mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-05-14 19:43:41 +02:00
Documentation updated
This commit is contained in:
parent
e88eacd094
commit
e8ed9e769e
2 changed files with 9 additions and 9 deletions
|
@ -102,7 +102,7 @@ pyerrors </h1>
|
|||
It is based on the gamma method <a href="https://arxiv.org/abs/hep-lat/0306017">arXiv:hep-lat/0306017</a>. Some of its features are:</p>
|
||||
|
||||
<ul>
|
||||
<li>automatic differentiation for exact liner error propagation as suggested in <a href="https://arxiv.org/abs/1809.01289">arXiv:1809.01289</a> (partly based on the <a href="https://github.com/HIPS/autograd">autograd</a> package).</li>
|
||||
<li>automatic differentiation for exact linear error propagation as suggested in <a href="https://arxiv.org/abs/1809.01289">arXiv:1809.01289</a> (partly based on the <a href="https://github.com/HIPS/autograd">autograd</a> package).</li>
|
||||
<li>treatment of slow modes in the simulation as suggested in <a href="https://arxiv.org/abs/1009.5228">arXiv:1009.5228</a>.</li>
|
||||
<li>coherent error propagation for data from different Markov chains.</li>
|
||||
<li>non-linear fits with x- and y-errors and exact linear error propagation based on automatic differentiation as introduced in <a href="https://arxiv.org/abs/1809.01289">arXiv:1809.01289</a>.</li>
|
||||
|
@ -207,7 +207,7 @@ The standard value for the parameter $S$ of this automatic windowing procedure i
|
|||
|
||||
<p>The integrated autocorrelation time $\tau_\mathrm{int}$ and the autocorrelation function $\rho(W)$ can be monitored via the methods <code><a href="pyerrors/obs.html#Obs.plot_tauint">pyerrors.obs.Obs.plot_tauint</a></code> and <code><a href="pyerrors/obs.html#Obs.plot_tauint">pyerrors.obs.Obs.plot_tauint</a></code>.</p>
|
||||
|
||||
<p>If the parameter $S$ is set to zero it is assumed that the dataset does not exhibit any autocorrelation and the windowsize is chosen to be zero.
|
||||
<p>If the parameter $S$ is set to zero it is assumed that the dataset does not exhibit any autocorrelation and the window size is chosen to be zero.
|
||||
In this case the error estimate is identical to the sample standard error.</p>
|
||||
|
||||
<h3 id="exponential-tails">Exponential tails</h3>
|
||||
|
@ -417,7 +417,7 @@ where the Jacobian is computed for each derived quantity via automatic different
|
|||
|
||||
<h1 id="error-propagation-in-iterative-algorithms">Error propagation in iterative algorithms</h1>
|
||||
|
||||
<p><code><a href="">pyerrors</a></code> supports exact linear error propagation for iterative algorithms like various variants of non-linear least sqaures fits or root finding. The derivatives required for the error propagation are calculated as described in <a href="https://arxiv.org/abs/1809.01289">arXiv:1809.01289</a>.</p>
|
||||
<p><code><a href="">pyerrors</a></code> supports exact linear error propagation for iterative algorithms like various variants of non-linear least squares fits or root finding. The derivatives required for the error propagation are calculated as described in <a href="https://arxiv.org/abs/1809.01289">arXiv:1809.01289</a>.</p>
|
||||
|
||||
<h2 id="least-squares-fits">Least squares fits</h2>
|
||||
|
||||
|
@ -474,7 +474,7 @@ Details about how the required covariance matrix is estimated can be found in <c
|
|||
|
||||
<h2 id="total-least-squares-fits">Total least squares fits</h2>
|
||||
|
||||
<p><code><a href="">pyerrors</a></code> can also fit data with errors on both the dependent and independent variables using the total least squares method also referred to orthogonal distance regression as implemented in <a href="https://docs.scipy.org/doc/scipy/reference/odr.html">scipy</a>, see <code><a href="pyerrors/fits.html#least_squares">pyerrors.fits.least_squares</a></code>. The syntax is identical to the standard least squares case, the only diffrence being that <code>x</code> also has to be a <code>list</code> or <code>numpy.array</code> of <code>Obs</code>.</p>
|
||||
<p><code><a href="">pyerrors</a></code> can also fit data with errors on both the dependent and independent variables using the total least squares method also referred to orthogonal distance regression as implemented in <a href="https://docs.scipy.org/doc/scipy/reference/odr.html">scipy</a>, see <code><a href="pyerrors/fits.html#least_squares">pyerrors.fits.least_squares</a></code>. The syntax is identical to the standard least squares case, the only difference being that <code>x</code> also has to be a <code>list</code> or <code>numpy.array</code> of <code>Obs</code>.</p>
|
||||
|
||||
<p>For the full API see <code><a href="pyerrors/fits.html">pyerrors.fits</a></code> for fits and <code><a href="pyerrors/roots.html">pyerrors.roots</a></code> for finding roots of functions.</p>
|
||||
|
||||
|
@ -585,7 +585,7 @@ The following entries are optional:</li>
|
|||
</span><span id="L-2"><a href="#L-2"><span class="linenos"> 2</span></a><span class="sd"># What is pyerrors?</span>
|
||||
</span><span id="L-3"><a href="#L-3"><span class="linenos"> 3</span></a><span class="sd">`pyerrors` is a python package for error computation and propagation of Markov chain Monte Carlo data.</span>
|
||||
</span><span id="L-4"><a href="#L-4"><span class="linenos"> 4</span></a><span class="sd">It is based on the gamma method [arXiv:hep-lat/0306017](https://arxiv.org/abs/hep-lat/0306017). Some of its features are:</span>
|
||||
</span><span id="L-5"><a href="#L-5"><span class="linenos"> 5</span></a><span class="sd">- automatic differentiation for exact liner error propagation as suggested in [arXiv:1809.01289](https://arxiv.org/abs/1809.01289) (partly based on the [autograd](https://github.com/HIPS/autograd) package).</span>
|
||||
</span><span id="L-5"><a href="#L-5"><span class="linenos"> 5</span></a><span class="sd">- automatic differentiation for exact linear error propagation as suggested in [arXiv:1809.01289](https://arxiv.org/abs/1809.01289) (partly based on the [autograd](https://github.com/HIPS/autograd) package).</span>
|
||||
</span><span id="L-6"><a href="#L-6"><span class="linenos"> 6</span></a><span class="sd">- treatment of slow modes in the simulation as suggested in [arXiv:1009.5228](https://arxiv.org/abs/1009.5228).</span>
|
||||
</span><span id="L-7"><a href="#L-7"><span class="linenos"> 7</span></a><span class="sd">- coherent error propagation for data from different Markov chains.</span>
|
||||
</span><span id="L-8"><a href="#L-8"><span class="linenos"> 8</span></a><span class="sd">- non-linear fits with x- and y-errors and exact linear error propagation based on automatic differentiation as introduced in [arXiv:1809.01289](https://arxiv.org/abs/1809.01289).</span>
|
||||
|
@ -691,7 +691,7 @@ The following entries are optional:</li>
|
|||
</span><span id="L-108"><a href="#L-108"><span class="linenos">108</span></a>
|
||||
</span><span id="L-109"><a href="#L-109"><span class="linenos">109</span></a><span class="sd">The integrated autocorrelation time $\tau_\mathrm{int}$ and the autocorrelation function $\rho(W)$ can be monitored via the methods `pyerrors.obs.Obs.plot_tauint` and `pyerrors.obs.Obs.plot_tauint`.</span>
|
||||
</span><span id="L-110"><a href="#L-110"><span class="linenos">110</span></a>
|
||||
</span><span id="L-111"><a href="#L-111"><span class="linenos">111</span></a><span class="sd">If the parameter $S$ is set to zero it is assumed that the dataset does not exhibit any autocorrelation and the windowsize is chosen to be zero.</span>
|
||||
</span><span id="L-111"><a href="#L-111"><span class="linenos">111</span></a><span class="sd">If the parameter $S$ is set to zero it is assumed that the dataset does not exhibit any autocorrelation and the window size is chosen to be zero.</span>
|
||||
</span><span id="L-112"><a href="#L-112"><span class="linenos">112</span></a><span class="sd">In this case the error estimate is identical to the sample standard error.</span>
|
||||
</span><span id="L-113"><a href="#L-113"><span class="linenos">113</span></a>
|
||||
</span><span id="L-114"><a href="#L-114"><span class="linenos">114</span></a><span class="sd">### Exponential tails</span>
|
||||
|
@ -900,7 +900,7 @@ The following entries are optional:</li>
|
|||
</span><span id="L-317"><a href="#L-317"><span class="linenos">317</span></a>
|
||||
</span><span id="L-318"><a href="#L-318"><span class="linenos">318</span></a><span class="sd"># Error propagation in iterative algorithms</span>
|
||||
</span><span id="L-319"><a href="#L-319"><span class="linenos">319</span></a>
|
||||
</span><span id="L-320"><a href="#L-320"><span class="linenos">320</span></a><span class="sd">`pyerrors` supports exact linear error propagation for iterative algorithms like various variants of non-linear least sqaures fits or root finding. The derivatives required for the error propagation are calculated as described in [arXiv:1809.01289](https://arxiv.org/abs/1809.01289).</span>
|
||||
</span><span id="L-320"><a href="#L-320"><span class="linenos">320</span></a><span class="sd">`pyerrors` supports exact linear error propagation for iterative algorithms like various variants of non-linear least squares fits or root finding. The derivatives required for the error propagation are calculated as described in [arXiv:1809.01289](https://arxiv.org/abs/1809.01289).</span>
|
||||
</span><span id="L-321"><a href="#L-321"><span class="linenos">321</span></a>
|
||||
</span><span id="L-322"><a href="#L-322"><span class="linenos">322</span></a><span class="sd">## Least squares fits</span>
|
||||
</span><span id="L-323"><a href="#L-323"><span class="linenos">323</span></a>
|
||||
|
@ -954,7 +954,7 @@ The following entries are optional:</li>
|
|||
</span><span id="L-371"><a href="#L-371"><span class="linenos">371</span></a><span class="sd">Direct visualizations of the performed fits can be triggered via `resplot=True` or `qqplot=True`. For all available options see `pyerrors.fits.least_squares`.</span>
|
||||
</span><span id="L-372"><a href="#L-372"><span class="linenos">372</span></a>
|
||||
</span><span id="L-373"><a href="#L-373"><span class="linenos">373</span></a><span class="sd">## Total least squares fits</span>
|
||||
</span><span id="L-374"><a href="#L-374"><span class="linenos">374</span></a><span class="sd">`pyerrors` can also fit data with errors on both the dependent and independent variables using the total least squares method also referred to orthogonal distance regression as implemented in [scipy](https://docs.scipy.org/doc/scipy/reference/odr.html), see `pyerrors.fits.least_squares`. The syntax is identical to the standard least squares case, the only diffrence being that `x` also has to be a `list` or `numpy.array` of `Obs`.</span>
|
||||
</span><span id="L-374"><a href="#L-374"><span class="linenos">374</span></a><span class="sd">`pyerrors` can also fit data with errors on both the dependent and independent variables using the total least squares method also referred to orthogonal distance regression as implemented in [scipy](https://docs.scipy.org/doc/scipy/reference/odr.html), see `pyerrors.fits.least_squares`. The syntax is identical to the standard least squares case, the only difference being that `x` also has to be a `list` or `numpy.array` of `Obs`.</span>
|
||||
</span><span id="L-375"><a href="#L-375"><span class="linenos">375</span></a>
|
||||
</span><span id="L-376"><a href="#L-376"><span class="linenos">376</span></a><span class="sd">For the full API see `pyerrors.fits` for fits and `pyerrors.roots` for finding roots of functions.</span>
|
||||
</span><span id="L-377"><a href="#L-377"><span class="linenos">377</span></a>
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue