mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-05-14 19:43:41 +02:00
feat!: covariance replaced by covariance2, window altered to minimum of
the window of the two observables. Tests adjusted.
This commit is contained in:
parent
06f4caf579
commit
ec20ee38a6
4 changed files with 10 additions and 79 deletions
|
@ -40,7 +40,7 @@ def test_covobs():
|
|||
|
||||
[o.gamma_method() for o in cl]
|
||||
assert(pe.covariance(cl[0], cl[1]) == cov[0][1])
|
||||
assert(pe.covariance2(cl[0], cl[1]) == cov[1][0])
|
||||
assert(pe.covariance(cl[0], cl[1]) == cov[1][0])
|
||||
|
||||
do = cl[0] * cl[1]
|
||||
assert(np.array_equal(do.covobs['rAP'].grad, np.transpose([pi[1], pi[0]]).reshape(2, 1)))
|
||||
|
|
|
@ -83,6 +83,8 @@ def test_least_squares():
|
|||
assert math.isclose(pcov[i, i], betac[i].dvalue ** 2, abs_tol=1e-3)
|
||||
assert math.isclose(pe.covariance(betac[0], betac[1]), pcov[0, 1], abs_tol=1e-3)
|
||||
|
||||
|
||||
def test_correlated_fit():
|
||||
num_samples = 400
|
||||
N = 10
|
||||
|
||||
|
@ -101,7 +103,6 @@ def test_least_squares():
|
|||
|
||||
c = cholesky(r, lower=True)
|
||||
y = np.dot(c, x)
|
||||
|
||||
x = np.arange(N)
|
||||
for linear in [True, False]:
|
||||
data = []
|
||||
|
|
|
@ -555,7 +555,7 @@ def test_gamma_method_irregular():
|
|||
assert((ae.e_tauint['a'] + 4 * ae.e_dtauint['a'] > ao.e_tauint['a']))
|
||||
|
||||
|
||||
def test_covariance2_symmetry():
|
||||
def test_covariance_symmetry():
|
||||
value1 = np.random.normal(5, 10)
|
||||
dvalue1 = np.abs(np.random.normal(0, 1))
|
||||
test_obs1 = pe.pseudo_Obs(value1, dvalue1, 't')
|
||||
|
@ -564,8 +564,8 @@ def test_covariance2_symmetry():
|
|||
dvalue2 = np.abs(np.random.normal(0, 1))
|
||||
test_obs2 = pe.pseudo_Obs(value2, dvalue2, 't')
|
||||
test_obs2.gamma_method()
|
||||
cov_ab = pe.covariance2(test_obs1, test_obs2)
|
||||
cov_ba = pe.covariance2(test_obs2, test_obs1)
|
||||
cov_ab = pe.covariance(test_obs1, test_obs2)
|
||||
cov_ba = pe.covariance(test_obs2, test_obs1)
|
||||
assert np.abs(cov_ab - cov_ba) <= 10 * np.finfo(np.float64).eps
|
||||
assert np.abs(cov_ab) < test_obs1.dvalue * test_obs2.dvalue * (1 + 10 * np.finfo(np.float64).eps)
|
||||
|
||||
|
@ -578,10 +578,10 @@ def test_covariance2_symmetry():
|
|||
idx = [i + 1 for i in range(len(configs)) if configs[i] == 1]
|
||||
a = pe.Obs([zero_arr], ['t'], idl=[idx])
|
||||
a.gamma_method()
|
||||
assert np.isclose(a.dvalue**2, pe.covariance2(a, a), atol=100, rtol=1e-4)
|
||||
assert np.isclose(a.dvalue**2, pe.covariance(a, a), atol=100, rtol=1e-4)
|
||||
|
||||
cov_ab = pe.covariance2(test_obs1, a)
|
||||
cov_ba = pe.covariance2(a, test_obs1)
|
||||
cov_ab = pe.covariance(test_obs1, a)
|
||||
cov_ba = pe.covariance(a, test_obs1)
|
||||
assert np.abs(cov_ab - cov_ba) <= 10 * np.finfo(np.float64).eps
|
||||
assert np.abs(cov_ab) < test_obs1.dvalue * test_obs2.dvalue * (1 + 10 * np.finfo(np.float64).eps)
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue