 2}}, "r": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 2.6457513110645907}, "pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 8}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 5}, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1.7320508075688772}, "pyerrors.obs.reduce_deltas": {"tf": 1}}, "df": 5}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 8, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 2}, "pyerrors.jackknifing.derived_jack": {"tf": 1.7320508075688772}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 2}}, "df": 17}}}}, "(": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 4}, "a": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 3, "i": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1.4142135623730951}}, "df": 2}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "s": {"docs": {"pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}}, "df": 2, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 2}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 2}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "t": {"docs": {"pyerrors.obs.expand_deltas_for_merge": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.reduce_deltas": {"tf": 1}}, "df": 3}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2}, "g": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.linalg.slogdet": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3, "i": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.7320508075688772}}, "df": 3}}}}, "l": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "(": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}, "x": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 4}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 2}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1.4142135623730951}}, "df": 2}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.23606797749979}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 8}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "r": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1.4142135623730951}}, "df": 12, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 2}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 2}}, "df": 1, "s": {"docs": {}, "df": 0, "=": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 6}}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1.4142135623730951}}, "df": 2, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 2}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 2.23606797749979}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 6}}, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 3}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.obs.dump_object": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 4}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2.23606797749979}}, "df": 3}, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}, "t": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3}}}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1.4142135623730951}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 1}}, "r": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1}}, "df": 7}}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 3, "i": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}}, "df": 4}}, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, ",": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}}}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.scalar_mat_op": {"tf": 1}}, "df": 1}}}}}, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}}, "df": 2}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.grad_eig": {"tf": 1}}, "df": 1}}}}, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1}}}}}}, "t": {"0": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 4, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}}, "df": 16}}, "a": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2}}, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 5}}}}, "u": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1, "_": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 12, "s": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.plottable": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 6}}}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 12}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.npr.Zq": {"tf": 1}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}}, "df": 7}}}, "h": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}, "/": {"2": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}, "^": {"2": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 1, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1.4142135623730951}}, "df": 4, "e": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 4}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.4142135623730951}}, "df": 2, "e": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.jackknifing.derived_jack": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 2}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 9}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 14}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 2}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}}}, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2}}, "df": 7}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1.7320508075688772}, "pyerrors.obs.pseudo_Obs": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1.4142135623730951}}, "df": 15, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 3}}}}}}, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {"pyerrors.obs.expand_deltas_for_merge": {"tf": 1.7320508075688772}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 3, "_": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.obs.expand_deltas_for_merge": {"tf": 2}, "pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 3.4641016151377544}}, "df": 1, "(": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "x": {"0": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2, "=": {"0": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "+": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}}}}}}}, "1": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 2}, "2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1.7320508075688772}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 10, "_": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}, "[": {"0": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}, "1": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.covariance_matrix": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 8, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"1": {"6": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.npr.Npr_matrix": {"tf": 3.1622776601683795}}, "df": 4, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 3}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "g": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1, "r": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 2}}}, "_": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 7}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}}, "df": 3}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}}, "df": 2}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 7, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.input.sfcf.read_qtop": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 8}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "c": {"docs": {"pyerrors.obs.Obs": {"tf": 2}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.npr.inv_propagator": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1}}, "df": 2}}}, "_": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.npr.Zq": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 6}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 5}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}, "m": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}, "d": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.merge_idx": {"tf": 1.4142135623730951}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}}, "df": 5}, "x": {"docs": {"pyerrors.obs.Obs.expand_deltas": {"tf": 2}, "pyerrors.obs.Obs.calc_gamma": {"tf": 2}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 2}, "pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 4, "_": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.reduce_deltas": {"tf": 1.7320508075688772}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.obs.reduce_deltas": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 8, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}, "d": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.misc.read_pbp": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_qtop": {"tf": 1.4142135623730951}}, "df": 11, "_": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 2}, "pyerrors.input.sfcf.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 2}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.covariance_matrix": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.npr.Npr_matrix.g5H": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.merge_idx": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 23}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 5}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 3}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}}, "df": 5}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.Obs.expand_deltas": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 5}}, "a": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2}}, "df": 3}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 9}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.npr.Zq": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 4}}, "w": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.expand_deltas": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_idx": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1.7320508075688772}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.reduce_deltas": {"tf": 1}}, "df": 9}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}, "_": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}}, "df": 4, "p": {"docs": {"pyerrors.linalg.scalar_mat_op": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 7, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 4}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.obs.Obs.__init__": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "b": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.fit_lin": {"tf": 2.23606797749979}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.scalar_mat_op": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance2": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}, "pyerrors.obs.pseudo_Obs": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 37, "s": {"1": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 6}, "2": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance2": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}}, "df": 6}, "3": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 2.23606797749979}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance2": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance3": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}}, "df": 14}}}, "[": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 2}}, "_": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}, "b": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}, "j": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.dump_object": {"tf": 1.7320508075688772}, "pyerrors.obs.load_object": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 15}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "n": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 8, "c": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 10}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 2.449489742783178}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 7, "=": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1}}, "df": 3}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 2}}, "df": 2, "=": {"0": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.linalg.grad_eig": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 2}, "pyerrors.obs.Obs": {"tf": 2.6457513110645907}, "pyerrors.obs.Obs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.filter_zeroes": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}, "pyerrors.obs.pseudo_Obs": {"tf": 1}}, "df": 28}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.filter_zeroes": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.slogdet": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.fits.fit_general": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}, "pyerrors.jackknifing.derived_jack": {"tf": 1.7320508075688772}, "pyerrors.linalg.derived_array": {"tf": 1.7320508075688772}, "pyerrors.npr.Npr_matrix": {"tf": 2.449489742783178}, "pyerrors.npr.Zq": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.expand_deltas_for_merge": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 2.6457513110645907}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 21}, "p": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.merge_idx": {"tf": 1}}, "df": 1}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.calc_gamma": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 8}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.npr.Npr_matrix.g5H": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 10}}}, "l": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}, "pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "y": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.reduce_deltas": {"tf": 1}}, "df": 1}}}, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Zq": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 3}}}}}, "_": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.obs.Obs.calc_gamma": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {"pyerrors.fits.ks_test": {"tf": 1.4142135623730951}}, "df": 1, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.sfcf.read_sfcf_c": {"tf": 1.4142135623730951}, "pyerrors.npr.inv_propagator": {"tf": 1}, "pyerrors.npr.Zq": {"tf": 1.4142135623730951}}, "df": 3}}}}, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.sfcf.read_qtop": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 1, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "\u2013": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1.4142135623730951}, "pyerrors.linalg.derived_array": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 4}}}}, "e": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.fit_general": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1}, "pyerrors.obs.covariance2": {"tf": 1}, "pyerrors.obs.covariance3": {"tf": 1}}, "df": 6}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"1": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 3}}}}}, "d": {"docs": {}, "df": 0, "f": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.expand_deltas": {"tf": 1}}, "df": 1}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method_old": {"tf": 1}, "pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 7}}}, "q": {"docs": {"pyerrors.npr.Zq": {"tf": 1.4142135623730951}}, "df": 1}}, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"1": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"docs": {"pyerrors.jackknifing.derived_jack": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.jackknifing.Jack.print": {"tf": 1}, "pyerrors.jackknifing.Jack.dump": {"tf": 1}, "pyerrors.jackknifing.derived_jack": {"tf": 1.7320508075688772}}, "df": 3}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.derived_array": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "_": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "_": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "_": {"docs": {}, "df": 0, "_": {"docs": {"pyerrors.npr.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}, "pipeline": ["trimmer", "stopWordFilter", "stemmer"], "_isPrebuiltIndex": true}; // mirrored in build-search-index.js (part 1) // Also split on html tags. this is a cheap heuristic, but good enough.- d -- Obs passed to the function.
\n- func -- Function to be minimized. Any numpy functions have to use the autograd.numpy wrapper
\n- guess -- Initial guess for the minimization.
\n