mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-05-14 19:43:41 +02:00
removed unnecessary imports from tests
This commit is contained in:
parent
bb9790acd7
commit
e46746e4ca
4 changed files with 12 additions and 22 deletions
|
@ -1,16 +1,13 @@
|
||||||
import autograd.numpy as np
|
import autograd.numpy as np
|
||||||
import os
|
|
||||||
import random
|
|
||||||
import string
|
|
||||||
import copy
|
|
||||||
import math
|
import math
|
||||||
import scipy.optimize
|
import scipy.optimize
|
||||||
from scipy.odr import ODR, Model, Data, RealData
|
from scipy.odr import ODR, Model, RealData
|
||||||
import pyerrors as pe
|
import pyerrors as pe
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
np.random.seed(0)
|
np.random.seed(0)
|
||||||
|
|
||||||
|
|
||||||
def test_standard_fit():
|
def test_standard_fit():
|
||||||
dim = 10 + int(30 * np.random.rand())
|
dim = 10 + int(30 * np.random.rand())
|
||||||
x = np.arange(dim)
|
x = np.arange(dim)
|
||||||
|
@ -69,7 +66,7 @@ def test_odr_fit():
|
||||||
|
|
||||||
data = RealData([o.value for o in ox], [o.value for o in oy], sx=[o.dvalue for o in ox], sy=[o.dvalue for o in oy])
|
data = RealData([o.value for o in ox], [o.value for o in oy], sx=[o.dvalue for o in ox], sy=[o.dvalue for o in oy])
|
||||||
model = Model(func)
|
model = Model(func)
|
||||||
odr = ODR(data, model, [0,0], partol=np.finfo(np.float64).eps)
|
odr = ODR(data, model, [0, 0], partol=np.finfo(np.float64).eps)
|
||||||
odr.set_job(fit_type=0, deriv=1)
|
odr.set_job(fit_type=0, deriv=1)
|
||||||
output = odr.run()
|
output = odr.run()
|
||||||
|
|
||||||
|
@ -79,8 +76,8 @@ def test_odr_fit():
|
||||||
for i in range(2):
|
for i in range(2):
|
||||||
beta[i].gamma_method(e_tag=5, S=1.0)
|
beta[i].gamma_method(e_tag=5, S=1.0)
|
||||||
assert math.isclose(beta[i].value, output.beta[i], rel_tol=1e-5)
|
assert math.isclose(beta[i].value, output.beta[i], rel_tol=1e-5)
|
||||||
assert math.isclose(output.cov_beta[i,i], beta[i].dvalue**2, rel_tol=2.5e-1), str(output.cov_beta[i,i]) + ' ' + str(beta[i].dvalue**2)
|
assert math.isclose(output.cov_beta[i, i], beta[i].dvalue ** 2, rel_tol=2.5e-1), str(output.cov_beta[i, i]) + ' ' + str(beta[i].dvalue ** 2)
|
||||||
assert math.isclose(pe.covariance(beta[0], beta[1]), output.cov_beta[0,1], rel_tol=2.5e-1)
|
assert math.isclose(pe.covariance(beta[0], beta[1]), output.cov_beta[0, 1], rel_tol=2.5e-1)
|
||||||
pe.Obs.e_tag_global = 0
|
pe.Obs.e_tag_global = 0
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,18 +1,11 @@
|
||||||
import sys
|
|
||||||
sys.path.append('..')
|
|
||||||
import autograd.numpy as np
|
import autograd.numpy as np
|
||||||
import os
|
|
||||||
import random
|
|
||||||
import math
|
import math
|
||||||
import string
|
|
||||||
import copy
|
|
||||||
import scipy.optimize
|
|
||||||
from scipy.odr import ODR, Model, Data, RealData
|
|
||||||
import pyerrors as pe
|
import pyerrors as pe
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
np.random.seed(0)
|
np.random.seed(0)
|
||||||
|
|
||||||
|
|
||||||
def test_matrix_functions():
|
def test_matrix_functions():
|
||||||
dim = 3 + int(4 * np.random.rand())
|
dim = 3 + int(4 * np.random.rand())
|
||||||
print(dim)
|
print(dim)
|
||||||
|
@ -55,4 +48,3 @@ def test_matrix_functions():
|
||||||
tmp[j].gamma_method()
|
tmp[j].gamma_method()
|
||||||
assert math.isclose(tmp[j].value, 0.0, abs_tol=1e-9), 'value ' + str(i) + ',' + str(j)
|
assert math.isclose(tmp[j].value, 0.0, abs_tol=1e-9), 'value ' + str(i) + ',' + str(j)
|
||||||
assert math.isclose(tmp[j].dvalue, 0.0, abs_tol=1e-9), 'dvalue ' + str(i) + ',' + str(j)
|
assert math.isclose(tmp[j].dvalue, 0.0, abs_tol=1e-9), 'dvalue ' + str(i) + ',' + str(j)
|
||||||
|
|
||||||
|
|
|
@ -8,6 +8,7 @@ import pytest
|
||||||
|
|
||||||
np.random.seed(0)
|
np.random.seed(0)
|
||||||
|
|
||||||
|
|
||||||
def test_dump():
|
def test_dump():
|
||||||
value = np.random.normal(5, 10)
|
value = np.random.normal(5, 10)
|
||||||
dvalue = np.abs(np.random.normal(0, 1))
|
dvalue = np.abs(np.random.normal(0, 1))
|
||||||
|
@ -38,8 +39,8 @@ def test_function_overloading():
|
||||||
lambda x: np.sinh(x[0]), lambda x: np.cosh(x[0]), lambda x: np.tanh(x[0])]
|
lambda x: np.sinh(x[0]), lambda x: np.cosh(x[0]), lambda x: np.tanh(x[0])]
|
||||||
|
|
||||||
for i, f in enumerate(fs):
|
for i, f in enumerate(fs):
|
||||||
t1 = f([a,b])
|
t1 = f([a, b])
|
||||||
t2 = pe.derived_observable(f, [a,b])
|
t2 = pe.derived_observable(f, [a, b])
|
||||||
c = t2 - t1
|
c = t2 - t1
|
||||||
assert c.value == 0.0, str(i)
|
assert c.value == 0.0, str(i)
|
||||||
assert np.all(np.abs(c.deltas['e1']) < 1e-14), str(i)
|
assert np.all(np.abs(c.deltas['e1']) < 1e-14), str(i)
|
||||||
|
|
|
@ -4,6 +4,7 @@ import pytest
|
||||||
|
|
||||||
np.random.seed(0)
|
np.random.seed(0)
|
||||||
|
|
||||||
|
|
||||||
def test_root_linear():
|
def test_root_linear():
|
||||||
|
|
||||||
def root_function(x, d):
|
def root_function(x, d):
|
||||||
|
@ -16,4 +17,3 @@ def test_root_linear():
|
||||||
assert np.isclose(my_root.value, value)
|
assert np.isclose(my_root.value, value)
|
||||||
difference = my_obs - my_root
|
difference = my_obs - my_root
|
||||||
assert all(np.isclose(0.0, difference.deltas['t']))
|
assert all(np.isclose(0.0, difference.deltas['t']))
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue