removed unnecessary imports from tests

This commit is contained in:
Fabian Joswig 2021-10-15 14:13:06 +01:00
parent bb9790acd7
commit e46746e4ca
4 changed files with 12 additions and 22 deletions

View file

@ -1,16 +1,13 @@
import autograd.numpy as np import autograd.numpy as np
import os
import random
import string
import copy
import math import math
import scipy.optimize import scipy.optimize
from scipy.odr import ODR, Model, Data, RealData from scipy.odr import ODR, Model, RealData
import pyerrors as pe import pyerrors as pe
import pytest import pytest
np.random.seed(0) np.random.seed(0)
def test_standard_fit(): def test_standard_fit():
dim = 10 + int(30 * np.random.rand()) dim = 10 + int(30 * np.random.rand())
x = np.arange(dim) x = np.arange(dim)
@ -69,7 +66,7 @@ def test_odr_fit():
data = RealData([o.value for o in ox], [o.value for o in oy], sx=[o.dvalue for o in ox], sy=[o.dvalue for o in oy]) data = RealData([o.value for o in ox], [o.value for o in oy], sx=[o.dvalue for o in ox], sy=[o.dvalue for o in oy])
model = Model(func) model = Model(func)
odr = ODR(data, model, [0,0], partol=np.finfo(np.float64).eps) odr = ODR(data, model, [0, 0], partol=np.finfo(np.float64).eps)
odr.set_job(fit_type=0, deriv=1) odr.set_job(fit_type=0, deriv=1)
output = odr.run() output = odr.run()
@ -79,8 +76,8 @@ def test_odr_fit():
for i in range(2): for i in range(2):
beta[i].gamma_method(e_tag=5, S=1.0) beta[i].gamma_method(e_tag=5, S=1.0)
assert math.isclose(beta[i].value, output.beta[i], rel_tol=1e-5) assert math.isclose(beta[i].value, output.beta[i], rel_tol=1e-5)
assert math.isclose(output.cov_beta[i,i], beta[i].dvalue**2, rel_tol=2.5e-1), str(output.cov_beta[i,i]) + ' ' + str(beta[i].dvalue**2) assert math.isclose(output.cov_beta[i, i], beta[i].dvalue ** 2, rel_tol=2.5e-1), str(output.cov_beta[i, i]) + ' ' + str(beta[i].dvalue ** 2)
assert math.isclose(pe.covariance(beta[0], beta[1]), output.cov_beta[0,1], rel_tol=2.5e-1) assert math.isclose(pe.covariance(beta[0], beta[1]), output.cov_beta[0, 1], rel_tol=2.5e-1)
pe.Obs.e_tag_global = 0 pe.Obs.e_tag_global = 0

View file

@ -1,18 +1,11 @@
import sys
sys.path.append('..')
import autograd.numpy as np import autograd.numpy as np
import os
import random
import math import math
import string
import copy
import scipy.optimize
from scipy.odr import ODR, Model, Data, RealData
import pyerrors as pe import pyerrors as pe
import pytest import pytest
np.random.seed(0) np.random.seed(0)
def test_matrix_functions(): def test_matrix_functions():
dim = 3 + int(4 * np.random.rand()) dim = 3 + int(4 * np.random.rand())
print(dim) print(dim)
@ -55,4 +48,3 @@ def test_matrix_functions():
tmp[j].gamma_method() tmp[j].gamma_method()
assert math.isclose(tmp[j].value, 0.0, abs_tol=1e-9), 'value ' + str(i) + ',' + str(j) assert math.isclose(tmp[j].value, 0.0, abs_tol=1e-9), 'value ' + str(i) + ',' + str(j)
assert math.isclose(tmp[j].dvalue, 0.0, abs_tol=1e-9), 'dvalue ' + str(i) + ',' + str(j) assert math.isclose(tmp[j].dvalue, 0.0, abs_tol=1e-9), 'dvalue ' + str(i) + ',' + str(j)

View file

@ -8,6 +8,7 @@ import pytest
np.random.seed(0) np.random.seed(0)
def test_dump(): def test_dump():
value = np.random.normal(5, 10) value = np.random.normal(5, 10)
dvalue = np.abs(np.random.normal(0, 1)) dvalue = np.abs(np.random.normal(0, 1))
@ -38,8 +39,8 @@ def test_function_overloading():
lambda x: np.sinh(x[0]), lambda x: np.cosh(x[0]), lambda x: np.tanh(x[0])] lambda x: np.sinh(x[0]), lambda x: np.cosh(x[0]), lambda x: np.tanh(x[0])]
for i, f in enumerate(fs): for i, f in enumerate(fs):
t1 = f([a,b]) t1 = f([a, b])
t2 = pe.derived_observable(f, [a,b]) t2 = pe.derived_observable(f, [a, b])
c = t2 - t1 c = t2 - t1
assert c.value == 0.0, str(i) assert c.value == 0.0, str(i)
assert np.all(np.abs(c.deltas['e1']) < 1e-14), str(i) assert np.all(np.abs(c.deltas['e1']) < 1e-14), str(i)

View file

@ -4,6 +4,7 @@ import pytest
np.random.seed(0) np.random.seed(0)
def test_root_linear(): def test_root_linear():
def root_function(x, d): def root_function(x, d):
@ -16,4 +17,3 @@ def test_root_linear():
assert np.isclose(my_root.value, value) assert np.isclose(my_root.value, value)
difference = my_obs - my_root difference = my_obs - my_root
assert all(np.isclose(0.0, difference.deltas['t'])) assert all(np.isclose(0.0, difference.deltas['t']))